Towards Effective Disambiguation for Machine Translation
with Large Language Models

Vivek Iyer

Pinzhen Chen

Alexandra Birch

School of Informatics, University of Edinburgh
{vivek.iyer, pinzhen.chen, a.birch}@ed.ac.uk

Abstract

Resolving semantic ambiguity has long been
recognised as a central challenge in the field of
Machine Translation. Recent work on bench-
marking translation performance on ambiguous
sentences has exposed the limitations of con-
ventional Neural Machine Translation (NMT)
systems, which fail to handle many such cases.
Large language models (LLMs) have emerged
as a promising alternative, demonstrating com-
parable performance to traditional NMT mod-
els while introducing new paradigms for con-
trolling the target outputs. In this paper, we
study the capabilities of LLMs to translate
“ambiguous sentences" - i.e. those contain-
ing highly polysemous words and/or rare word
senses. We also propose two ways to improve
their disambiguation capabilities, through a)
in-context learning and b) fine-tuning on care-
fully curated ambiguous datasets. Experiments
show that our methods can match or outper-
form state-of-the-art systems such as DeepL
and NLLB in four out of five language direc-
tions. Our research provides valuable insights
into effectively adapting LLMs to become bet-
ter disambiguators during Machine Translation.
We release our curated disambiguation corpora
and resources at https://data.statmt.org/
ambiguous-europarl.

1 Introduction

While the field of NMT has advanced rapidly in
recent times, the disambiguation and translation of
ambiguous words still remain an open challenge.
Notably, Campolungo et al. (2022) created a bench-
mark named DiBiMT to study the behaviour of
state-of-the-art (SOTA) NMT systems when trans-
lating sentences with ambiguous words.! They
reported that even the best-performing commercial
NMT systems yielded accurate translations only

"https://nlp.uniromal.it/dibimt/public/
leaderboard

Source

DeepL

The horse had a blaze between its eyes.
AR I By &4 PR R Z 18 A — ] KK -
(There is a flame between the horse’s eyes.)
BLOOMZ X It g IREF X A — 8 & %4 .
(176B) (There is a white line between the horse’s eyes.)

Table 1: An example of English-to-Chinese translation
involving an ambiguous term “blaze”. For BLOOMZ,
we use 1-shot prompting to obtain the translation.

50-60% of the time,> while other open-source mul-
tilingual models like mBARTS0 (Tang et al., 2021)
and M2M100 (Fan et al., 2021) performed much
worse. This was found to be due to biases against
rare and polysemous word senses inherited during
pretraining. Table 1 shows an example from the
DiBiMT benchmark where DeepL.? mistranslates
an ambiguous word while the LLM BLOOMZ re-
solves the word to its correct in-context meaning.

In this paper, we explore whether LLMs can
indeed perform better at translating “ambiguous
sentences" — i.e. those containing highly polyse-
mous and/or rare word senses. The motivation be-
hind this is that while NMT models can potentially
learn biases from noisy or narrow domain parallel
data, hurting their ability to detect and translate rare
word senses, LLMs can potentially be pretrained
on a wider variety of monolingual text — though
they might also prefer fluency over accuracy. Still,
LLMs have shown many emergent abilities due to
scale (Brown et al., 2020; Chowdhery et al., 2022;
Wei et al., 2022a) and moreover, have demonstrated
great potential for Machine Translation (MT) (Vilar
et al., 2023; Zhang et al., 2023).

We comprehensively examine how these trends
extend to the specific task of translating ambigu-
ous sentences. We select a diverse set of foun-
dational and instruction-tuned LLMs, of different

2Subsequent iterations of these commercial models have im-
proved, but large margins still remain.
3https ://deepl.com/en/translator
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sizes and with varying combinations of languages
in the pre-training data. We then compare how
these LLMs match up against several widely used
NMT models on the DiBiMT test set, which covers
translation from English to five languages: Span-
ish, Italian, German, Russian and Chinese. We find
that, with only 1-shot in-context learning (Brown
et al., 2020), LLMs — in particular, BLOOMZ
176B (Muennighoff et al., 2023) and LLaMA 65B
(Touvron et al., 2023) — match or outperform top-
performing open-source and commercial MT sys-
tems, and set a new SOTA in two of the five lan-
guages we tested. Furthermore, we propose two
methods for adapting LLMs for ambiguous transla-
tion: 1) in-context learning with sentences having
the same word sense, and 2) fine-tuning on curated
ambiguous parallel corpora. We show that these
methods are highly effective and can further im-
prove performance by up to 15 points in DiBiMT
accuracy in the best case.
Our work thus makes three key contributions:

1. We evaluate the performance of LLMs com-
pared to top-performing NMT systems in the
challenging task of translating ambiguous sen-
tences. We report SOTA scores on 2 of the
5 languages tested, and comparable perfor-
mance otherwise.

2. We also show that our suggested techniques
of similar sentence in-context learning and tar-
geted disambiguation fine-tuning significantly
outperform naive few-shot prompting

3. We conclude our work by evaluating LLMs on
the FLORES200 test sets, and confirm that im-
provements in disambiguation accuracy corre-
late strongly with those in overall MT quality.

2 Background

2.1 Ambiguity in machine translation

Resolving ambiguity in the source sentence was
historically framed as one of the most fundamen-
tal challenges in MT (Weaver, 1952). In an effort
to address this challenge, traditional works inte-
grating Word Sense Disambiguation in Statistical
Machine Translation (Carpuat and Wu, 2007; Chan
et al., 2007) were followed by those integrating it
in NMT architectures in various ad-hoc ways (Choi
etal., 2017; Liu et al., 2018; Pu et al., 2018). Later,
with the introduction of the Transformer (Vaswani
etal., 2017), it was shown that higher layer encoder

representations are robust enough to handle disam-
biguation (Tang et al., 2019) without any explicit
handling of word senses.

However, more recent research creating challeng-
ing evaluation benchmarks has called the purported
abilities of NMT systems into question once again.
Following the proposal of the MuCoW benchmark
for testing WMT19 (Raganato et al., 2019) and
WMT20 (Scherrer et al., 2020) systems, Raganato
et al. (2020a) showed how Transformer-based
NMT models, in general, underperform when
translating rare word senses. Campolungo et al.
(2022), who experimented with SOTA commercial
(Google Translate, DeepL) and open-source sys-
tems (mBARTS50, M2M 100, OPUS-NMT (Tiede-
mann and Thottingal, 2020), etc.), arrived at the
same conclusion when they proposed the DiBiMT
benchmark for evaluating MT systems between En-
glish and 5 languages (Spanish, Italian, German,
Russian, and Chinese). They found similar biases
against low-frequency and highly polysemous word
senses. They also noted the accuracies of these sys-
tems were much lower than the then SOTA WSD
system, ESCHER (Barba et al., 2021) — indicating
significant room for improvement. In this work,
we explored whether foundational and instruction-
tuned LLMs could bridge this gap with minimal
supervision (i.e. few-shot prompting).

2.2 LLMs and machine translation

Previous research has found that LLMs can per-
form machine translation without being specifically
fine-tuned (Radford et al., 2019). In order to elicit
a translation, research in this direction follows the
paradigm of LLM prompting:

1. Zero-shot prompting, where an LLM is di-
rectly asked to translate a source input into
the target language (Radford et al., 2019).

2. Few-shot prompting, also called in-context
learning, where an LLM is supplied with
demonstrations of input and output pairs from
the same task it is performing, before being
queried an input (Brown et al., 2020).

3. Chain-of-thought (CoT), where an LLM is
prompted to reason to gain relevant knowl-
edge about the input before producing an out-
put (Wei et al., 2022b; Kojima et al., 2022).

Besides training-free approaches, another route is
instruction tuning, which optimizes an LLLM on a
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mixed range of downstream tasks and fine-tunes the
model to understand and respond to user intention
through natural language (Wei et al., 2021).

It was observed that LLMs might not surpass
Transformer models solely trained to translate, es-
pecially for non-English and low-resource trans-
lation directions (Vilar et al., 2023; Hendy et al.,
2023). Nevertheless, LLMs have been shown to
achieve superiority in tasks requiring in-depth un-
derstanding and manipulation of text, primarily
due to them being pretrained on very large cor-
pora. For example, without fine-tuning, LLMs
are good at adapting to word alignments (Moslem
et al., 2023), translation evaluation (Kocmi and Fe-
dermann, 2023), idiom translation (Raunak et al.,
2023), iterative refinement (Chen et al., 2023), and
interactive translation via CoT (Pilault et al., 2023;
He et al., 2023). Related to our work is Pilault
et al. (2023)’s proposal of using interactive question
answering as a CoT process for LLMs to disam-
biguate source words. As an alternative approach,
we aim to generate translations in a single pass by
leveraging SOTA WSD systems to provide contexts
that guide LLMs to disambiguate better.

3 Methodology

3.1 Preliminaries

A word sense is a concept in a Knowledge Base
(in this work, BabelNet by Navigli et al. (2021))
that denotes a distinct meaning of a word in the
context of a sentence. The polysemy degree of an
ambiguous word is defined as the total count of
all possible senses that a particular word can have.
The sense frequency is defined as the occurrence
count of that particular sense in a disambiguated
training corpus.

In this work, we define an ambiguous word as a
polysemous term with multiple possible, and likely
related, meanings — with the correct sense inferable
only from the sentence-level context. We then re-
fer to a sentence with an ambiguous word as an
“ambiguous sentence” for brevity and ease of expla-
nation. By definition, the DiBiMT test set (Cam-
polungo et al., 2022) contains only one ambiguous
word per sentence.

Word Sense Disambiguation (WSD) is the pro-
cess of linking an ambiguous word in a sentence
to its appropriate word sense in the Knowledge
Base. We use ESCHER-WSD (Barba et al., 2021)
in this work, a high-performing WSD system that
had achieved the SOTA for English.

3.2 K-shot prompting

Given a test sentence X and a Large Language
Model to prompt for translations, we construct a
query with k£ demonstrations, i.e. parallel sentence
pairs {(X1,Y1), (X2,Y2)...(Xk, Yi)} as exam-
ples, followed by the test sentence. As shown
in Figure 1, for foundation LLMs, we frame
the prompt as a text completion task, while for
instruction-tuned LLMs (like BLOOMZ) we struc-
ture the last phrase as a question, in order to con-
form to the latter’s question answering format. In
the naive setting, we choose our demonstrations
randomly from the development set.

3.3 In-context learning with similar
ambiguous contexts

LLMs can effectively gain knowledge relevant to
the test domain through prompting, and this process
is named in-context learning (ICL). We leverage
ICL to help LLMs ingest information on translation
of ambiguous sentences, by providing related sense
translations as examples in the prompt. To achieve
this, we first identify the most polysemous word
in the input sentence by disambiguating it with a
WSD system, and then calculate the polysemy de-
gree of all disambiguated senses with respect to a
large development set. We choose the most polyse-
mous word sense* and search for other occurrences
of the same sense in the same development set. Fi-
nally, we randomly sample k source-target pairs
including such a sense to use as demonstrations in
k-shot prompting, instead of using random pairs.
This technique seemed to return enough examples
for our purposes in most cases — for 5-shot prompt-
ing, given a corpus of 1.8M sentences, we observed
that we got all 5 matches 92.5% of the time.

3.4 Low-rank fine-tuning

Apart from providing relevant examples through
prompting, another conventional approach is to op-
timize the model parameters in a domain adaptation
fashion for disambiguation. Considering the com-
putational cost, our work experiments with instruc-
tion fine-tuning via low-rank adaptation (LoRA).
This technique appends trainable lower-rank de-
composition matrices to giant matrices in an LLM

*Currently, we only explore the case of one ambiguous word
per sentence, due to the nature of the benchmark. One could
extend our approach to multiple ambiguous words by sepa-
rately sampling examples for each polysemous word and con-
ducting higher-shot prompting - but further research would
be needed to find the optimal way to combine these examples.
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The translation in {tgt lang} is:

The translation in {tgt lang} is:
[FOUNDATION LLM]

The translation in {tgt lang} is:

[INSTRUCTION-TUNED LLM]

Translate the following sentence from {src lang} to {tgt lang}:

{tgt_demoq}

. k demonstrations

Translate the following sentence from {src lang} to {tgt lang}:
{tgt_demo,}

Translate the following sentence from {src_lang} to {tgt lang}:

OR

Translate the following sentence from {src_lang} to {tgt lang}:
Can you translate the input sentence to {tgt lang}?

{src_demo,}

{src_demoy}

{src_test}

{src_test}

Figure 1: Templates used for k-shot LLM prompting, with k£ >= 0.

that can remain frozen during fine-tuning (Hu et al.,
2021). By sacrificing a little performance, this fine-
tuning method achieves great parameter efficiency.
We aim to adjust LLMs to perform the translation
task specifically. In order to maximise an LLM’s
capability to disambiguate when translating, we fol-
low a careful data selection procedure to identify
the most ambiguous sentences in our corpus.

Given the size of LLMs, it would be infeasible
to fine-tune them on a large parallel corpus, so we
opt to curate a smaller dataset that suits the am-
biguous translation task. We would like a balanced
mix of sentences with highly polysemous words
as well as those with rare senses of a given word.
This is to ensure fine-tuning reduces both polysemy
degree-related and sense frequency-related biases,
as discovered by Campolungo et al. (2022) and con-
sequently, maximises disambiguation performance.
We, thus, sort our corpora in two ways: one, by the
maximum polysemy degree (greatest first) and two,
by the minimum sense frequency (rarest first) of
all word senses in a given sentence, disambiguated
with ESCHER-WSD. We take the top N/2 sen-
tences from each set and interleave them to create
our final fine-tuning corpus of size N. We release
our fine-tuning corpus, along with the ESCHER-
WSD disambiguation outputs for public use.’

Once the data is chosen, we follow the fine-
tuning paradigm of Alpaca (Taori et al., 2023): the
model is prompted with an instruction specifying
the source and target languages, as well as the test
sentence as an input, and the model is expected to
respond with the translation.®

5https ://data.statmt.org/ambiguous-europarl
6h'ctps: //github.com/tatsu-lab/stanford_alpaca

4 Experiments

In this section, we seek to answer the following
research questions:

1. RQ1: How do LLMs perform at translation of
ambiguous sentences compared to traditional
high-performing NMT systems? (Section 4.3)

2. RQ2: What methods could one use to adapt
LLMs for this task and improve performance
over naive few-shot prompting? (Section 4.4)

3. RQ3: How do these disambiguation-adapted
LLMs fare in terms of overall translation qual-
ity? (Section 4.5)

4.1 Models

To ensure reproducibility, we pick four well-known
and high-performing open-source LLMs,” of which
we sample seven versions for experimentation:

* BLOOM (Scao et al., 2022): A fully open-
source, multilingual, foundation LLM that
supports 46 languages. To establish the range
of its capabilities, we explore both the small-
est (7.1B) and the largest (176B) versions.

* BLOOMZ (Muennighoff et al., 2023):
BLOOM instruction-tuned on a multilingual
prompting set. Again, we choose the smallest
(7.1B) and the largest (176B) versions.

* LLaMA (Touvron et al., 2023): The popular
LLM trained by Meta Al on gigantic datasets
ranging up to 1.5T tokens. We evaluate the
smallest (7B) and the largest (65B) versions.

"at the time of experiment formulation
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* Alpaca (Taori et al., 2023): A LLaMA model
instruction-tuned on a 52K dataset generated
using Self-Instruct (Wang et al., 2023).

To effectively position these open-source LLMs
against traditional NMT systems, we compare them
against the best-performing and the most widely
used commercial and open-source models:

1. DeepL Translator®: a SOTA commercial
NMT system (accessed on 24th July 2023).

2. Google Translate”: Probably the most widely
used commercial NMT system (accessed on
24th July 2023).

3. OPUS (Tiedemann and Thottingal, 2020):
Small, bilingual, Transformer-based NMT
models trained on the OPUS parallel corpora.

4. mBARTS50 (Tang et al., 2021): Multilingual
NMT models pretrained on monolingual cor-
pora from 50 languages, and fine-tuned on the
translation task. We report performances of
both the English-to-many and many-to-many
fine-tuned models.

5. M2M100 (Fan et al., 2021): A massive mul-
tilingual NMT model that was trained on
2200 translation directions to support many-
to-many translation among 100 languages in
total. We compare both the base (418M) and
the large (1.2B) versions.

6. NLLB-200 (NLLB Team et al., 2022): It is
the current SOTA in many low-resource pairs,
scaling to 200 languages. We experiment with
all its variants, where the largest is a mixture-
of-experts (MoE) model with 54B parameters.
We also benchmark its smaller checkpoints at
1.3B and 3.3B, as well as distilled versions at
0.6B and 1.3B.

We take the results for mBARTS50, M2M 100,
and OPUS directly from the DiBiMT leader-
board.!” We use Hugging Face!! for accessing and
inferencing all other models — except for Google
Translate and DeepL, which are accessed using
their respective APIs. Despite their presence on
the leaderboard, we re-evaluate these systems since
they are being constantly updated.

8https://www.deepl.com/en/translator

9https://translate.google.com/

Ohttps://nlp.uniromal.it/dibimt/public/
leaderboard

11https://huggingface.co/

System En-Es  En-It
Similar contexts devset 1.81M 1.73M
Fine-tuning corpus 100K 100K

Table 2: Statistics of data used in our experiments, in
terms of parallel sentence count.

4.2 Experimental setup

Datasets In this study, we use the DiBiMT test
set for evaluation and measure accuracy across all
five translation directions: English to Spanish, Ital-
ian, Chinese, Russian, and German, respectively.
For validation, we use the development set from
FLORES 200 (NLLB Team et al., 2022) in our
base setting. To search for similar ambiguous con-
texts (Section 3.3), we require a larger develop-
ment set to find relevant examples and also to ac-
curately estimate polysemy degree. Hence, we use
the Europarl corpus (Koehn, 2005), disambiguated
with ESCHER-WSD. We also use the same disam-
biguated corpus for fine-tuning, however, we first
follow the filtering procedure described in Section
3.4 to create a small corpus full of ambiguous sen-
tences. Validation during fine-tuning is done using
500 randomly sampled sentences from this corpus
and the rest is used for training. We detail the data
statistics used for these experiments in Table 2.

LLM prompting setup Due to memory con-
straints, and to compare all models fairly, we load
LLMs in 8-bit and use a batch size of 1. For gen-
eration, we set both beam size and temperature to
1. To prevent repetition in LLM output, we set
no_repeat_ngram_size to 4. From the LLM’s re-
sponse, we filter out the sentence before the first
newline character as the output translation.

LoRA fine-tuning We inject LORA modules into
all query, key, and value matrices. We set rank to
8, alpha to 8, and dropout to 0.05. For training, we
set the effective batch size to 32, the learning rate
to 3e-4, and the maximum length to 256. The total
training budget is 5 epochs, and we pick the best
model checkpoint based on cross-entropy loss on
the validation set. The training data is shuffled after
every epoch. Inference is done with a beam size of
3, and a maximum generation length of 150.

4.3 LLMs vs NMT systems on DiBiMT

We show our results in Table 3. For the subsequent
discussion, we note that LLaMA was not intention-
ally trained on Chinese and is, thus, an ‘unseen’
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System # Params Variant

En-Es

En-It En-Zh En-Ru En-De Average

Commercial systems

DeepL Unknown July 2023
Google Translate ~ Unknown July 2023

63.91
54.73

6547 5842 6753  76.64 66.39
5359 5209 6203 67.35 57.96

Open-source NMT systems

OPUS 74M Bilingual En-X models
611M One-to-Many
mBARTS0 611M Many-to-Many
418M Base
M2M100 1.2B Large
0.6B Distilled version
1.3B Distilled version
NLLB-200 1.3B Original checkpoint
3.3B Original checkpoint
54B Mixture of Experts

LLaMA family LLMs

1-shot prompting 53.64 4884 30617 60.65 57.41 50.23

7B 3-shot prompting 5553 5053 30527 5731 5534  49.85

LLaMA 5-shot prompting 56.33 4866 27.92" 5683 55.26 49.00

1-shot prompting 56.57 6022 44731 6571  62.05  57.86

65B 3-shot prompting 59.83  60.18 42.777 6745 63.41 58.73

5-shot prompting 60.78  63.47 4249 6631 6298  59.21

Alpaca 7B 0-shot prompting 4975 4524 29.637 5523 51.52 46.27
BLOOM family LLMs

7.1B 1-shot prompting 55.69 28.79"  51.08  40.000 29.67T  41.05

BLOOM 1-shot prompting 63.66 42.02" 6030 43227 37.04T 4925

176B 3-shot prompting 6452 46337 6120 44307 36.69"  50.61

5-shot prompting 65.53 4599" 6173 42.92" 38.06"  50.85

1B 0-shot prompting 56.89 33917 532 33337 2167 39.80

: 1-shot prompting 60.87 40687 5237 33.33" 30657 4358

BLOOMZ 0-shot prompting 62.67 45787  61.87 47987 44.06t 5247

176B 1-shot prompting 64.35 49317 6657 51.887 439" 5521

3-shot prompting 67.31 45917 6444 53427 45087 5523

5-shot prompting 68.55 49.227  63.36 52.607 44.94T 5573

Table 3: Accuracies on DiBiMT test for establish NMT systems and LLMs, using naive k-shot prompting. For
Alpaca, we can only use 0-shot prompting due to its particular prompt template. We highlight the top three scores
per language in bold, with the best underlined as well, the 2nd best as is, and the 3rd best italicized. We indicate
scores for unseen languages (ie. not intentionally included in pretraining) with a .

language. Similarly, for BLOOM, Chinese and
Spanish are “seen” and the rest are “unseen”. We
share our key observations below:

1. LLMs usually match or beat massive MT
models on seen languages. Except for the
very rich-resourced En-De, where supervised
MT systems appear to have an edge, LLaMA
65B mostly matches the SOTA NMT systems
(namely DeepL. and NLLB-200). Further-
more, BLOOMZ sets a new SOTA in its seen
languages, Spanish and Chinese, and outper-
forms DeepL by margins of 7.3% and 12.2%
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respectively. These improvements against
such strong, supervised massive NMT sys-
tems are particularly remarkable since our cor-
responding setup for inferencing the LLMs
is quite cheap — as we noted previously, this
is only naive few-shot prompting of an 8-bit
quantized model, with a beam size of 1.

. LLMs perform relatively worse for unseen

languages, but they can still be much better
than some supervised MT models. We note
that relative to seen languages, LLaMA under-
performs in translation to Chinese. Similarly,



BLOOM performs worse for its’ unseen lan-
guages of German, Italian, and Russian. Still,
LLMs yield reasonable performance here that
is still much better than some supervised
NMT systems. For example, BLOOMZ-7B
achieves 40.68% accuracy in English-Italian,
which is about 35.9% more than OPUS, 52.8%
more than mBART50 and 75% more than
M2M100-1.2B. While NLLB-200 does out-
perform BLOOMZ-7B, our results just high-
light the power of pretraining at scale.

. Scale helps improve performance for am-
biguity translation. Continuing from the
last point, similar to NMT models that im-
prove with scale (e.g. NLLB-200), we observe
that LL.Ms too perform consistently better at
ambiguous translation on scaling up to their
larger variants. This applies to the transla-
tion of both seen and unseen languages. That
said, the lighter models, such as LLaMA 7B
or BLOOM 7B, also perform quite well and in
many cases, 1-shot prompting of these LLMs
is almost as good as NLLB translations.

. LLM performance does improve on aver-
age with more demonstrations, but this is
not uniform. On average, we observe that
5-shot prompting works best, followed by 3-
shot and then 1-shot, though some outliers
exist for LLaMA 7B. Moreover, when look-
ing at the performance of individual language
pairs, we note that the improvement trend
is not uniform, and it is possible a 3-shot
translation outperforms a 5-shot one. This
aligns with the finding of Zhang et al. (2023),
who reach the same conclusion regarding over-
all MT quality. Nonetheless, as we show in
Section 4.4.1, accuracy does significantly im-
prove when we provide relevant and helpful
examples — suggesting quality of demonstra-
tions matters more than quantity.

. General-purpose instruction-tuned LLMs
consistently outperform foundation LLMs.
Interestingly, we observe that 1-shot prompt-
ing of a general-purpose instruction-tuned
LLM like BLOOMZ often significantly out-
performs 5-shot prompting of BLOOM, even
on the very specific task of ambiguity trans-
lation. In fact, even with 0-shot prompting,
models like Alpaca 7B, BLOOMZ 7B and
BLOOMZ 176B perform reasonably well,

matching some supervised MT systems. We
observed that this did not work for foundation
LLMs like BLOOM 165B and LLaMA 7B,
and 0-shot prompting of these models yielded
hallucinations in many cases.

Lastly, we include a qualitative comparison of
DeepL and BLOOMZ 176B translations for the En-
Zh pair in the Appendix (see Table 8) — where we
observe that BLOOMZ generates more contextual
translations, relatively speaking, while its counter-
part tends to translate literally in many cases.

4.4 Adapting LLMs for ambiguous MT

This section reports experiments with two proposed
strategies to enable LLMs to disambiguate bet-
ter and improve performance on the ambiguous
translation task. While both methods are shown
to significantly improve performance, we include
a discussion of the relative tradeoffs between the
techniques in Appendix A.2.

4.4.1 Improving In-Context Learning by
leveraging similar ambiguous contexts

Rather than selecting our examples randomly as
in our naive setting, we employ the data selection
procedure described in Section 3.3 to discover other
examples that contain the same word sense as the
most polysemous sense in the input sentence. We
report our scores in Table 4, and our findings below:

1. Similar contexts yield more improvements
as the example count increases We observe
that for 1-shot prompting, similar contexts per-
form comparably or slightly better than ran-
dom examples. However, the gains increase
substantially as we move towards 3-shot and 5-
shot prompting. We can understand this from
the intuition that 1-shot prompting likely just
guides the LLM towards generating a reason-
able translation, whereas with more relevant
examples, it learns to disambiguate better and
translate in context accordingly.

2. Larger models observe greater and more
consistent gains than smaller LLMs Com-
pared to LLaMA 7B, the other LLMs
(LLaMA 65B, BLOOM 176B and BLOOMZ
176B) yield much larger accuracy improve-
ments on a more uniform basis. This is proba-
bly because scaling up allows LL.Ms to model
polysemous words better in their semantic
space, facilitating effective in-context learning
of disambiguation capabilities.
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1-shot 3-shot 5-shot 1-shot 3-shot 5-shot
System System

Rand. Sim. Rand. Sim. Rand. Sim. Rand. Sim. Rand. Sim. Rand. Sim.
DeepL —63.91— DeepL —65.47—
NLLB-200 54B —61.33— NLLB-200 54B —67.19—
LLaMA 7B 53.64 54.01 55.53 52.52 56.33 54.45 LLaMA 7B 48.84 49.47 50.53 53.85 48.66 52.17
LLaMA 65B 56.57 59.38 59.83 62.44 60.78 63.74 LLaMA 65B 60.22 59.77 60.18 64.94 63.47 65.33
BLOOM 176B 63.66 62.44 64.52 66.19 65.53 68.22 BLOOM 176B 42.02 43.17 46.33 48.09 45.99 50.00
BLOOMZ 176B  64.35 69.57 67.31 71.15 68.55 71.33 BLOOMZ 176B 49.31 49.60 45.91 50.73 49.22 50.53

(a) English-Spanish

(b) English-Italian

Table 4: 1-shot, 3-shot and 5-shot results for En-Es and En-It prompting with randomised examples (Rand.) versus
similar contexts (Sim.). The best-performing systems from Table 3, i.e. DeepL and NLLB-200 are chosen as
baselines. For LLMs, for each setting, the better-performing baseline between Rand. and Sim. is highlighted in
bold. The overall best score (among all LLMs) is underlined as well, while the best NMT system is also italicized.

4.4.2 Fine-tuning with ambiguous corpora

We fine-tune Alpaca 7B, BLOOM 7B and
BLOOMZ 7B in En-Es and En-It directions us-
ing the data described in Section 4.2. We show our
results when prompting these fine-tuned LLMs in
Table 5. We make the following observations:

1. Fine-tuning generally improves perfor-
mance. We observe that fine-tuned LLMs sig-
nificantly outperform their non-finetuned ver-
sions in most cases. The biggest improvement
is observed for BLOOM 7B in En-It, where
accuracy increases by as high as 47.73%, in-
dicating the effectiveness of our method. The
only exception to this is when the LLM is al-
ready strong, such as BLOOMZ 7B at En-Es,
and then the improvements are marginal. But
even so, strong instruction-tuned LLMs like
BLOOMZ still gain significantly from fine-
tuning on the En-It pair — where it was orig-
inally weaker due to Italian being an unseen
language during pretraining.

2. Best Cross Entropy does not necessarily
translate to best disambiguation accuracy.
Looking at Table 5, we note that the check-
points with the best cross-entropy fall short of
the topline with the best DiBiMT accuracies,
suggesting the former is not an optimal metric
for this task. Future work could benefit from
using disambiguation-specific metrics for val-
idation, leveraging other ambiguous test sets
like MuCoW (Raganato et al., 2020b).

3. Fine-tuning for 2-3 epochs is sufficient.
We plot the DiBiMT accuracy versus epoch
curves in Figure 2 where the performance is
evaluated after each epoch. We observe that in

all cases, accuracy peaks between the 1st and
the 3rd epoch, after which it mostly plateaus
or dips slightly - suggesting that one does not
need to fine-tune these LLMs for too long.

4. Fine-tuning improves LLM performance
until about 65K training samples. We now
try to answer the Research Question of how
many training samples we need for fine-tuning
these LLMs, to get optimal performance. We
plot the Accuracy vs corpus size graph in Fig-
ure 3, where we indicate corpus size by the
number of parallel sentences. We observe that
accuracy increases non-monotonically with an
increase in corpus size, but peaks anywhere
between 36K-63K training samples, which
seems to depend on the pre-existing capabili-
ties of the LLM. For a raw foundation LLM
like BLOOM 7B, relatively more fine-tuning
data (54K-63K) appears to be beneficial. Al-
paca 7B, which has been instruction-tuned on
an English-only dataset, also seems to benefit
from further fine-tuning—especially for En-
Es, accuracy peaks after 63K training samples.
However, for a powerful LLM like BLOOMZ
that has been instruction-tuned on a large mul-
tilingual dataset like xP3 (Muennighoff et al.,
2023), fine-tuning on smaller datasets (at most
36K sentences, in our case) appears to suffice.

4.5 Overall MT performance of
disambiguation-adapted LLMs

Lastly, for completeness, we evaluate the overall
translation quality of the key LLMs used in this
work, since we are interested in noting how well
the reported disambiguation accuracies extend to
overall MT performance. For our test set, we want
to choose one recently released (ideally within the
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En-Es En-It
System
Alpaca7B BLOOM 7B BLOOMZ 7B Alpaca7B BLOOM 7B BLOOMZ 7B
w/o FT 49.75 55.69 60.87 45.24 28.79 40.68
FT (Best Cross-Entropy Loss) 63.27 57.86 60.39 59.62 37.72 39.73
FT (Best Attained Acc.) 63.31 59.72 61.56 59.77 42.40 44.73

Table 5: DiBiMT Accuracies after fine-tuning Alpaca 7B, BLOOM 7B, and BLOOMZ 7B on En-Es and En-It
pairs. The second row indicates checkpoints with the best cross-entropy loss on the validation set, while the last row
shows the one with the best attained DiBiMT accuracy when evaluating after each epoch, and serves as a “topline”.
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Figure 2: DiBiMT accuracy at the end of every epoch, for the LoRA fine-tuned LLMs
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Figure 3: DiBiMT accuracy vs fine-tuning (FT) corpus size in terms of parallel sentence count. These results are
obtained from evaluating checkpoints at every 300 steps in the 1st epoch - which roughly corresponds to about 9K

sentences, since we use a batch size of 32.

last year) to minimize the chances of its inclusion
in the pretraining corpora of LLMs. We, thus, use
FLORES 200 (NLLB Team et al., 2022) as our
test set since it satisfies this criterion and also sup-
ports all our languages of evaluation. We use sp-
BLEU'? (Goyal et al., 2022), chrF++'3 (Popovic,
2017) and COMET22 (Rei et al., 2022) using the
wmt22-comet-da model as metrics. In this setting,
we evaluate Alpaca with 0-shot prompting, while
LLaMA 7B, LLaMA 65B and BLOOM 176B use

2nrefs:1|case:mixed|eff:no|tok:flores101|smooth:
exp|version:2.3.1

Bhrefs:1 |case:mixed|eff:yes|nc:6|nw:2|space:
no|version:2.3.1

the 1-shot setup. NLLB-200 is our primary su-
pervised NMT baseline. We also evaluate LoRA
fine-tuned versions of Alpaca 7B and BLOOM 7B,
from section 4.4.2, on the English-Spanish and
English-Italian pairs. We exclude BLOOMZ from
this evaluation since it is instruction-tuned on FLO-
RES200. We report our results in Table 6.

We observe trends similar to those of our
DiBiMT experiments. BLOOM 176B performs
well in translation of seen languages, performing
comparably to NLLB-200 in English-Spanish and
outperforming it in English-Chinese. This is par-
ticularly the case for COMET22 scores, a metric
which has shown high correlations with human
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En-Es En-It
System
SpBLEU  chrF++ COMET22 spBLEU chrF++ COMET22

NLLB-200 54B 32.50 53.79 0.86 37.60 57.33 0.89

Alpaca 7B (0-shot) 23.90 47.30 0.83 23.30 46.40 0.83

LLaMA 7B (1-shot) 23.20 46.20 0.82 22.10 45.00 0.82

LLaMA 65B (1-shot) 27.20 49.70 0.83 28.50 50.50 0.85

BLOOM 7B (1-shot) 24.00 46.30 0.82 10.00"  33.40f 0.63f

BLOOM 176B (1-shot) 28.60 51.20 0.85 20.80"  45.20f 0.81f

Alpaca 7B (FT, 0-shot) 27.40 50.20 0.85 29.20 51.40 0.87

BLOOM 7B (FT, O-shot)  28.70 51.00 0.86 20.90 45.80 0.80

En-Zh En-Ru En-De
System
spBLEU chrF++ COMET22 spBLEU chrF++ COMET22 spBLEU chrF++ COMET22

NLLB-200 54B 23.10  22.83 0.82 38.00 56.34 0.90 4480  62.79 0.88
Alpaca 7B (0-shot) 4.80"  10.407 0.62° 21.80  42.60 0.82 2730 50.30 0.82
LLaMA 7B (1-shot) 5.60"  10.80" 0.661 20.70  41.20 0.79 2280  45.40 0.78
LLaMA 65B (1-shot) 13.807  17.60f 0.771 2670 46.10 0.82 31.80  52.80 0.81
BLOOM 7B (1-shot) 19.00  19.50 0.83 3701 22.30f 0.46 820t 31.70% 0.51f
BLOOM 176B (1-shot) 25.10  23.80 0.86 10307 31.801 0.65" 19.90"  45.40" 0.74%

Table 6: FLORES 200 results for k-shot prompting of some key LLMs used in this work, compared with the
NLLB-200 baseline. We also include results for the LoRA fine-tuned models, for the En-Es and En-It pairs. Same
as the previous notation, we indicate all unseen language results with a f. We observe similar trends in all standard

MT metrics, as those observed with DiBiMT accuracy.

spBLEU ChrF++ COMET22
w/ acc. w/ acc. w/ acc.
p 0.83 0.56 0.76
p-value 0.0001 0.0039 0.0010

Table 7: Pearson’s correlation p (Benesty et al., 2009)
between DiBiMT accuracy and spBLEU, chrF++, and
COMET?22 respectively, together with p-values.

evaluation, ranking second in the WMT22 Metrics
shared task (Freitag et al., 2022). For the other
languages, LLaMA 65B usually performs better
than BLOOMZ, but in the 1-shot prompting setup,
it is unable to beat the NLLB-200 54B MOE. We
also notice that the fine-tuned versions of Alpaca
7B and BLOOM 7B consistently outperform their
vanilla counterparts — suggesting our techniques
to improve disambiguation performance also boost
overall translation quality.

Thus, while we evaluate key LLMs to verify con-
sistency in trends, we avoid re-running all our base-
lines on FLORES200. Instead, we try to answer a
broader question: how well does DiBiMT disam-
biguation accuracy correlate with standard MT met-
rics? We conduct a Pearson’s correlation test (Ben-
esty et al., 2009) between the accuracy metric and
spBLEU, chrF++, and COMET?22 respectively. We
report our results in Table 7, and find that all MT
quality metrics correlate positively with accuracy—

with p-values of the two-sided alternative hypothe-
sis being much lesser than 0.05 in all cases. We dis-
cover that spBLEU and COMET?22 exhibit higher
correlations than chrF++. We hypothesize that this
could be due to the character-level chrF++ being
less sensitive to word-level senses. Overall, the
results of Tables 6 and 7 suggest that the significant
accuracy improvements noted earlier are not at the
cost of translation quality, and in turn, could yield
improvements in overall MT scores too.

5 Conclusion

In this work, we studied the capabilities of LLMs to
handle ambiguity during machine translation. We
choose seven of the most widely used foundation
and instruction-tuned LLMs and compare accuracy
with SOTA commercial and open-source NMT sys-
tems on the DiBiMT translation benchmark. Out
of 5 language directions, we report scores compa-
rable to the SOTA on two (En-Ru, En-It) and set a
new SOTA on two others (En-Zh, En-Es). We then
present two techniques that significantly improve
disambiguation accuracy: in-context learning with
similar contexts, and fine-tuning on an ambigu-
ous corpus. We end the paper with an evaluation
of overall MT quality. We hope the methods and
findings shared in this work could guide future re-
searchers studying ambiguity in translation.

491



Limitations

In this work, we attempt to note overall trends in
LLM performance as compared to conventional
NMT systems and, based on our results, suggest
methods that generally improve performance. That
said, there are exceptions to these trends - prompt-
ing with similar contexts can, at times, degrade
performance and so can increasing the number of
demonstrations (see Table 4). But there is some
consistency here too that these observations mostly
apply to smaller LLMs (such as LLaMA 7B) while
the larger LLMs benefit more significantly. Also,
as noted in Section 4.4.1, in a small percentage of
cases (7.5%), we are unable to find 5 matches when
attempting 5-shot prompting with similar contexts.
In such cases, it might be worthwhile, from a perfor-
mance perspective, to use random demonstrations;
nonetheless, since we are interested in verifying
the utility of similar contexts and also since there
are only a few cases where it might be pertinent,
we do not explore this.
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Source Tap the head of the drum for this roll.

DeepL BLEELTH/ITRA head, literal

BLOOMZ  &iHsdm, K EEXANIE. striking surface of a drum
Source they tracked him back toward the head of the stream.

DeepL R B3z e B L Sk head (literal and unnatural)
BLOOMZ  fufi13kA tb & 8] T T 89 Lt . upstream

Source The expedition followed the river all the way to the head.

DeepL R BE & FR— B AR Tk head (literal and unnatural)
BLOOMZ & [&BUIR & 7T — & & %] U7 % o source

Source How much head do you have at the Glens Falls feeder dam?

DeepL At B AT L IMEG KA % K2 hydraulic head

BLOOMZ  RHA %V kFEMARRA G ENRKEL?  (aclassifier word to express quantities (of cows))
Source the office was full of secret heads.

DeepL HNFEILARERE LA . leader, ringleader
BLOOMZ  H/AFH#E T A Ak 4z . leader, head of state

Table 8: Manual inspection on English-to-Chinese translation focused on the disambiguation of “head”, correspond-
ing to the first five test instances in DiBiMT. The baselines are DeepL. and BLOOMZ 176B, the highest performing
NMT system and LLM for this pair (from Table 3). The reported annotations are obtained from a native Chinese
speaker who was invited to label the sense of the translated ambiguous word.

A Appendix

A.1 Qualitative comparison: BLOOMZ vs
DeepL

We choose the best-performing LLM and the SOTA
MT system from Table 3 — focusing on the En-Zh
pair since LLMs seem to yield the highest gains
there. With the help of a native Chinese speaker,
we got hypotheses from these two systems anno-
tated, for the first 5 sentences of the DiBiMT test
set. We observe that although there are cases where
DeepL gets it right over BLOOMZ (example 4) or
where both are correct (Example 5), in many in-
stances BLOOMZ appears to generate more contex-
tual (and less literal) translations. We hypothesize
that this could potentially be due to the former’s
powerful language modelling abilities

A.2 Trade-off between prompting and
fine-tuning

We show in Section 4.4 that both prompting with
similar contexts through In-Context Learning (ICL)
and LoRA fine-tuning can significantly improve
performance. However, depending on the use case,
it might be better to favour one over the other. For
instance, in production environments, LL.Ms that
are LoRA fine-tuned on ambiguous text can pro-
vide powerful disambiguation performance, while
also being more feasible to deploy and run at scale.
In contrast, ICL with k-shot prompting, especially
for higher values of k, can significantly increase
query size and memory consumption, necessitating
reduced batch size and thus, throughput.

However, conducting ICL with similar ambigu-
ous contexts can be used to query LLMs as large
as LLaMA 65B and BLOOMZ 176B and yield per-
formance comparable to SOTA MT systems (see
Table 4). The preprocessing cost overhead of such a
method, namely disambiguating the test set, is also
low - it took us about 13 seconds to disambiguate a
test set of about 500 sentences on 1 Nvidia GeForce
RTX 3090. In contrast, the one-time cost of fine-
tuning can be quite expensive—for instance, it took
us 44 hours to fine-tune an Alpaca 7B with LoRA
on a single Nvidia Tesla A100 40G. Thus, in GPU-
scarce settings where the costs of LoRA fine-tuning
are prohibitive, it might be favourable to use ICL
to query massive LLMs and obtain SOTA perfor-
mances. In contrast, production environments are
likely to prefer the fine-tuned LLMs, since the one-
off fine-tuning costs can be amortized.
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