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Abstract

Here we present the training and evaluation of
NanoNER, a Named Entity Recognition (NER)
model for Nanobiology. NER consists in the
identification of specific entities in spans of
unstructured texts and is often a primary task
in Natural Language Processing (NLP) and In-
formation Extraction. The aim of our model
is to recognise entities previously identified
by domain experts as constituting the essen-
tial knowledge of the domain. Relying on on-
tologies, which provide us with a domain vo-
cabulary and taxonomy, we implemented an
iterative process enabling experts to determine
the entities relevant to the domain at hand. We
then delve into the potential of distant super-
vision learning in NER, supporting how this
method can increase the quantity of annotated
data with minimal additional manpower. On
our full corpus of 728 full-text nanobiology ar-
ticles, containing more than 120k entity occur-
rences, NanoNER obtained a F1-score of 0.98
on the recognition of previously known entities.
Our model also demonstrated its ability to dis-
cover new entities in the text, with precision
scores ranging from 0.77 to 0.81. Ablation ex-
periments further confirmed this and allowed
us to assess the dependency of our approach on
the external resources. It highlighted the depen-
dency of the approach to the resource, while
also confirming its ability to rediscover up to
30% of the ablated terms. This paper details the
methodology employed, experimental design,
and key findings, providing valuable insights
and directions for future related researches on
NER in specialized domain. Furthermore, since
our approach require minimal man-power, we
believe that it can be generalized to other spe-
cialized fields.

1 Introduction

As the volume of the scientific literature increases,
the demand for NLP models able to deal with do-
main vocabulary and specific knowledge is becom-

ing increasingly apparent. The NanoBubbles 1

project, from which the work presented here origi-
nates, aims at studying how, when and why science
fails to correct itself. It focuses on the nanobiology
domain and combines approaches from the natural
sciences, natural language processing and social
sciences. The field of nanobiology being charac-
terized by both its multidisciplinarity and its high
degree of specialization is a perfect example of the
need for specialized tools. Thus, we must leverage
methods from Natural Language Processing (NLP)
to assist in the extraction of important information
from a large number of articles. The main task of
this paper is to train a Named Entity Recognition
(NER) model in the field of nanobiology.

The primary task of Named Entity Recogni-
tion is to identify and classify specific entities (i.e.
named entities) in a text. Compared to other fields,
Biomedical NER (BMNER) is a particularly chal-
lenging problem, mainly due to the high cost of
obtaining quality annotated data and the complex-
ity of domain terminology. A famous example of a
model able to perform BMNER is bioBERT (Lee
et al., 2020), which is pre-trained on a large-scale
corpus of biomedical text. It performs well on a
standard set of biomedical benchmarks in several
downstream tasks (e.g., NER, Relations Extraction,
Q&A). To our knowledge, NER in the nanobiology
domain remains an uncharted territory, as exist-
ing BMNER models are not trained to recognize
entities of interest in this specific field.

Training an efficient NER model requires a large
amount of annotated data, which is not easy to
come by in specialized domains as the manual work
it requires need to be carried out by fields experts.
In our work for NER in the nanobiology field, we
use distant supervision to alleviate for the lack of
annotated data and thus allow the creation of a
corpus of articles from a specialized domain large
enough to train a NER model. Using BioBERT

1https://nanobubbles.hypotheses.org/

https://nanobubbles.hypotheses.org/
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(Lee et al., 2020) as base model, this approach
requires minimal human work. We believe that the
approach we implemented, and describe here, is
adapted to other scientific domain.

First, we harnessed existing nanobiology ontolo-
gies (i.e., the Nanoparticle ontology (Thomas et al.,
2011) and eNanoMapper (Hastings et al., 2015))
for their concept hierarchy and vocabulary. Then,
an iterative process took place with a team of do-
main experts, who determined the essential labels
for our NER model and curated the vocabulary. A
round of vocabulary extension, with expert cura-
tion, took place before the automatic annotation of
the corpus. Ablation experiments were also imple-
mented to measure the influence of the vocabulary
coverage in our distant supervision setting.

In summary, the main contributions of this paper
are as follows:

1. We have implemented a method to create an-
notated data for NER. It consists in an iterative
process, involving ontology and corpus analy-
sis followed by use of expert knowledge and
their validation. This lead us to identify five
labels, with vocabularies covering 1438 terms,
that are highly relevant to nanobiology.

2. We created NanoNER, a NER model for
nanobiology using a distant supervision learn-
ing approach and trained on automatically an-
notated entities in a corpus of 728 unlabelled
full-text nanobiology articles. Detailed abla-
tion experiments were conducted to evaluate
the influence of the vocabulary coverage.

3. Finally, ablation experiments allowed us to es-
timate the dependency of our model to the an-
notation resource. We can effectively measure
how well NanoNER is capable to generalize,
i.e. its ability to (re)find entities not present
in the training set, as well as the essential and
minimal terms needed to obtain satisfactory
results.

2 Related work

Existing BMNER solutions encompass early NER
methods, such as dictionary matching or rule-based
approaches, as well as supervised machine learn-
ing methods such as Markov models (Ponomareva
et al., 2007a). Conditional Random Fields (CRFs)
were then employed to perform BMNER (Pono-
mareva et al., 2007b; Friedrich et al., 2006). Unlike

Markov models, CRFs can consider the charac-
teristics of the entire input sequence, not just the
current state. And Support Vector Machine (SVM)
can be used in binary classification problems for
NER tasks, such as determining whether a word is
a named entity of a particular type (Ju et al., 2011).

Recently, deep learning approaches using large
amounts of labeled data, such as models built on
BioBERT (Lee et al., 2020), have achieved state-
of-the-art results on BMNER. For instance, on the
jnlpba (Huang et al., 2020) dataset, the KeBioLM
model (Yuan et al., 2021) obtained a F1 score of
0.82 on recognizing entities relating to proteins,
genes and cells. In the bc5cdr (Li et al., 2016)
dataset, the BINDER (Zhang et al., 2022) model
using a contrastive learning approach, achieved
a F1 score of 0.91 on chemical and disease enti-
ties. However, BMNER presents specific difficul-
ties. For instance, Dong et al. (2016) conducted
an extensive study on electronic medical records
and identified that such technical texts often con-
tain a substantial amount of specialized terminol-
ogy and knowledge, and frequently present issues
such as spelling errors, abbreviations, and idiosyn-
cratic terms, all of which add to the difficulty of the
NER task. In this difficult setting, they proposed
a method based on CNN (Convolutional Neural
Networks) and Word2Vec for performing BMNER
and managed to achieve a F1 score of 0.73.

To address the scarcity of annotated data in
deep learning models, some weak supervision and
distant supervision solutions have been proposed.
Mintz et al. (2009) were among the pioneers of dis-
tant supervision learning, introducing this method
in information and relation extraction tasks. Their
goal was to extract relations between entities from
a large amount of unlabeled text, using existing
knowledge bases as distant supervision signals.
Distant supervision was initially widely applied
to relation extraction tasks and later extensively
used in NER tasks. Distant supervision methods
for NER have been validated in previous studies.
Shang et al. (2018) revised the LSTM-CRF NER
model of Lample et al. (2016) and utilized the
MeSH database for chemical and disease entity
research. Since the automatic annotation of a cor-
pus tend to introduce noise in the training data,
some methods have been proposed to reduce this
effect (Meng et al., 2021), such as using early stop-
ping or introducing the concept of pseudo-labels
(Liang et al., 2020). Early stopping prevent over-
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fitting the model on the training data and fosters
the learning of important features of the corpus.
Pseudo-labeling data expand the training set by
generating new labeled data that can then be used
alongside existing datasets.

BMNER using ontologies and distant supervi-
sion have already been performed in the biomedi-
cal domain (Fries et al., 2017; Wang et al., 2021)
and this type of approach could be generalized to
any domain for which a semantic and lexical re-
source exists. These works used different technics
to minimize the risk of noise propagation, e.g. filter-
ing candidate annotations through heuristics based
on part-of-speech analysis (Fries et al., 2017) or
disambiguating ambiguous entities based on other
entities present in the same context (Wang et al.,
2021). In our work, we rely on domain experts at
crucial steps: (1) determining the labels and then
(2) filtering and validating the vocabulary of our
annotation resource.

To the best of our knowledge, no one has yet pro-
posed a BMNER model that meets the information
mining needs of the nanobiology field. We thus
aim at training a NER model, using minimal man-
power, but which still meets experts requirements
regarding the entities of interest of the domain.

3 Data preparation

Here we describe the essential resources for our
work, the corpus and ontologies used, the expert
work on selecting labels relevant to the domain at
hand as well as the vocabulary associated, and the
automatic annotation on the scientific articles. All
codes necessary to replicate this study are available
online2.

3.1 Corpus

The corpus used in this study comprises 728 re-
search articles focused on the field of nanobiology.
The vast majority of these articles are written in
English. In total, the corpus contains 158,283 sen-
tences and 3,762,791 tokens. On average, each
paper in the corpus consists of 217 sentences, and
each sentence contains approximately 24 tokens.
This extensive dataset provides a rich foundation
for in-depth analysis and research in the field of
nanobiology. The articles were first obtained in
PDF format and the abstract and full text of each

2https://gricad-gitlab.
univ-grenoble-alpes.fr/nanobubbles/
nano-ner-wiesp-2023.git

article was extracted using Grobid (Lopez, 2008-
2023). Parts of the documents that are not consid-
ered as the core of the articles were excluded (e.g.
References, Acknowledgment, Appendix).

3.2 Ontology
As resources, we used the NanoParticle Ontol-
ogy for cancer nanotechnology research (NPO)
(Thomas et al., 2011) and eNanoMapper (ENM)
(Hastings et al., 2015), which are the two main on-
tology in the field of nanobiology. As described in
the ENM official documentation, ENM is an auto-
matic extension of NPO and reuses several other
ontologies including NPO, CHEMINF (Hastings
et al., 2011), CHEBI (Degtyarenko et al., 2007)
and ENVO (Buttigieg et al., 2013). The NPO pos-
sesses 1904 classes and 81 properties, while ENM
contains over 25k classes, 697 individuals and 55
properties (August 2023). Since ENM is built auto-
matically we used it as a secondary source to NPO,
in order to minimize the risk of noise propagation.
The ontologies were used in CSV format, where
each concept in the ontology had a unique key, def-
inition, synonyms, and parent key. These resources
will be used for their subsumption relations and
vocabularies, providing us with a taxonomy and
lexical database.

3.3 Labels and vocabulary
To determine the labels our model will be trained
to recognize, and their vocabulary, we used an iter-
ative process of reducing the ontologies, expanding
the obtained vocabulary and having every steps val-
idated by domain experts. Because of the large
number of concepts in the NPO and ENM ontolo-
gies, the difficulty of finding a focus to start with
and the fact that our aim is to create an automat-
ically labeled corpus, we first retained only the
concepts that presented at least one occurrence in
our corpus (i.e. ≈ 30% of NPO’s and ≈ 10% of
ENM’s). Concepts that have never appeared in the
corpus were discarded, and subsumption relations
within the ontology were reconstructed to obtain a
reduced ontology.

Using these reduced ontologies, three domain
experts (cf. Acknowledgements) examined their
structures and the remaining concepts. To-
gether, they identified five labels as being the
core concepts of interest to the field of nanobi-
ology, namely Nanoparticle, Property,
Material, Event and Technology. Table
1 presents a short description of each label, along

https://gricad-gitlab.univ-grenoble-alpes.fr/nanobubbles/nano-ner-wiesp-2023.git
https://gricad-gitlab.univ-grenoble-alpes.fr/nanobubbles/nano-ner-wiesp-2023.git
https://gricad-gitlab.univ-grenoble-alpes.fr/nanobubbles/nano-ner-wiesp-2023.git
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with the core concepts combined under them (the
number of their respective sub-concepts before ex-
pert selection is indicated between parenthesis) and
a vocabulary extract in the last column.

The concepts corresponding to each label are
taken as the root concept of ontology sub-trees. We
then amalgamated all the terms under the root con-
cepts with all of the terms of all of its respective
sub-concepts to built the labels vocabulary. In any
conflict between the NPO and ENM structure, NPO
was prefered. The labels were subsequently sub-
jected to a first detailed verification by the domain
experts, who selected sub-concepts with relevant
vocabulary only, which drastically downsized the
number (). In addition to verifying each label’s
vocabulary, they encountered six specific cases of
terms under Material that they thought should
be moved under Nanoparticle: buckyball, car-
bon dot, surface group, dendrimer, liposome and
fullerene.

Table 2 presents the characteristics of the labels
vocabulary. Terms designates the vocabulary size
for the label based on the ontologies lexicon. Vo-
cabulary indicates the size of the extended vocabu-
lary based on terminological variations retrieval (cf.
below), which includes the original terms. Occur-
rences gives the raw frequency of all label’s terms
in our corpus. Also, since this was obtained by
reducing ontologies, the Depth and Width columns
give an insight of the shape of each sub-tree.

After the expert determined the labels and cor-
responding terms, we recorded the variants of all
the terms using FASTR (Jacquemin et al., 1997).
Given a list of terms and a corpus of texts, FASTR
is able to extract the terminological variations using
solely lexical, syntactical and meta-grammatical
rules. This tool is also able to account for vari-
ations in word order and part-of-speech changes.
It can deals with multi-word terms and is able to
recognise variations in an expression (e.g. ’molec-
ular function’ → ’functional roles of molecular’).
Although the results of FASTR seemed rather ac-
curate at first, a second round of expert validation
of the vocabulary took place. Out of 2,211 unique
variations, experts reduced the number to 1,438
terms (i.e. 65%) and thereby preserved the quality
of the training data.

3.4 Automatic corpus annotation

We annotated the data for our distant supervision
approach using Prodigy (Montani and team, 2023)

under a research licence. The annotation follows
the CoNLL2003 (Sang and Meulder, 2003) stan-
dard, which uses the BIO annotation format. The
Occurrences column in Table 2 displays the number
of annotation under each label in our corpus.

4 Experimental methods

The primary objective of our experiments is to test
whether the model possesses good generalization
capabilities, precision, and stability. Therefore, we
designed three distinct ablation studies to evalu-
ate how dependent our approach is to the labels
vocabulary.

4.1 Exploring Existing Models

To identify every entity in the articles, we first ex-
amined the results of the SciBERT model (Beltagy
et al., 2019). SciBERT is a widely pre-trained
model for scientific articles, aiming at improving
the expressivity of the model and save training time
for downstream tasks. We manually annotated 646
"naive" entities (i.e. "naive" meaning only distin-
guishing whether a span is an entity or not, not
knowing which label the entity belongs to) related
to the field of nanobiology in one article (Ma et al.,
2016), and then tried to use SciBERT for "naive"
entity recognition on plain text.

The result is that SciBERT can identify almost
all entities in the article. Out of 646 entities related
to the nanobiology field it can identify 638, which
suggest a high recall capability (i.e. ≈ 0.99 on the
article tested). However, SciBERT identifies a large
number of entities that would be false positives in
the field of nanobiology. SciBERT identified a
total of 2,976 entities, which gives 2,322 false pos-
itives that need to be filtered out suggesting a low
precision value (i.e. ≈ 0.21). Examples of these
false positives are : nanoscience, construction, con-
vergence, reduce, Hayakawa A way to eliminated
these false positives would be to match them with
an ontology. But this approach would lack several
essential aspects: classification of entities into la-
bels, possible confusion between concepts when
trying to do so (e.g. in the ontology, dendrimer is
originally present under the concepts Material
and Nanoparticle), coverage of the ontology
vocabulary and so on. Then, it does not eliminate
the need for ontology reduction and expert involve-
ment.

We also experimented with some existing mod-
els for BMNER in the Scispacy and Stanza li-
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Label Description Core Concepts (#sub-
concepts)

Vocabulary extract

Nanoparticle are physical structures,
usually between 1 and
100nm in two or three
dimensions, that present
size related properties

Nanoparticle (68), Fiat
Material (77)

nanocapsule, fluorescent
carbon nanoparticles,
carbon dot, nanowire

Property are physical and chemi-
cal functions that can be
described using measure-
ment

Realizable Entity (89),
Application (102)

amphiphilic, hydrophilic,
antioxidant, fluorescent

Material are the atoms and chem-
ical compounds consti-
tuting nanoparticles and
other studied objects

Chemical Entity (663),
Material Entity (320)

thiol, gold, primary
amine, carbohydrate

Event describes what is happen-
ing at a cellular level

Process (231) mitosis, transcription,
cell death, DNA modifi-
cation

Technique for preparing nanopar-
ticles, measuring their
characteristics and using
them

Technique (63), Assay
(171), Bioassay (37), In-
strument (31), Applica-
tion (102)

fluorescence spec-
troscopy, atomic force
microscopy, gel elec-
trophoresis

Table 1: Description and examples of the chosen labels

Label Terms Vocabulary Occurrences Depth Width
Nanoparticle 71 196 16,341 4 19
Property 105 345 19,849 7 24
Material 241 515 74,688 11 36
Event 56 210 3,219 5 9
Technique 65 172 7,104 7 19
Total 538 1,438 121,201

Table 2: Labels vocabulary sizes

braries, but most of these are trained on specific
corpora and entities, and perform poorly on NER
tasks in the nanobiology field.

4.2 Ablation experiment design

In order to assess the dependency of the approach
to the resource, as well as model generalization
capabilities, we designed a set of ablation experi-
ments. As detailed in Table 2, our five labels cover
a list of 538 terms. Each term has varying numbers
of variants, ranging from 1 to over 10, resulting
in a total of 1438 different terms. In our ablation
experiments, the terms were first randomly shuffled
in each labels to minimize the risk of latent factors
from affecting the experimental results, such as the
terms being arranged in a specific pattern. Then,

the label’s vocabularies are divided into five equal
parts, noted as folds A, B, C, D and E. Ablation
of 33% of the terms were also implemented with
folds F, G and H.

To create the training and test set for our ablation
experiments, we selected the sentences based on
the presence or absence of ablated entities. This
was done in order to ensure that the model would
not confuse excluded entities for negative examples
during the training, and to later test its capabili-
ties to retrieve entities not encountered before. As
shown in Table 3, this resulted in training and test
sets of various sizes, some being three time larger
than others (e.g. test sets in folds D and C). For
instance, the training set in Fold A is composed of
126.834 sentences not containing a single ablated
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Fold Abl.% Training set Test set
A 20% 126,834 21,427
B 20% 130,099 18,162
C 20% 136,708 11,553
D 20% 113,875 34,386
E 20% 129,580 18,681
F 33% 109,259 39,002
G 33% 117,392 30,869
H 33% 120,103 28,158

Table 3: Number of sentences in each Fold

term, the test set is then made of the remaining
sentences. Thus, ablation experiments ensure that
part of the test set consist in entities on which the
model has not been trained. The approximate sen-
tence ratio is 6:1 for 20% ablation and 4:1 for 33%
ablation.

5 Results and Analysis

In this section, we first present the results of train-
ing the model on the full dataset, which perfor-
mances aligned with our expectations. Then, we
detail the two random ablation experiments we de-
signed, reducing the data by 20% and 33% respec-
tively. We noticed a significant fluctuation in the
results of these experiments. Therefore, we specif-
ically analyzed the 20% ablation experiment and
based on these analyses, we proposed the hypothe-
sis that including or excluding specific terms under
our labels might have a significant impact on the
precision and recall scores. Following this, we
designed a new frequency-based 10% ablation ex-
periment to explore this hypothesis. The results
from this new experiment successfully validated
our conjectures.

5.1 Training on the whole dataset
Initially, we trained the model on the complete
dataset, carrying out a training with 5 and 20
epochs respectively. Given the consistency of the
training and validation datasets, the nature of this
experiment is closer to a straightforward word-
matching task. Results are displayed in Table 4.
We found that the F1 score of the model reached a
value 0.985, which is consistent with our expecta-
tions.

Subsequently, we performed a deep analysis of
the model’s generalization ability. Our assumption
was that it would be impossible to achieve 100%
coverage of terms in the corpus, so we had the

model re-annotate the corpus. Table 4 thus also
presents the number of unique new entities (i.e. ig-
noring the number of occurrences) identified by
NanoNER, the number of correctly labeled entities
and the associated precision. Not cosidering the
number of occurrences for these newly retrieved
entities allows for a better estimation of the model
generalization capabilities. NanoNER achieves an
precision value on new entities roughly around 0.8.
Additionally, we found that as the training epochs
increased, the precision value on the newly found
entities improved, but the number of new entities
recognized decreased.This indicates that the num-
ber of training epochs can be chosen according to
the intended use, giving priority to recall or preci-
sion values on never-before-encountered entities.

5.2 20% Ablation experiments
The primary objective of our ablation study is to
further test the model generalization capabilities
and dependency to the resource. We employed
early stopping for training, setting the number of
epochs to 1 and the batch size to 32. The training
results are presented in Table 5. As we can see,
the precision fluctuates around 0.79 and the gap be-
tween the highest and lowest precision values can
be as high as 0.14. The impact of the vocabulary
ablation is even more visible on the recall: with an
average score of 0.54, it has degraded considerably
compared to the initial training. This tend to indi-
cates that the absence or presence of specific terms
highly influence the quality of the trained model.
To address this, we conducted further exploration
in Section 5.4.1.

5.3 33% Ablation experiments
Next, we conducted experiments with a 33% ab-
lation of the terms. The results in Table 6 are as
expected: the precision value remained around 0.8,
but the recall rate dropped even further. This is
due to the higher number of terms excluded in 33%
ablation experiments compared to the 20% ones.

5.4 Ablation experiments analyse
Firstly, we conducted a generalization analysis on
the ablation experiments from folds A to E. We em-
ployed the same method as in the full data analysis:
We initially listed all the deleted entities, and then
had predictions made by the model on the entire
corpus. Subsequently, we matched all the entities
predicted by the model with the deleted entities.
As depicted in Table 7, the model could stably
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Epochs Precision Recall F1 Score New Entities Correct Labeling Precision
5.0 0.981 0.989 0.985 485 375 0.773
20.0 0.982 0.989 0.985 249 202 0.811

Table 4: Models trained using the entire dataset

Fold Precision Recall F1 Score
A 0.796 0.544 0.646
B 0.826 0.575 0.678
C 0.853 0.593 0.699
D 0.756 0.424 0.544
E 0.711 0.549 0.620

Average 0.788 0.537 0.637

Table 5: Models trained on 20% ablation folds

Fold Precision Recall F1 Score
F 0.752 0.332 0.461
G 0.868 0.411 0.557
H 0.847 0.460 0.596

Average 0.822 0.401 0.538

Table 6: Models trained on 33% ablation folds

rediscover up to 30% of the deleted entities. Con-
sidering that these results are not calculated based
on occurrence rates, and it’s quite challenging to
discover the relationships between many obscure
entities through deep learning, we believe these
results are within our expectations.

Fold Retrieved Ablated Recall
A 66 232 0.28
B 89 353 0.25
C 72 303 0.24
D 77 249 0.31
E 77 272 0.28

Average 76.2 281.8 0.27

Table 7: Refound

Next, we sought to analyze the variability be-
tween the folds. We hypothesize that certain la-
bels are excessively difficult, thereby affecting the
overall performance of the task, we then evaluated
each label separately. Table 8 displays the aver-
age recall and precision values of the labels over
the different folds (detailled evaluation is available
in Appendix A. We found that Nanoparticle
and Event have the most important variations
in recall, while the variations in precision mostly

concern Nanoparticle and Technique Most
of the average recall values over different labels
are close to 0.54, but differences in average pre-
cision is more important when comparing the dif-
ferent labels. Material and Property displays
scores over 0.90, Nanoparticle is around 0.83,
but Event and Technique have significantly
lower precision values (0.74 and 0.65 respectively).
These variations are analyzed as a result of the
specific characteristics of the labels vocabularies.
E.g. Event and Technique contains terms from
the scientific language that are not specific to the
nanobiology field, and thus carry a higher risk of
confusion.

Label
Recall Precision

avg. var. avg. var.
Nanoparticle 0.57 0.23 0.83 0.13
Material 0.55 0.13 0.92 0.06
Event 0.53 0.22 0.75 0.10
Property 0.48 0.10 0.91 0.09
Technique 0.56 0.16 0.65 0.15

Table 8: Average performances on each label

We also observed specific differences between
the different folds for specific labels. E.g. the
recall for Nanoparticle is very high in fold A
(i.e. 0.82), but significantly lower in fold E (i.e.
O.19). This suggests that certain words are highly
important for specific labels. In fact, in fold E, the
term nanoparticle was removed, which is not only
a high-frequency term throughout the entire corpus,
but also an essential word involved in different
terms (e.g. nanoparticle, gold nanoparticle).

We believe that these high-frequency terms may
have a great impact on the training of the model.
Therefore, removing these words during training
might lead to a significant decline in the perfor-
mance of the model. To explore this hypothesis,
we decided to conduct a third ablation experiment
based on terms of frequency.

5.4.1 10% Ablation experiments
We then sorted the terms according to their fre-
quency in the corpus and conducted four more
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Training set Precision Recall F1 Score Corpus size
remove top 10% 0.599 0.279 0.381 21.2%
remove top 10% + mft∗ 0.668 0.371 0.430 51.0%
remove middle 10% 0.802 0.683 0.738 99.0%
top 10% only 0.763 0.413 0.536 78.8%

∗mft: most frequent term in each label

Table 9: Models trained on 10% ablation

rounds of ablation, as shown in Table 9: in each
label we tried removing 10% of the most frequent
terms (with one experiment reintroducing the first
term in each label), removing the 10% in the mid-
dle of the terms frequency and finally retaining only
the 10% most frequent terms in each label. This
approach limits the corpus exploitable as training
and test sets, reflecting the distribution of the terms
throughout the corpus.

Firstly, it appears that the frequency of the terms
is a good indicator of the model dependency to-
wards the annotation resource. Indeed, precision
and recall values are impacted proportionally to the
rank of the terms removed. Comparing the first and
second rows also indicates that certain terms (i.e.
the most frequent terms in each label) significantly
impact the model’s performance. These terms may
play a critical role in the classification task, or they
could provide substantial contextual information,
helping the model understand other related terms.
Regarding the third row’s ablation experiment, al-
though most of the corpus (99%) was kept to train
the model, the F1 score is far lower than 0.985
when trained with the full data. This suggests that
even terms with lower frequencies still significantly
impact the model’s performance. These less fre-
quent terms might carry specific information cru-
cial for the model to understand and classify the
text. The fourth row’s ablation experiment result in-
dicates that retaining only the most common terms
might lead the model to overly focus on these terms,
overlooking other terms that may carry important
information. This could be because these common
terms contain a lot of generic information but lack
some specific, category-targeted information.

6 Error analysis and improvement
approaches

6.1 Sentence selection during ablation
experiments

In our ablation experiments, we sometimes en-
counter a scenario where a sentence contains an

ablated term and an other one that is not, and thus
we would like to remove only one of them. In
our experiments, we chose to exclude such cases
to avoid having our model confuse ablated terms
for negative examples. But other strategies could
be adopted to tackle this, such as the masking or
replacement of tokens.

6.2 Imbalanced dataset

As observed during the ablation experiment, our
corpus is highly imbalanced. Some terms and la-
bels appear more frequently than others. Detailed
evaluations of individual labels in ablation experi-
ments are given in Appendix A. This discrepancy
might lead the model to over-learn from these high-
frequency terms, thereby overlooking the impor-
tance of less frequent terms. During future opti-
mization, this problem could be tackled by using
techniques such as oversampling or undersampling
to balance the number of samples across different
categories. In a study on NER using Wikipedia,
(Al-Rfou et al., 2015) adopted an approach that in-
volves constructing a subset of the training corpus.
This strategy ensures that the conditional distribu-
tion of specific entity classes remains unaltered
when they are positive examples, thereby signifi-
cantly enhancing the model’s performance across
multiple languages.

6.3 Vocabulary coverage in distant
supervision

Our training and evaluation assume that the ground
truth annotations are accurate, which may not be
the case in a distant supervision framework. Thus
there may be cases where the model is retrieving
entities under the correct label, but that are consid-
ered false positives in our automatically annotated
corpus. We tried to reduce this effect by employing
FASTR (Jacquemin et al., 1997) to improve the
coverage of our resource, but this required experts
to filter out FASTR false positives. Also, their is
some known variations that FASTR is not able to
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retrieve (e.g. ’iron oxide nanoparticle’ and ’sili-
con dot’ are in Nanoparticle vocabulary, but
their respective variations ’iron nanoparticle’ and

’silicon dot’ were not recognized).
One solution would be to use a method known

as knowledge distillation, which incrementally im-
proves the model’s performance through iterations,
a training method used in the previously mentioned
BOND (Liang et al., 2020) paper. By using a
teacher model to generate pseudo-labels for train-
ing the student model, the training effectiveness of
the model is improved through repeated iterations.
Another solution is to manually annotate a suffi-
cient portion of high-quality data and then use it as
validation set for the model.

7 Conclusion

In this work, we have introduced NanoNER, a
tool for Named Entity Recognition in the field of
nanobiology. We designed an iterative process to
determine the model labels and vocabulary using
ontologies, domain experts and retrieving termi-
nological variations. This resulted in five labels,
covering 1,438 terms, that allow for the automatic
annotation of our corpus in a distant supervision
approach. Experiment analyses have demonstrated
that our model can effectively identify entities of
interest, both previously seen and new ones, in
the field of nanobiology. Given the complexity
and abundance of technical terms in the field, our
method shows promising applications in nanobiol-
ogy.

We believe that this approach can be applied as
is on other scientific fields, as it require only an
ontology (or taxonomy) resource and minimum
man-power. This allow for the efficient training of
NER models useful in downstream NLP tasks.

Ablation experiments showed a significant de-
pendence of the model on the vocabulary used. In
future work, we could attempt data augmentation
on the dataset to reduce its imbalance and enhance
the model’s training performance. In addition, it is
possible to use knowledge distillation for iterative
model updates, which can reduce the false posi-
tive misjudgment during validation and improve
the model’s generalization capabilities.
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A Detailed ablation evaluation

Fold Label Positive Total Recall Positive Total Precision
A nanoparticle 2,557 3,108 0.822 4,645 4,821 0.963

material 8,952 16,022 0.557 15,433 15,821 0.975
event 233 342 0.68 398 444 0.896

property 2,999 8,287 0.363 4,033 4,241 0.951
technique 591 1,036 0.57 1,346 2,053 0.656

B nanoparticle 1,466 3,309 0.443 2,854 4,082 0.699
material 8,959 14,566 0.615 14,961 15,377 0.973

event 203 419 0.484 341 428 0.797
property 2,531 4,122 0.613 3,964 4,101 0.967
technique 685 2,033 0.336 1,129 1,665 0.678

C nanoparticle 1,346 1,900 0.708 2,475 2,590 0.956
material 6,315 9,477 0.665 10,930 11,976 0.913

event 409 1,095 0.373 554 843 0.657
property 1,385 3,410 0.406 2,229 2,295 0.971
technique 297 574 0.517 958 1,240 0.773

D nanoparticle 2,371 3,364 0.705 4,369 4,934 0.885
material 8,876 29,268 0.301 12,920 14,016 0.922

event 871 996 0.874 1,362 2,236 0.609
property 3,329 7,345 0.452 4,855 6,563 0.740
technique 1,156 1,361 0.849 2,784 3,547 0.785

E nanoparticle 1308 6,826 0.192 2,652 4,064 0.653
material 8,237 13,339 0.617 12,670 15,670 0.809

event 249 996 0.251 366 477 0.767
property 1,749 3,056 0.573 2,921 3,251 0.898
technique 492 935 0.525 1,160 3,132 0.370

Table 10: Ablation evaluation on individual labels


