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Abstract

Keeping track of all relevant recent publica-
tions and experimental results for a research
area is a challenging task. Prior work has
demonstrated the efficacy of information ex-
traction models in various scientific areas. Re-
cently, several datasets have been released for
the yet understudied materials science domain.
However, these datasets focus on sub-problems
such as parsing synthesis procedures or on sub-
domains, e.g., solid oxide fuel cells.

In this resource paper, we present MuLMS, a
new dataset of 50 open-access articles, span-
ning seven sub-domains of materials science.
The corpus has been annotated by domain ex-
perts with several layers ranging from named
entities over relations to frame structures. We
present competitive neural models for all tasks
and demonstrate that multi-task training with
existing related resources leads to benefits.

1 Introduction

Designing meaningful experiments in empirical
sciences requires maintaining a detailed overview
of the huge amounts of literature published every
year. Applying natural language processing (NLP)
in this context has risen to be an active research
area (Chandrasekaran et al., 2020; Beltagy et al.,
2021; Cohan et al., 2022). Besides the biomed-
ical field, which has been studied extensively in
the past decades (e.g., Collier et al., 2004; Co-
hen et al., 2012; Demner-Fushman et al., 2022),
the less-studied materials science domain has re-
cently received more attention (Mysore et al., 2019;
Friedrich et al., 2020; O’Gorman et al., 2021).
Materials science research aims to design and
discover new materials. Part of the papers is hence
often dedicated to the synthesis procedures, the
“recipe” for creating a material. Their extraction
from papers has been covered by Mysore et al.
(2019) and O’Gorman et al. (2021). Much materi-
als science research develops materials in the con-
text of creating a particular device, e.g., batteries or
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photovoltaic panels. The device is tested in various
conditions and the literature needs to be analysed
for identifying promising set-ups. Friedrich et al.
(2020) address this for solid oxide fuel cells.

In this paper, we introduce MuLLMS (the Multi-
Layer Materials Science corpus), a new dataset of
scientific publications annotated by domain experts
with named entity (NE) mentions, relations, and
frame structures corresponding to a broad notion
of measurements (see Figure 1). In contrast to
prior works, we include papers from a variety of
materials science sub-domains. To the best of our
knowledge, the existing datasets only annotate par-
ticular paragraphs or subsets of the sentences with
NE mentions. Our dataset is the first to exhaus-
tively annotate a large-scale collection of materials
science articles with NEs and facilitates novel se-
mantic search applications, e.g., answering search
queries such as “find a passage within a paper re-
porting a measurement using material X, condition
Y, and obtaining a value of at least Z.”

The design of MuLMS’ annotation scheme re-
sults from a collaboration of NLP and materials
science experts. Our inter-annotator agreement
study shows good agreement for most categories
and decisions. We propose several machine learn-
ing tasks on the annotated data and present strong
neural baselines for all tasks, which signals a high
level of consistency across the annotations in our
dataset. We cast detecting sentences describing
measurements as a sentence classification task and
provide a robust tagger for recognizing NEs. We
propose to treat relation and semantic role extrac-
tion on MuLMS in a single step using a dependency
parser that predicts relations between the NEs in a
sentence. According to our multi-task experiments
with related datasets, training jointly with MuLMS
is beneficial for performance on those datasets.

Our contributions are as follows. (1) We pub-
licly release a dataset of 50 open-access scientific
publications exhaustively annotated by a domain
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Figure 1: Multi-Layer Materials Science Corpus: named entity, relation and semantic role annotations.

expert with NE mentions, relations, and measure-
ment frames.! (2) We define a set of NLP tasks
on MuLMS and provide strong transformer-based
baselines. Our code will be published. (3) We for-
mulate the relation and frame-argument extraction
as a single dependency parsing task, which extracts
all relations in a sentence in one processing step.
(4) We perform an extensive set of multi-task learn-
ing experiments with related corpora, showing that
MuLMS is a useful auxiliary task for two other
materials science NLP datasets.

2 Related Work

Several materials science NLP datasets have re-
cently been released, e.g., targeting NE recognition
(Yamaguchi et al., 2020; O’Gorman et al., 2021).
The Materials Science Procedural Text (MSPT) cor-
pus (Mysore et al., 2019) consists of paragraphs de-
scribing synthesis procedures annotated with graph
structures capturing relations and typed arguments.
SOFC-Exp (Friedrich et al., 2020) marks similar
graph structures describing experiments.

In this paper, we compare two state-of-the-art
approaches to Named Entity Recognition (NER).
Huang et al. (2015) use a CRF layer (Lafferty et al.,
2001) on top of a neural language model (in their
case a BILSTM) for sequence-tagging related tasks.
Yu et al. (2020) treat NER as a graph-based depen-
dency parsing task by representing NEs as spans
between the first and last token of an entity. In the
materials science domain, Friedrich et al. (2020)
test a variety of embedding combinations in a CRF-
based tagger. O’Gorman et al. (2021) compare
different pre-trained transformers for token classifi-
cation. Both studies find SciBERT (Beltagy et al.,
2019), a BERT-style model pre-trained on scientific
documents, to be very effective.

Relation and Event Extraction. Friedrich et al.

! https://github.com/boschresearch/mulms-wiesp2023
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(2020) treat their slot filling task in the SOFC sub-
domain as a sequence tagging task, assuming that
each sentence represents at most one experiment.
To predict a possible relation between two entities,
Swarup et al. (2020) retrieve a set of sentences simi-
lar to the input sentence, and learn to copy relations
from these sentences. Mysore et al. (2017) exper-
iment with unsupervised methods for extracting
action graphs for synthesis procedures.

An exhaustive overview of the literature on
biomedical relation extraction is out of the scope
of this paper. Recent works have used graph-
neural networks (Huang et al., 2020), or convo-
lutional neural networks (Ramponi et al., 2020).
Sarrouti et al. (2022) compare various pre-trained
transformer models. Semantic parsing of frame
structures (Fillmore and Baker, 2001) has been
addressed using graph-convolutional networks
(Marcheggiani and Titov, 2020), BiLSTMs (He
et al., 2018), and recently by generating structured
output using encoder-decoder models (Hsu et al.,
2022; Lu et al., 2021). Tackling semantic depen-
dency parsing with a biaffine classifier architecture
was first proposed by Dozat and Manning (2018).

3 MulLMS Corpus

In this section, we present our new corpus.

3.1 Source of Texts and Preprocessing

We select 50 scientific articles licensed under CC
BY from seven popular sub-areas of materials sci-
ence: electrolysis, graphene, polymer electrolyte
fuel cell (PEMFC), solid oxide fuel cell (SOFC),
polymers, semiconductors, and steel. The four
SOFC papers were selected from the SOFC-Exp
corpus (Friedrich et al., 2020). 11 papers were
selected from the OA-STM corpus® and classi-
fied into the above subject areas by a domain ex-

Zhttps://github.com/elsevierlabs/OA-STM-Corpus
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pert. The majority of the papers were found via
PubMed? and DOAJ* using queries prepared by a
domain expert. For the OA-STM data, we use the
sentence segmentation provided with the corpus,
which has been created using GENIA tools (Tsu-
ruoka and Tsujii, 2005). For the remaining texts,
we rely on the sentence segmentation provided by
INCEpPTION (Klie et al., 2018) with some manual
fixes. As shown in Table 1, documents are rather
long with a tendency to long sentences (but with
high variation due to, i.a., short headings).

3.2 Annotation Scheme

We annotate various layers: NEs, relations, and
frame structures representing measurements.

3.2.1 Named Entities

We annotate the following materials-science spe-
cific NE mentions and assign the following NE
types to these mentions:

MAT: mentions of materials described by their
chemical formula (WO3) or its chemical name
(indium tin oxide).

FORM: mentions of the form or morphology of
the material, e.g., thin film, gas, liquid, cubic.
INSTRUMENT: mentions of devices used to per-
form a materials-science-related measurement,

e.g., Olympus BX52 microscope.

DEVICE: mentions of devices (target products)
whose construction or improvement is the aim
of the research (e.g., photodetector, transistor,
supercapacitor). DEVICE is not used for instru-
mentation devices that are only used as a tool.

NUM: mentions of numbers such as 0.46.

UNIT: mentions of units such as nm or V.

RANGE: mentions of numeric expressions indicat-
ing ranges, e.g., 0.46+.11

VALUE: nested type capturing expressions of val-
ues usually composed of a NUM, RANGE and a
UNIT, e.g., ~5 x 3mm?2

CITE: citations, e.g., Setman et al. or [13].

PROPERTY: expressions referring to properties
of materials or conditions in experiments, €.g.,
stress rate or electron conductivity.

TECHNIQUE: mentions of experimental tech-
niques used in the characterization steps, e.g.,
Scanning electron microscopy (SEM).

SAMPLE: mention of the material or a component
made of materials studied in a measurement, €i-
ther referred to by a particular name or its com-

*https://pubmed.ncbi.nlm.nih.gov
“https://doaj.org
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#Documents 50
#Documents train / dev / test 36/7117
#Sentences 10186
#Sentences/Document 203.7£73.2
#Tokens/Sentence 28.7+17.9

Table 1: Basic corpus statistics for MuLMS.

position, its batch name (Ag-825) or by referring
to the whole component (MEA-Pt/C) or to part
of the material’s structure (ionomer patches). In
simulation papers, the SAMPLE may also be the
computational model under study (RBF-ANN).

3.2.2 Relations and Measurement Frame

We treat measurement annotation in a frame-like
(Fillmore and Baker, 2001) fashion, using the span
type MEASUREMENT to mark the triggers (e.g.,
was measured, is plotted) that introduce the Mea-
surement frame to the discourse. About 88% of
the triggers are verbs. The remaining 12% occur
in figure captions without verb phrases and are
annotated either on nouns (Comparison) or, in ab-
sence of more suitable phrases, on figure labels
such as Figure 17. The trigger annotations of these
sentences serve as the root of the tree/graph anno-
tations as illustrated in Figure 1.

There are also cases in which the Measurement
frame is evoked, but there are no technical details or
results that we can extract about the measurement.
We mark the triggers of these sentences with the
tag QUAL_MEAS (qualitative mention of a mea-
surement). An example of such a sentence is “We
compare a critical volume to be detached from the
different nanostructures.”

Measurement-related Relations. We annotate
several relations that start at a MEASUREMENT tag
and that end at the annotations of the corresponding
slot fillers within the sentence. Consider the fol-
lowing sentence: “To characterize the ORR activity
of the catalyst, linear scan voltammetry (LSV) was
tested from O to 1.2 V on an RDE with a scan rate
of 50 mV/s in O2-saturated HCIO4 solution.”

measuresProperty: indicates the PROPERTY (e.g.,
ORR activity) that is measured.
conditionSampleFeatures: indicates the SAMPLE
or MATERIAL whose property is measured. In
the above example, the sample is the catalyst.
usesTechnique: relates to the TECHNIQUE (e.g.,
linear scan voltammetry) used in a measurement.
conditionInstrument: refers to the INSTRUMENT
used to make a measurement, e.g., RDE/rotating
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Relation Example

hasForm
usedIn
usedAs
dopedBy

siliconmar—hasForm— hexagonalgorm
Sicmar —usedIn— MOSFETpevice
PtNi3Mwmar —usedAs— catalysts
chlorinatedmaieriai—dopedBy—SiCwmar

Table 2: Measurement-independent relations annotated
in MuLMS. MAT is short for MATERIAL.

Label Count % |Label Count %
MAT 15596 33.6|CITE 1709 3.7
NuM 6081 13.1|SAMPLE 1461 3.2
VALUE 4852 10.5| TECHNIQUE 1036 2.2
UNIT 4330 9.3|DEV 808 1.7
PROPERTY 3925 8.5|RANGE 736 1.6
FOrRM 3568 7.7|INSTRUMENT 378 0.8
MEASUREMENT 2171 4.7|total 46,351 -

Table 3: Corpus counts for named entity annotations.

disk electrode.
conditionProperty: a property that is a condition
in the experiment, e.g., scan rate (which in turn
has the propertyValue of 50 mv/s).
propertyValue: connects the mention of a PROP-
ERTY and that of its corresponding VALUE. This
relation may also occur if a mention of a PROP-
ERTY occurs independently of a measurement.
conditionEnvironment: identifies the MATE-
RIALs (e.g., 02 and HCIO4) and VALUEs (e.g.,
an operating temperature of 30°C) that provide
the environment of the measurement.
takenFrom: connects the MEASUREMENT with
the bibliographic reference CITE from which the
setup has been inspired or taken over.

In most cases, a conditionProperty or a
measuresProperty connects the MEASUREMENT
annotation to a PROPERTY node, at which a
propertyValue relation starts that ends at the re-
spective VALUE. However, in some cases, the con-
dition or measured property is not mentioned ex-
plicitly. In this case, we link the VALUE directly
to the MEASUREMENT node via a conditionProp-
ertyValue or a measuresPropertyValue link. For
consistency reasons, we also add these links in
cases that mention the property explicitly, turning
the trees into graph structures. Out of the added
conditionPropertyValue links, 967 are for such ex-
plicit cases, while the other 206 describe implicit
cases. In the case of measuresPropertyValue, 722
links are for explicit cases and 36 for implicit cases.

Further Relations. In the following, we explain
relations that can appear independently of measure-
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Label Count % |Label Count %
hasForm 2910 17.3 |meas.Prop.Val. 751 4.5
measuresProperty 2080 12.4 |usedTogether 672 4.0
usedAs 1839 11.0|conditionEny. 549 33
propertyValue 1794 10.7 |usedIn 434 2.6
conditionProperty 1648 9.8 |conditionlnstr. 357 2.2
conditionSample 1434 8.5 |takenFrom 118 0.7
cond.Prop.Value 1158 6.9 |dopedBy 65 04
usesTechnique 985 5.9|total 16,794

Table 4: Corpus counts for measurement relations.

MEAS QUAL_MEAS OTHER
MEAS 48 6 6
QUAL_MEAS 12 37 11
OTHER 10 17 92

Table 5: Inter-annotator agreement for identifying mea-
surement sentences: confusion matrix.

ments. Examples are shown in Table 2.

hasForm: connects mention of MATERIAL and
the corresponding FORM annotation.

usedIn: connects MATERIAL and the DEVICE it
is used in. In Table 2, MOSFET stands for Metal
Oxide Semiconductor Field-Effect Transistors.

usedAs: links a specific MATERIAL mention with
a more generic one such as catalyst, a material
class defined by its function.

dopedBy: indicates dopants (e.g., chlorine), i.e.,
impurities added to a main material (e.g., SiC).

usedTogether: connects two MATERIALS if they
are used together in an experiment, i.e., if the
materials are part of an assembly or a mixture.

3.3 Corpus Statistics

We now analyze our corpus and provide detailed
corpus statistics. In total, there are 46,351 NE
annotations. Table 3 shows the counts by NE la-
bel. There are roughly 1.5 MAT annotations per
sentence as these are nested and occurrences of
composite materials often result in many combined
MAT tags. Table 4 reports the counts of anno-
tated relations (16,794 in total), with hasForm as
the most frequent relation with 2910 instances and
dopedBy the least frequent with only 65 instances.

Out of all 10186 sentences, 2111 (20.7%) de-
scribe a measurement (i.e., they contain at least one
MEASUREMENT annotation). On average, each
document contains 43.4 MEASUREMENT annota-
tions. In addition, there are 1476 sentences (14.5%)
marked as containing a QUAL_MEAS, with 40 sen-
tences of these also containing a MEASUREMENT
annotation.



Label P R Fl‘Label P R F1 Label P R F1 \ x matches
MAT 96.7 91.2 93.9|CITE 974 974 974 propertyValue 81.2 81.2 81.2 ] 0.88 26
Num 98.9 100.0 99.4|SAMPLE 3.1 12.5 4.7 condSampleFeat. 43.1 40.0 415 0.23 22
VALUE 100 100 100.0|TECHN. 77.5 59.6 67.4 usedIn 40.0 52.2 453 | 0.55 12
UNIT 97.9 100.0 98.9|DEVICE 96.0 82.8 88.9 usesTechnique 729 67.3 70.0 | 0.86 35
PROPERTY 42.6 37.7 40.0|RANGE 100.0 100.0 100.0 hasForm 547 714 619 | 0.64 35
ForMm 95.7 86.3 90.8|/INSTR. 80.0 76.9 784 takenFrom 333 63.6 43.7 | 0.57 7
MEAS. 44.6 51.0 47.6|average 79.3 76.6 77.9 measuresProp. 80.5 729 76.5 | 0.80 70
dopedBy 353 500 414 0.25 6

. _ . ses conditionProp. 27.7 59.1 37.7 | 031 13

Table 6: Inter-annotator agreement: named entities. conditionlnsir 240 600 343 | 044 6
conditionEnv. 00 00 0.0]0.00 0

usedAs 235 857 369 | 037 12

3.4 Inter-Annotator Agreement (IAA) usedTogether 13.8 286 18.6|0.20 4

Our entire dataset has been annotated by a graduate
student of materials science, who was also involved
in the design of the annotation scheme. We perform
two agreement studies, comparing to the annota-
tions of a second annotator with a PhD degree in
environment engineering and several years of ex-
perience in materials science research.
Agreement on identifying Measurement sen-
tences. In this agreement study, we estimate the
degree of agreement whether a sentence expresses
a MEASUREMENT, a QUAL_MEAS, or whether it
does not express a measurement at all. We sam-
ple 60 sentences marked with MEASUREMENT, 60
sentences marked with QUAL_MEAS, and 120 sen-
tences not marked as either by the first annotator.
Table 5 shows the confusion matrix for the 239
sentences for which both annotators provided a
label. One automatically selected sentence was
not labeled by one of the annotators due to in-
comprehensibility. In terms of Cohen’s x (Co-
hen, 1960), agreement amounts to 59.2, indicat-
ing moderate to substantial agreement (Landis and
Koch, 1977). When collapsing MEASUREMENT
and QUAL_MEAS, k is 63.4 (substantial).
Agreement on named entities. We next com-
pute agreement for NE and relation annotations.
IAA on “easy” types such as MAT, NUM, UNIT,
VALUE and RANGE has been shown to be very
high in prior work (Friedrich et al., 2020). Hence,
as our resources are limited, we provide annota-
tions of these types for correction to the second
annotator. We sample 134 sentences such that each
entity type occurs at least 25 times in the anno-
tations of the first annotator and have the second
annotator correct or add entity annotations. We
then compare the annotated sets of NE mentions
using precision and recall (for a justification of
this choice of agreement metrics, see Appendix C).
Results using relaxed matching (containment) are
shown in Table 6 (detailed counts in Appendix C).
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Table 7: Inter-annotator agreement: relations.

For most types, scores are in the expected range
of difficult semantic annotation tasks. Agreement
on identifying Measurement sentences is good; the
decision of where exactly to place the MEASURE-
MENT annotation differs between annotators.

Agreement on relations. We sample 178 sen-
tences in which each relation occurs at least 25
times according to the first annotator. We keep NE
annotations and ask the second annotator to add
relations. Table 7 shows the results in terms of pre-
cision, recall, and « per relation type. The latter has
been computed by treating all pairs of NE annota-
tions as potential relations, using NO_RFEL if no
relation has been annotated. Overall « on relations
is 0.61 (substantial). For each relation label, we
can map all other relation types to OT H E R and
compute agreement for the binary decision whether
the label is present or not (analysis suggested by
Krippendorff (1989)). k aims to quantify the de-
gree of agreement above chance. Interpreting our
K scores according to the scale of Landis and Koch
(1977), we reach at fair agreement for condition-
PropertyValue, usedTogether, conditionSampleFea-
tures, dopedBy, and usedAs. We reach moderate
agreement for usedIn, takenFrom, and condition-
Instrument. For the practically important relations
propertyValue, measuresProperty, and usesTech-
nique, we even reach almost perfect agreement.

For the non-easily identifiable types, post-hoc
discussion with the second annotator (who did not
receive an extensive training on the task) concluded
it was not always clear to them when using related
labels (e.g., conditionProperty and conditionEnvi-
ronment). Yet, these labels can be learned with
good or acceptable accuracy (see Appendix E), in-
dicating that the primary annotator has used the
labels consistently.



4 Task Definitions and Modeling

In this section, we define several NLP tasks for
MuLMS and describe our computational models.

4.1 Pre-trained Models

We use BERT (Devlin et al., 2019) as the underly-
ing text encoder for all of our models. We also use
variants of BERT, namely SciBERT (Beltagy et al.,
2019), which has been pre-trained on articles in the
scientific domain, and MatSciBERT (Gupta et al.,
2022), a version of SciBERT further pre-trained
on materials science articles. We use the uncased,
768-dimensional variant of each model, which we
fine-tune.

4.2 Detecting Measurements

We model the task of classifying whether
a sentence contains a MEASUREMENT or a
QUAL_MEAS annotation as a ternary sentence clas-
sification task, i.e., it is also possible that a sentence
does not refer to any measurement. As we are pri-
marily interested in detecting MEASUREMENT, we
map the few multi-label cases carrying both pos-
itive labels to MEASUREMENT. We use a linear
layer plus softmax with the CLS token embedding
as input. For training, we downsample the amount
of non-measurement sentences.

4.3 Named Entity Recognition (NER)

We compare two state-of-the-art models for NER,
(a) a sequence tagger and (b) a dependency parser.
For the sequence tagger, we encode the NE labels
using the nested BILOU scheme (Alex et al., 2007),
which leverages a label set of combined types con-
structed from the training set for nested NEs. As
there are only very few cases (about 0.65% of all
NE annotations) where a token receives more than
three stacked NE labels, in order to avoid sparsity
issues, we consider only the “bottom” three lay-
ers of stacked entities. We feed the contextualized
embeddings of the last transformer layer of the re-
spective first wordpiece token of each “real” token
into a linear layer and then use a CRF (Lafferty
et al., 2001) to optimize predictions for the entire
sequence.

Modeling NER as a dependency parsing task
(Yu et al., 2020) can easily account for nested
NEs. The main idea is to predict edges reach-
ing from the end token of an NE to its start to-
ken as depicted in Figure 2. We adapt the STEPS
parsing pipeline (Griinewald et al., 2021a) to the

&9

TECHNIQUE

MaAT
W]
water | electrolysis

PROPERTY

Electrochromic ] properties

Figure 2: NER as dependency parsing (Yu et al., 2020).

task. There are three combinations of tags in our
dataset that occasionally cover the exact same span
and that occur more than 20 times: VALUE+NUM,
VALUE+RANGE and MAT+FORM. We hence in-
troduce the above combined labels. For any other
infrequent conflicting labels, we do not add extra
tags, i.e., the model can never catch these cases.
We decide on this slight restriction of the model
capabilities in order to avoid sparsity issues. In the
evaluation, we do not filter for these cases but of
course use all nested NEs as annotated.

4.4 Relation Extraction

Given an input sentence along with all named enti-
ties within it, as well as their types (either gold or
predicted depending on the experimental setting),
we predict which (if any) relation is present be-
tween them. We treat all relations in a single model
and predict all relations of a sentence simultane-
ously by modeling relation extraction as a graph
parsing task. Following Toshniwal et al. (2020), we
first create an embedding e; for the i™ NE in the
sentence by concatenating the token embeddings
of its first and last token (e; start, €;,Enp). We also
concatenate a learned embedding for the NE’s label
(ei,LABEL): €; = €; StarT D €;,Enp D €;,LaBEL

Considering NEs as nodes in a graph, we use a
biaffine classifier architecture (Dozat and Manning,
2017) using the implementation of Griinewald et al.
(2021a,b) to predict the relation between each pair.
The non-existence of a relation is encoded as sim-
ply another label (&). For details on the parser
architecture, see Appendix B.

S Experiments

We now detail our experimental results.
Experimental Settings. We split our corpus into
train, dev, and test sets on a per-document basis.
Within the train set, we provide five distinct tune
splits (trainl to train5). For all experiments and for
hyperparameter tuning, we always train five mod-
els. Similar to cross-validation, we train on four
folds and use the fifth “training fold” for model
selection (cf. van der Goot (2021) for details). Hy-



MEASUREMENT QUAL_MEAS dev test
LM (sampling) P R F1 P R F1 LM Micro F1 Macro F1 |Micro F1 Macro F1
Random baseline |24.7 19.7 21.945.4|15.1 144 14. 7415 Maj. basel. 38.3 29.4 37.2 27.4
BERT(0.7) 74.1 71.4 72.512.1|49.9 51.6 50.640.7 BERT 69.5+05 63.4+1.0| 63.5+06 57.7+1.1
SciBERT(0.7) 71.1 79.5 75.010.7|52.7 52.8 52. 74114 SciBERT 725108 0657106| 675409 62.0122
MatSciBERT(0.85)[70.6 80.1 74.911.5|52.8 56.9 54.711 .0 MatSciBERT | 732410 66.5+1.1| 67.6+1.0 62.0+10

human agreement* ‘68.6 80.9 73.8 61.7 61.7 61.7

Table 8: Ternary sentence classification results for iden-
tifying measurement sentences on test set. “Sampling”

indicates amount of OTHER sentences used for training.
*estimated on subset of data.

Model LM Micro F1  Macro F1
Dependency BERT 73.0+0.7 61.742.3
Parser SciBERT 76.5+0.3 65.840.9
MatSciBERT 77-3:‘:0.3 67.6:|:1,4
CRF Tagger BERT 753106 63.240.7
SciBERT 78.7+0.4 69.3+1.0
MatSciBERT 79.6.10.4 70.7 0.7

Table 9: Named entity recognition results on test set.

perparameters are chosen based on the best dev
results, and we finally report results for the test set.
The splits are the same across all tasks. Because the
training data varies across the five runs for which
we report results, standard deviations are usually
larger than when using the same training data. For
hyperparameter settings, see Appendix A.

5.1 Identifying Measurement Sentences

Table 8 reports the results for identifying sentences
that contain a MEASUREMENT or a QUAL_MEAS
annotation. In each experiment, we tune the down-
sampling rate for the majority class OTHER and the
learning rate (using grid search from le-4 to le-7).
The random baseline assigns labels according to
the percentage of instances in the (full) training
set carrying a particular label. The average overall
accuracy of the MatSciBERT classifier is 78.2%.
SciBERT and MatSciBERT perform similarly, with
MatSciBERT having a small edge. Identification of
MEASUREMENT is comparable to our estimate of
human agreement. For identifying QUAL_MEAS,
there is headroom.

5.2 Named Entity Recognition Results

Table 9 shows the results for named entity recog-
nition. Again, MatSciBERT performs best with
Micro F1 scores approaching 80, which indicates
that NE mentions are consistently annotated in
MuLMS. The CRF-based tagger outperforms the
dependency-parser-based NER model by a consid-
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Table 10: Relation extraction results: gold entities.

erable margin. For detailed per-label statistics, see
Appendix E. Precision and recall are approximately
balanced for all labels. An exception is SAMPLE,
which is both infrequent in the dataset and hard to
identify for humans. Both models suffer from low
recall for this tag.

5.3 Relation Extraction Results

Table 10 shows the results for relation extraction
on gold entities. A predicted relation is counted
as correct if and only if there is a relation with
the same start span, end span, and relation label
in the set of gold relations for the sentence. The
majority baseline assigns to each pair of entities
the relation that is most common in the training set
for the respective entity types of the governing and
dependent spans (see Appendix E).

The results demonstrate that a biaffine depen-
dency parsing approach achieves robust perfor-
mance overall and outperforms the baseline by a
substantial margin. The two models trained on
scientific text outperform BERT. Their results are
similar, with MatSciBERT having a slight edge.

Analysis of per-label scores (see Appendix E)
for MatSciBERT) shows that the highest scores are
achieved for conditionInstrument (92.2 F1), uses-
Technique (91.0 F1), and takenFrom (84.7). This
is somewhat surprising especially for conditionin-
strument and takenFrom, as these are among the
rarest relation types in the corpus (see Table 4).
However, our majority baseline achieves high ac-
curacies on these relation types as well (>90 F1 for
conditionInstrument and usesTechnique), i.e., they
are easily inferable from entity types. The worst
performance is observed on the relation types used-
Together (4.0 F1), dopedBy (22.7 F1), and usedIn
(37.9 F1). These relations occur relatively rarely
and also cannot be inferred from entity types.

Relation extraction on predicted entities. Fi-
nally, we also run our relation extraction module on
predicted named entities using the respective best-
performing models (both based on MatSciBERT).
Models are evaluated as above, with the additional



Dataset LR Micro F1  Macro F1
MuLMS le-4/7e-3 79.6;{:044 70-7j:0.7
+ SOFC-Exp 79.5+0.4 704413
+ MSPT 79.240.6 69.940.8
SOFC-Exp 3e-4/7e-3 834,109 81.0+1.0
+ MulLMS 819417 79.611.7
MSPT 5e-5/9¢e-3 81.6;{:044 57-810.6
+ MulLMS 80.440.4 5644108

Table 11: NER MTL results: MatSciBERT tagger.

requirement that the boundaries of start/end spans
of a predicted relation must also exactly match
those of the respective gold spans. Prediction ac-
curacy drops substantially: to micro-F1 scores of
42.5 and 36.5 on dev and test, respectively, cor-
responding to macro-F1 scores of 37.9 and 32.8.
The reason for this is error propagation as relations
can only be retrieved if the entities are predicted
correctly, and as incorrectly labeled entities can
mislead the relation classifier.

5.4 Multi-Task Learning Across Datasets

To find out whether information extraction accu-
racy can be increased by employing multi-task
learning (MTL), we perform a series of experi-
ments in which we combine MuLMS training data
with NE and relation data from other materials sci-
ence datasets, namely the SOFC-Exp and MSPT
corpora (see Sec. 2).° In all experiments, we use
a shared MatSciBERT and one classification head
for each task (dataset). When reporting results on
MulLMS, we use the same setup as before, but add
the complete training sets of SOFC-Exp or MSPT
during training. When reporting results on SOFC
and MSPT, we train on all of their training data
and the complete training data of MuLMS and per-
form early stopping on dev. For these experiments,
reported scores are averages over 5 runs with dif-
ferent random seeds.

For NER (Table 11), we do not observe overall
improvements. We hypothesize that this is because
in SOFC-Exp, NE types are much coarser-grained,
and in MSPT, NE annotations are focused on syn-
thesis procedure paragraphs only. Nevertheless, as
can be seen by the per-label scores in Appendix E,
average scores on MuLMS are mainly hurt by de-
creases on SAMPLE, while scores for RANGE in-
crease considerably by up to 3.9%.

SWe removed one document from the test split of the
SOFC-Exp corpus that is also part of the train set of MuLMS.
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dev test
Dataset Micro F1 Macro F1 \ Micro F1 Macro F1
MuLMS 73-2i1.0 66.5i1.1 67.6i1A0 62.0i1A0
+ SOFC 725409 65.8+0.7| 68.140.7 61.140.7
+ MSPT 739,04 674104| 687107 637107
SOFC-Exp | 713406 62.842.1| 669+16 598415
+MuLMS | 723105 643137| 687115 6091356
+ MSPT 723409 63.1426| 67.6420 60.8+43
MSPT 842106 82.5+0.7| 84.640s 83.010s
+MuLMS | 853102 834105| 85.6104 841105
+ SOFC 83. 7414 818114 847111 832414

Table 12: Relation extraction multi-tasking results using
MatSciBERT-based parser.

Results for MTL for relations are shown in Ta-
ble 12. We observe that adding MuLMS to the
training data of both SOFC-Exp and MSPT re-
sults in improvements. Incorporating SOFC-Exp
instances in the training does not meaningfully in-
crease prediction accuracy on MuLMS, whereas
incorporating instances from MSPT leads to mod-
est improvements. Intuitively, this makes sense:
relations in SOFC-Exp focus on a specific type
of experiment, while MuLMS covers a broader
range of measurements. Similarly, some MuLMS
relations bear resemblance to MSPT relations (e.g.,
those dealing with instruments or apparatus), which
explains why training jointly is beneficial.

6 Conclusion and Outlook

In this resource paper, we have presented a new
large-scale dataset of 50 scientific articles in the
domain of materials science exhaustively anno-
tated with named entity mentions, relations, and
measurement-related frames. Our inter-annotator
agreement study shows good agreement for most
decisions. Our experiments with state-of-the-art
neural models highlight that most distinctions can
be learned with good accuracy, and that synergies
can be achieved by training jointly with existing
more specific materials-science NLP datasets.

Future work is needed to improve on end-to-end
or joint models of NER and relation extraction as
our experiments showed that a pipeline-based set-
ting suffers from error propagation. A potential
next step is to adapt sequence-to-sequence models
to the structure induction tasks of MuLMS, fol-
lowing ideas of (Hsu et al., 2022; Lu et al., 2021).
Finally, employing data augmentation techniques
in particular for the less frequent relation types is a
viable path for future work.



Limitations

As discussed in Sec. 3.4, we expect our inter-
annotator agreement scores to underestimate the
reproducibility of the task. It is, unfortunately, not
trivial to find annotators with the required back-
ground knowledge. Hence, scores reflect agree-
ment after only an initial very brief training phase,
but nevertheless (in our opinion) give useful in-
sights on the relative difficulty of the labeling deci-
sions.

In our relation extraction experiments, we use
label embeddings based on either gold or predicted
entity labels (depending on the experimental setup)
as an input to our system. Providing gold entity
label information in particular constitutes a setting
that is considerably easier for a relation classifier
than providing no label information. Using pre-
dicted entity mention and labels showed to suffer
from error propagation. In future work, it may be
interesting to evaluate the performance of a rela-
tion extraction system that is not given label infor-
mation, or that predicts entity labels jointly with
relations.

Ethical Considerations

The annotators participating in our project were
completely aware of the goal of the annotations
and even helped designing the annotation scheme.
They gave explicit consent to the publication of
their annotations. The main annotator was paid
considerably above our country’s minimum wage.
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Appendix
A Hyperparameters

We use AdamW (Loshchilov and Hutter, 2019) as
optimizer for all our models. We use an inverse
square-root learning rate scheduler similar to the
one used by Vaswani et al. (2017) where ws refers
to the number of warmup steps:

Ir = yws - min(\/ﬁ, step_num - ws™ %)

For our measurement identification experiments,
we downsample the amount of non-measurement
sentences since they represent the majority in the
training data. We tune this downsampling rate per
model since each BERT variant has been shown
to prefer a slightly different one. We apply early
stopping after 3 epochs without improvement in
terms of F1.

Our NER sequence tagging models are trained
with two separate learning rates; one for BERT +
linear output layer and another one for the CRF
output layer. Both learning rates are reported in
the respective column of Table 13. We train for 60-
100 epochs, depending on the size of the combined
dataset, and take the model with the best evaluation
score during this period.

For relation extraction, we use a base learning
rate of 4e-5 for all experiments, which we found
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Model LM LR
CRF BERT le-4/7e-3
SciBERT Se-5/7e-3
MatSciBERT  1e-4/7e-3
Dep. Pars. BERT 2e-4
SciBERT 9e-5
MatSciBERT 3e-4

Table 13: Hyperparameters: Learning rates for NER
models.

to perform best in preliminary experiments. We
employ early stopping with a patience of 15 epochs
for all experiments.

Our models are trained with Nvidia A100 and
V100 GPUs using the PyTorch framework.

B Details on Biaffine Parser Architecture

We here describe the biaffine parser architecture
used to predict relations between named entities.
Taking as input the NE embeddings described in
Sec. 4.4, head and dependent representations for
the 7’th NE are computed via two single-layer feed-
forward neural networks:

hzhead — FNNhead(ei)
h?” = FNN?P (e;)

These representations are then fed to a biaffine
classifier that maps head—dependent pairs onto logit
vectors s; ; whose dimensionality corresponds to
the inventory of relation labels. Using the softmax
operation, these scores are transformed into proba-
bility distributions P(y; ;) over relation labels:

Biaff(x),x2) = x] Uxy + W (x; ®x2) + b
Si,j = Biaff(h,?ead, h;'lep)
P(y; ;) = softmax(s; ;)

The predicted relation for a pair of named entities
is the one receiving the highest probability (which
may be &, i.e., no relation).

Token embeddings. The token embeddings
e; start and €; gxp, which form part of the NE em-
beddings e;, are computed as a learned scalar mix-
ture of BERT layers as described by Kondratyuk
and Straka (2019).

C Detailed Corpus Statistics

Table 14 shows the NE counts in MuLMS by datas-
plit.
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Table 15 and Table 16 show the detailed counts
for our inter-annotator agreement study.

Choice of agreement metrics for evaluating
agreement on named entity annotations. The
task of identifying and labeling NE mentions is a
sequence labeling task, hence, & is not applicable.
Brandsen et al. (2020) provide a good explanation
of why this is the case in their section 5.1. Using
unitizing ag; is an option, but there is no standard
implementation or interpretation for NE annota-
tions in the NLP community, and it does not work
for overlapping annotations (which we have in our
dataset). We opted for using precision and recall,
which are intuitively interpretable (How many of
the instances of one type marked by one annota-
tor have also been marked by the respective other
annotator?). Hripcsak and Rothschild (2005) con-
vincingly argue (with a very simple proof) that for
sequence labeling tasks such as NEs, F1 actually
approaches x.

Label total train dev test
MAT 15596 10875 2318 2403
NuM 6081 4142 1077 862
VALUE 4852 3266 895 691
UNIT 4330 2880 789 661
PROPERTY 3925 2867 598 460
FORM 3568 2716 345 507
MEASUREMENT 2171 1531 345 295
CITE 1709 1280 274 155
SAMPLE 1461 1031 249 181
TECHNIQUE 1036 755 146 135
DEV 808 459 235 114
RANGE 736 546 105 85
INSTRUMENT 378 278 50 50

Table 14: Label counts for named entities in MuLMS.

D SOFC-Exp and MSPT Corpora

In Sec. 5.4, we perform several multi-task learn-
ing (MTL) experiments with MuLMS and two
additional NLP datasets in the materials science
domain, SOFC-Exp (Friedrich et al., 2020) and
MSTP (Mysore et al., 2019). We here describe
them briefly.

There are 4 named entities in the SOFC-Exp
corpus: MATERIAL, which refers to mentions of
materials or chemical formulas, VALUE, which
denotes numerical values and their corresponding
physical unit, DEVICE, which marks device types
used in an experiment, and EXPERIMENT, which
indicates frame evoking words. Furthermore, there
are 16 distinct slots that are modeled as relations
between experiment frame evoking word and cor-



Label P

R matches matches # A1 # A2
exact relaxed

MAT 96.7 91.2 144 145 150 159
NUM 98.9 100.0 86 8 87 86
VALUE 100.0 100.0 53 54 54 54
UNIT 97.9 100.0 47 47 48 47
PROPERTY 42.6 37.7 21 29 68 77
FORM 95.7 86.3 44 44 46 51
MEAS. 44.6 51.0 17 25 56 49
CITE 974 974 38 38 39 39
SAMPLE 3.1 125 1 1 32 8
TECHNIQUE  77.5 59.6 25 31 40 52
DEV 96.0 82.8 18 24 25 29
RANGE 100.0 100.0 24 25 25 25
INSTRUMENT 80.0 76.9 18 20 25 26

Table 15: Inter-annotator agreement: named entities.
Precision and recall computed from relaxed matches.

Label P R|matches # Al # A2
property Value 81.2 81.2|26 32 32
usedIn 40.0 52.2|12 30 23
hasForm 54.7 71.4|35 64 49
measuresProperty 80.5 72.9|70 87 96
conditionProperty 27.7 59.1|13 47 22
conditionEnvironment 0.0 0.0(0 19 4
usedTogether 13.8 28.6|4 29 14
conditionSampleFeatures 43.1 40.0|22 51 55
usesTechnique 72.9 67.3|35 48 52
takenFrom 33.3 63.6|7 21 11
dopedBy 35.3 50.0|6 17 12
conditionInstrument 24.0 60.0|6 25 10
usedAs 23.5 85.7|12 51 14

Table 16: Inter-annotator agreement for relations.

responding entity. Table 17 shows the counts for
these relations. These counts are not equal to the

ones
have

reported by Friedrich et al. (2020) since we
to remove relations that span across multiple

sentences as this case cannot be handled by our
relation extraction pipeline.

The MSPT corpus introduces additional the 21
entities:

PROPERTY-MISC
PROPERTY-UNIT

NUMBER
CHARACTERIZATION-APPARATUS
APPARATUS-UNIT
CONDITION-MISC

META

SYNTHESIS- APPARATUS
OPERATION

AMOUNT-MISC
96

Label train dev test
AnodeMaterial 220 32 26
CathodeMaterial 173 71 37
Conductivity 36 19 23
CurrentDensity 59 6 17
DegradationRate 15 4 1

Device 311 59 109
ElectrolyteMaterial 187 22 120
FuelUsed 124 28 40
InterlayerMaterial 34 17 6

OpenCircuitVoltage 41 3 25
PowerDensity 138 24 70
Resistance 118 15 57
SupportMaterial 88 13 2

TimeOfOperation 42 3 12
Voltage 30 3 14
WorkingTemperature 330 63 138

Table 17: SOFC-Exp relation counts in our setup.

* AMOUNT-UNIT

* REFERENCE

* PROPERTY-TYPE

* MATERIAL

* MATERIAL-DESCRIPTOR

* APPARATUS-DESCRIPTOR

e APPARATUS-PROPERTY-TYPE
* CONDITION-UNIT

* NONRECIPE-MATERIAL

* CONDITION-TYPE

* BRAND

Table 18 lists the counts of the 14 relations of the

MSPT dataset that we use in our MTL experiments.

Label train dev test
Recipe-target 270 53 92
Solvent-material 352 61 107
Atmospheric-material 144 25 35
Recipe-precursor 654 152 199
Farticipant-material 1315 236 400
Apparatus-of 358 56 93
Condition-of 1378 232 415
Descriptor-of 1157 193 333
Number-of 2114 422 663
Amount-of 1099 244 376
Apparatus-attr-of 66 56 24
Brand-of 326 83 91
Core-of 177 23 89
Next-operation 1311 233 391

Table 18: MSPT relation counts in our setup.



E Detailed Experimental Results

This appendix provides further details on our ex-
perimental results. Table 26 depicts the results for
identifying sentences containing MEASUREMENT
or QUAL_MEAS annotations.

NER. Table 19 and Table 20 report F1 for NER
on MuLMS per label. Table 21 gives per-label
scores for NER in our MTL experiments. Table 22
and Table 23 provide per-label scores for the SOFC-
Exp corpus and MSPT corpus in a single-task set-
ting as well as in a multi-task setting with MuLMS
added to the training.

Relation extraction. Table 27 lists per-relation
scores when using gold NEs or when using pre-
dicted NEs for relation extraction, as well as per-
relation scores for the majority baseline. Table 25
shows relation extraction scores per label for both
dev and test. Table 24 shows overall results for
predicted entities on dev and test.

Label P R F1
MAT 83.6 822 828
+1.3 +1.2 +0.8
Num 94.9 948 949
+0.6 +1.0 +0.7
VALUE 894 87.0 88.2
+0.6 +1.2 +0.9
UNIT 94.2 904 923
+0.4 +1.1 +0.6
PROPERTY 49.8 53.0 51.1
+3.0 +4.5 +1.4
CITE 88.6 87.7 88.2
+0.8 +2.0 +1.3
TECHNIQUE 49.6 51.1 50.1
+3.4 +5.6 +2.9
RANGE 70.3 748 723
+5.8 +3.5 +3.0
INSTRUMENT 46.7 44.8 45.6
+2.7 +3.5 +2.0
SAMPLE 72.5 36.7 47.9
+10.2 +6.2 +4.1
ForM 66.5 714 68.9
+3.0 +1.9 +2.5
DEVICE 82.6 749  78.6
+2.0 +2.5 +1.9
MEASUREMENT 61.6 55.3 58.2
+2.1 +3.0 +0.8

Table 19: Per label scores for NER using BILOU tag-
ging and MatSciBERT.
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Label CRF-Tagger Dep. Parser
MAT 828103 80.010.4
NuMm 94.9j:0.7 94.2:{:044
VALUE 88.2.0.9 827411
UNIT 9234106 90.840.7
PROPERTY 511414 517420
CITE 882113 857115
TECHNIQUE 50.142.9 514454
RANGE 723150 66.414.0
INSTRUMENT 45.62.0 441433
SAMPLE 479141 2944181
FOrRM 68.9i245 67.6i141
DEVICE 78.6+1.9 76.412.9
MEASUREMENT 58.240.8 58.710.7

Table 20: Per-Label NER results on test in terms of F1
(using MatSciBERT).

Label Single-Task + SOFC + MSPT
MAT 82.8 82.3 82.3
NuM 94.9 95.6 95.6
VALUE 88.2 88.1 88.2
UNIT 92.3 92.1 92.6
PROPERTY 51.1 49 .4 50.8
CITE 88.2 88.1 87.8
TECHNIQUE 50.1 529 50.0
RANGE 72.3 76.2 75.2
INSTRUMENT 45.6 45.9 42.8
SAMPLE 47.9 38.3 45.8
FOrRM 68.9 69.9 64.9
DEVICE 78.6 77.9 76.3
MEASUREMENT 58.2 57.8 56.9

Table 21: Per-Label NER results for MuLMS on test in
terms of F1 for single-task and multi-task MatSciBERT
taggers.

Label Single-Task + MuLMS
MATERIAL 75.8 73.2
EXPERIMENT 81.7 81.2
VALUE 93.9 92.0
DEVICE 72.6 72.0

Table 22: Per-Label Named Entity Recognition re-
sults for SOFC-Exp on test in terms of F1 using single-
task and multi-task MatSciBERT taggers.



Label ST + MuLMS

META 47.5 46.3
PROPERTY-MISC 32.8 34.7
SYNTHESIS-APPARATUS 68.7 66.7
OPERATION 85.0 84.9
PROPERTY-UNIT 423 44.5
AMOUNT-MISC 41.4 26.0
NUMBER 94.8 95.5
AMOUNT-UNIT 95.5 95.0
REFERENCE 70.9 67.7
PROPERTY-TYPE 24.6 19.0
MATERIAL 84.1 81.6
MATERIAL-DESCRIPTOR 67.8 63.7
CHARACTERIZATION-APPARATUS 16.2 28.8
APPARATUS-UNIT 57.8 61.5
APPARATUS-DESCRIPTOR 67.0 65.1
APPARATUS-PROPERTY-TYPE 0.0 0.0

CONDITION-MISC 72.3 73.5
CONDITION-UNIT 95.2 94.3
NONRECIPE-MATERIAL 62.3 59.6
CONDITION-TYPE 15.7 12.8
BRAND 71.1 64.0

Table 23: Per-Label Named Entity Recognition re-
sults for MSPT on test in terms of F1 using single-task
(ST) and multi-task MatSciBERT taggers.

micro F1 macro F1

dev 425110 379117
test 36.51049 32.8i1,2

Table 24: Relation extraction results in terms of F1,
predicted named entities (including standard deviation
over five folds).

Label dev test

hasForm 713108  76.110.5
measuresProperty 88.0+1.0 83.1+0.8
measuresPropertyValue 841122 738110
usedAs 502423 418119
conditionProperty 83.0+13 723410

conditionPropertyValue T4 7425 632425
conditionSampleFeatures  67.6+0.9 66.042.1

usesTechnique 94.6406 91.0+0.9
conditionEnvironment 57.116.2 39.043.0
propertyValue 86.7+1.3 825121
usedIn 49-3i5.6 37.9i347
conditionInstrument 982108 9224009
dopedBy 0.0+0.0 2271187
takenFrom 855437 847136
usedTogether 75420 4.0+1.7
Macro-avg. 665111 620110
Micro-avg. 732410 67.6110

Table 25: Per-label F1 scores for relation extraction
using MatSciBERT (gold named entities).



dev test

LM Label P R F1 \ P R F1
MEASUREMENT 715419 671430 692413 | 741431 714456  72.5421
BERT QUAL_MEAS 45.6428 614437 5224927 | 499431 51.6432 50.640.7

2-Class Macro Avg. | 58.54+209 64.342.8 60.741.3 | 62.0430 61.5437 61.54+1.2

MEASUREMENT 69.1419 776415 731404 | Tl.lioo0 795416  75.0+0.7
SciBERT QUAL_MEAS 540117 663150 594119 52.7+05 528432 527414
2-Class Macro Avg. 61.5i1_2 72«0i2A8 66.2i140 61.9i0A9 66.2i1As 63-9i0.6

MEASUREMENT 694406 7794140 7324107 70.642.2 80.1155 749406
MatSciBERT QUAL_MEAS 514414  67.0116 582111 | 528105 569126 547110
2-Class Macro Avg. 60.44+1.9 7244120 65.7+0.4 61.7+1.0 68.512.4 64.8.10.7

human MEASUREMENT 74.2 74.2
agreement QUAL_MEAS 61.7 61.7

Table 26: Ternary sentence classification results for identifying sentences containing MEASUREMENT or
QUAL_MEAS annotations vs. NONE. Human agreement is only suitable for a rough comparison because it
is estimated on a subset of the data.

Gold Entities Predicted Entities Majority Baseline

Label P R F1 | P R F1 | P R F1

hasForm 74.0 78.5 76.1 54.2 55.5 54.8 0.0 0.0 0.0
+1.8 +1.1 +0.5 +3.6 +1.6 +2.3

measuresProperty 80.2 86.3 83.1 393 36.6 37.8 505 996 67.0
+1.1 +2.2 +0.8 +2.8 +2.2 +1.4

measuresPropertyValue 68.6 80.0 73.8 41.5 38.3 39.7 0.0 0.0 0.0
+1.9 +1.5 +1.0 +41 +4.3 13.6

usedAs 49.2 36.5 41.8 30.1 19.1 23.2 0.0 0.0 0.0
+2.8 +2.2 +1.9 +4.6 +3.0 +3.4

conditionProperty 65.3 81.2 72.3 29.0 274 27.9 0.0 0.0 0.0
+2.1 +2.5 +1.0 +3.6 +2.6 +1.8

conditionPropertyValue 51.3 82.4 63.2 26.7 42.5 32.7 27.2 1000 427
+3.0 +3.3 +2.5 +2.8 +2.7 +2.4

conditionSampleFeatures ~ 60.7 72.3 66.0 34.4 28.4 31.0 | 704 428 532
+2.8 +1.3 +2.1 +4.6 +3.1 +3.3

usesTechnique 87.1 95.2 91.0 44.7 37.9 41.0 | 81.8 100.0 90.0
+1.1 +1.3 +0.9 +1.6 +2.7 +1.8

conditionEnvironment 40.4 37.9 39.0 322 27.0 29.2 0.0 0.0 0.0
+2.6 +4.1 +3.0 +41 +3.8 +3.1

propertyValue 78.7 86.8 82.5 40.9 46.7 434 0.0 0.0 0.0
+3.1 +2.7 +2.1 +2.6 +5.1 +2.0

usedin 42.5 35.6 37.9 18.6 14.2 15.9 0.0 0.0 0.0
+4.9 +7.6 +3.7 +7.1 +3.6 +4.8

conditionlnstrument 93.4 91.1 92.2 38.6 36.6 37.5 90.4 100.0 949
+0.1 +1.6 +0.9 +1.9 +3.7 125

dopedBy 26.7 20.0 22.7 20.0 6.7 10.0 0.0 0.0 0.0
+22.6  +16.3  +18.7 | +40.0  +13.3  +20.0

takenFrom 75.3 96.9 84.7 67.8 61.5 64.0 | 464 1000 634
+5.1 +3.8 +3.6 +7.8 +6.9 +4.6

usedTogether 9.6 2.5 4.0 9.6 2.4 3.8 0.0 0.0 0.0
+3.5 +11 +1.7 +4.0 +1.1 1.7

Macro-avg. 60.2 65.5 62.0 352 32.0 32.8 | 244 361 274
+0.8 +1.6 +1.0 +2.7 +1.6 +1.2

Micro-avg. 66.8 68.4 67.6 38.6 34.7 36.5 | 50.5 295 372
+1.7 +0.4 +1.0 +2.3 +1.3 +0.9

Table 27: Per-label scores (MuLMS test set) for relation extraction using MatSciBERT. Majority baseline is
computed on gold entities.
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MuLMS only

MuLMS + SOFC-Exp

MuLMS + MSPT

Label P R F1 | P R F1. | P R F1
hasForm 74.0 78.5 76.1 78.0  78.8 78.3 74.2 79.6 76.8
+1.8 +11 +0.5 +2.9  +1.8 +0.9 +0.7 +1.3 +0.9
measuresProperty 80.2 86.3 83.1 79.0 87.1 82.8 78.8 86.6 82.5
+1.1 +2.2 +0.8 +1.1 409 +0.4 +1.2 +1.3 +0.3
measuresPropertyValue 68.6 80.0 73.8 68.9  82.7 75.1 70.3 82.1 75.7
+1.9 +1.5 +1.0 +35  +2.2 +2.0 +0.7 +3.1 +1.5
usedAs 49.2 36.5 41.8 479 357 40.8 51.9 37.5 43.5
+2.8 +2.2 +1.9 +26 2.0 +1.3 +1.3 +1.8 +1.4
conditionProperty 65.3 81.2 72.3 674  82.1 73.9 66.1 80.3 72.5
+2.1 +2.5 +1.0 +2.5 425 40.8 +1.9 +2.2 +16
conditionPropertyValue 51.3 82.4 63.2 53.7 718 63.3 51.1 78.5 61.8
+3.0 +3.3 +2.5 +4.2 443 +2.0 +2.6 +3.1 +2.1
conditionSampleFeatures ~ 60.7 72.3 66.0 61.1 714 65.7 62.8 72.2 67.1
+2.8 +1.3 +2.1 +3.7 438 +1.4 +3.4 +2.5 +2.6
usesTechnique 87.1 95.2 91.0 85.6 97.1 91.0 87.2 95.7 91.2
+1.1 +13 +0.9 +0.8  *1.0 +0.3 +1.1 +0.8 +0.6
conditionEnvironment 40.4 37.9 39.0 463  46.2 46.0 47.2 49.8 48.3
+2.6 +4.1 +3.0 +3.5  +4.6 +2.7 +6.3 +4.7 +5.2
propertyValue 78.7 86.8 82.5 762 855 80.5 81.4 88.7 84.8
+3.1 +2.7 +2.1 +2.7  +1.7 +1.2 +1.7 +1.7 +1.1
usedIn 425 35.6 37.9 455  47.6 45.9 41.8 40.4 40.5
+4.9 +7.6 +3.7 +7.0  45.7 +3.7 +4.9 +5.5 +1.4
conditionlnstrument 93.4 91.1 92.2 93.6 932 93.4 93.5 91.9 92.7
40.1 +1.6 +0.9 +0.1  *0.9 +0.5 +0.1 +16 +0.9
dopedBy 26.7 20.0 22.7 0.0 . 0.0 28.3 26.7 27.0
+22.6  £16.3  £18.7 | £0.0  =£0.0 40.0 +16.3  £13.3  £14.0
takenFrom 75.3 96.9 84.7 61.7 985 75.6 77.0 98.5 86.2
+5.1 +3.8 +3.6 +7.5 3.1 +5.7 +8.6 +31 +6.2
usedTogether 9.6 2.5 4.0 8.8 2.2 3.5 12.0 3.6 5.4
+3.5 +1.1 +1.7 +33  40.8 +1.2 +7.2 +3.4 +4.8
Macro-avg. 60.2 65.5 62.0 582 657 61.1 61.6 67.5 63.7
+0.8 +16 +1.0 +1.5  +1.1 +0.7 40.9 +1.0 +0.7
Micro-avg. 66.8 68.4 67.6 674  68.9 68.1 68.0 69.5 68.7
+1.7 +0.4 +1.0 +1.9  +1.2 +0.7 +1.1 +0.5 +0.7

Table 28: Per-label scores (MuLLMS test set, gold entities) for multi-task relation extraction.
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