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Abstract
The valence analysis of speakers’ utterances or
written posts helps to understand the activation
and variations of the emotional state throughout
the conversation. More recently, the concept of
Emotion Carriers (EC) has been introduced to
explain the emotion felt by the speaker and its
manifestations. In this work, we investigate the
natural inter-dependency of valence and ECs
via a multi-task learning approach. We experi-
ment with Pre-trained Language Models (PLM)
for single-task, two-step, and joint settings for
the valence and EC prediction tasks. We com-
pare and evaluate the performance of generative
(GPT-2) and discriminative (BERT) architec-
tures in each setting. We observed that provid-
ing the ground truth label of one task improves
the prediction performance of the models in
the other task. We further observed that the
discriminative model achieves the best trade-
off of valence and EC prediction tasks in the
joint prediction setting. As a result, we attain
a single model that performs both tasks, thus,
saving computation resources at training and
inference times.

1 Introduction

Speakers express their emotions in the language in
different modalities (e.g. speech and/or text) and
interaction contexts (e.g. dyadic interactions or
social media posts). A type of document imbued
with emotions conveyed through the recollection of
personal events experienced by the speaker is the
personal narrative. Personal Narratives (PN) have
been recently studied to promote healthier mental
health by modelling the patients’ life events and
monitoring emotional states (Mousavi et al., 2021;
Danieli et al., 2021, 2022).

Monitoring the narrators’ emotional states in
PNs is achieved through valence analysis and the
identification of related emotion carriers. Valence
analysis addresses the identification of emotion
levels ranging from pleasantness to unpleasant-
ness generated by an event or a stimulus (Russell,

Figure 1: Example of two Functional Units (FU1, FU2)
by Mousavi et al. (2022). In each unit, the emotion-
laden words convey an explicit emotion while the emo-
tion carriers are implicit manifestations of emotions
even though they represent neutral emotion at the sur-
face level.

1980). The valence can be manifested explicitly via
emotion-laden words, such as Death or Birthday
in the PN. Besides emotion-laden words, valence
can also be manifested implicitly through Emotion
Carriers (EC), i.e. persons, objects or actions, that
may not represent any emotion at the surface level
(such as “the office” or “Wednesday”). Figure 1
shows an example of a sentence consisting of two
Functional Units (FU1, FU2; the minimal span of
text expressing a dialogue act (Bunt et al., 2012))
by Mousavi et al. (2022) with the emotion-laden
words and the ECs in each unit. Recent studies
show that ECs yield a detailed and understandable
representation of the emotional state by highlight-
ing the source of the valence such as “colleagues”,
“a vacation” or “a stroll along the river” (Tammewar
et al., 2020; Mousavi et al., 2022).

The two elements of valence and EC are inter-
dependant since valence represents the intensity
of the experienced emotions while the ECs are
the means through which emotions are expressed
and conveyed throughout the PN. Consequently,
when narrators recount an event that activated their
emotional state, the intensity of such emotion is
manifested as valence while the expression of the
emotion is through the recollection of the event
and/or the participants characterising the activation
of the emotional state.

In this work, we explore the natural inter-
dependency of valence and the related ECs in PNs.
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Figure 2: The joint and two-step settings applied to discriminative (AlBERTo) and generative (GePpeTto) PLMs in
three sections: A) fine-tuning AlBERTo with the joint prediction; B) the two-step prediction applied to AlBERTo
(the first task is valence prediction and the second task is EC prediction); C) the prompts designed to fine-tune
GePpeTto for valence prediction (prompt 1), EC prediction (prompt 2), and two-step approach (prompt 3).

This inter-dependency is characterised by the rela-
tions between the presence or absence of ECs and
neutral or non-neutral valence. Namely, the pres-
ence of ECs in a FU implies a non-neutral valence,
while neutral valence for a FU implies the absence
of ECs. Moreover, the polarity of the valence might
be related to the presence of domain-specific ECs.
For instance, the ECs “the office” or “boss” might
appear more frequently with a negative valence as
opposed to “vacation” or “children”.

We investigate the contribution of this inter-
dependency in the prediction of the valence and
the related ECs in a Multi-Task Learning (MTL)
approach. MTL is to train a single model on mul-
tiple related tasks to achieve inductive transfer be-
tween the tasks, which is to leverage additional
information sources while learning the current task.
Inductive transfer enhances generalisation by intro-
ducing an additional source of inductive bias used
by the learner to prefer a hypothesis over the other
hypothesis (Caruana, 1998). We experiment with

two MTL approaches i.e. joint and two-step pre-
diction. While in the joint approach, the labels of
the valence and EC prediction tasks are predicted
simultaneously, in the two-step approach, the pre-
diction of one label is used as the context for the
prediction of the other task.

We investigate whether this inter-dependency
can be learned by Pre-trained Language Models
(PLM). PLMs have prevailed over the other deep
neural models in sentiment analysis (Mao et al.,
2021; Roccabruna et al., 2022), and they have been
effectively used as a backbone of MTL architec-
tures achieving state-of-the-art performance in in-
tent classification and slot filling (Chen et al., 2019;
Qin et al., 2020), dialogue state tracking (Hosseini-
Asl et al., 2020; Su et al., 2021) and aspect-based
sentiment analysis (Mao et al., 2021; Jing et al.,
2021).

We experiment with discriminative AlBERTo
(BERT) as well as generative GePpeTto (GPT-2)
models. In particular, for the discriminative model,
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we combine the two architectural solutions for va-
lence and EC prediction tasks proposed by Mousavi
et al. (2022). While for the generative model, we
design two prompts for valence and EC prediction
and one prompt for the two-step prediction setting.
In these experiments, we evaluate both models for
each MTL setting, where the baseline is the perfor-
mance of the model fine-tuned on every task sepa-
rately. Moreover, we compute the upper bound in
the two-step prediction setting by replacing the first
prediction with the ground truth. This upper bound
also represents the level of inter-dependency be-
tween the two tasks. In this work, we use a corpus
of PNs in Italian with valence and ECs annotated
at the functional unit level.

The contributions of this paper can be summa-
rized as follows:

• We study the inter-dependency of the valence
and related Emotion Carriers in the corre-
sponding prediction tasks;

• We fine-tune two PLMs and experiment with
multi-task learning settings for valence and
Emotion Carrier predictions;

• We evaluate and compare the performance of
discriminative and generative models in the
task of valence and Emotion Carrier predic-
tion.

2 Related Works

Valence & Sentiment Analysis The values of va-
lence have been studied both in a continuous space
(Ong et al., 2019; Kossaifi et al., 2017), and dis-
crete space with a Likert scale (Tammewar et al.,
2022; Mousavi et al., 2022), ranging from nega-
tive (unpleasant) to positive (pleasant). Using the
discrete approach, valence can be assessed with
different levels of granularity as the narrative level
and functional unit level. A Functional Unit (FU)
is the minimal span of text expressing a dialogue
act (Bunt et al., 2012; Roccabruna et al., 2020).
Narrative-level valence analysis provides a general
yet flat perspective of the narrators’ emotional state
(Schuller et al., 2018), meanwhile, the sentence-
level and FU-level analysis provide a detailed per-
spective as it highlights the variations and fluc-
tuations of the valence throughout the narrative
(Mousavi et al., 2022).

A common practice in developing models for
emotion analysis is to model valence analysis as

sentiment analysis by mapping the valence values
into three sentiment classes, i.e. positive, nega-
tive, and neutral (Roccabruna et al., 2022; Mousavi
et al., 2022). However, valence differs from senti-
ment as the latter identifies the polarity of attitudes
or beliefs, such as hating or liking, towards a per-
son (e.g. a politician) or an object (e.g. product or a
movie) (Scherer et al., 2000). Meanwhile, valence
represents the level of emotions in such as anger
or happiness.

Emotion Carrier and Valence: Emotion carri-
ers are closely related to emotional valence as they
explain the valence. Mousavi et al. (2022) stud-
ied the correlation between the sequence tokens
and the predicted valence (sentiment). The authors
observed that the model focuses more on emotion-
laden words (explicit), whereas humans identify
the emotion carriers to explain the valence.

Multi-task Learning: Multi-Task Learning
(MTL) has been used for affective computing in
aspect-based sentiment analysis (Schmitt et al.,
2018; Mao et al., 2021; Jing et al., 2021), and emo-
tion classification and emotion cause extraction
(Turcan et al., 2021). MTL has been studied using
discriminative models (BERT) for entity-relation
extraction(Xue et al., 2019), as well as genera-
tive models (GPT-2) for task-oriented dialogues
(Hosseini-Asl et al., 2020), dialogue state track-
ing (Zhao et al., 2021), and task-oriented response
generation (Su et al., 2022).

3 Approach

The inter-dependency of the valence and ECs re-
sults in the co-occurrence of both elements in the
same utterance as the valence represents the level
of emotion and the ECs are expressions through
which the emotion is conveyed. In other words, the
neutral valence of an utterance implies the absence
of ECs, while the presence of ECs indicates a va-
lence polarity for the same utterance. Furthermore,
the ECs in an utterance can provide insights into
the polarity of the utterance valence since certain
ECs are more often associated with negative emo-
tions (such as deadline) or positive ones (such as
graduation).

We investigate the natural inter-dependency of
valence and ECs via the MTL approach, which al-
lows the models to leverage additional information
learned from other tasks while learning the current
task, improving the generalization. We experiment
with joint training, where the two labels of valence
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Positive Negative Intersection
“perfume” “to tackle” “work”

“vacations” “administration” “home”
“yoga” “dentist” “lunch”

“a stroll” “be late” “today”
“freedom” “charged with” “feeling”

Table 1: Examples of Emotion Carriers (EC) in positive
and negative functional units of the dataset used (En-
glish translations). “Intersection” consists of the ECs
that are present in both positive and negative FUs.

and ECs are predicted simultaneously, and two-
step prediction, where one of the labels is predicted
and used by the model to condition and guide the
prediction of the second label.

3.1 Dataset

We use a corpus of written PNs collected and anno-
tated by Mousavi et al. (2022). The dataset consists
of 481 narratives from 45 subjects, who were em-
ployees with stress, with valence and EC annota-
tions at the Functional Unit (FU). Out of 4273 FUs
in the narratives, 40% are annotated by polarity
(13% positive and 27% negative) and the related
ECs, while the rest are annotated as neutral and
do not contain any EC. Considering both neutral
and non-neutral FUs, 18.5% of the span candidates
are annotated as ECs (over 10763 span candidates).
While the number of ECs considering only non-
neutral FUs is 44.7% over 4452 span candidates.
We use the official splits of the dataset, provided by
the authors, consisting of train (80%), validation
(10%) and test (10%) set, stratified on the polarity
distribution.

To measure the number of ECs specific for a
valence polarity, we started by computing the inter-
section of ECs set annotated in FUs with positive
and negative valence. We observed that only 4%
of the ECs (14.8% from the positive and 6% from
the negative sets) are present in FUs with both po-
larities and can convey both positive and negative
emotions. That is, the majority of ECs (the remain-
ing 94%) are indicators and carriers of only one
valence polarity. Table 1 presents a representative
sample of the ECs extracted from the three sets.

3.2 Multi-Task Learning

We experiment with Multi-Task Learning (MTL)
approach to exploit the dependency between the
valence and EC prediction tasks. We compare the
performance of the models for EC and valence

predictions as task-specific models, as well as two-
step and joint-prediction models, and evaluate the
performance.

Single-Task Prediction In the single-task pre-
diction, the models are trained and optimized for
each task separately. This modality is a baseline to
compare model performance in other MTL settings
such as two-step and joint prediction.

Two-step Prediction Inspired by Kulhánek et al.
(2021) and Hosseini-Asl et al. (2020), we experi-
ment with the two-step prediction setting. In this
setting, the model predicts the discrete label for
the first task as the first step, and as the second
step, this prediction is concatenated to the input
sequence following a prompt structure to predict
the label for the second task via the same model.
Afterwards, the loss values of the two tasks are
summed or aggregated with a linear interpolation
before back-propagating it. In this setting, we ex-
periment with alternating the order for the two tasks
(Valence→ EC, vs. EC→ Valence).

The motivations behind this setting are that 1)
the contribution of one task over the other task is
explicit, enhancing the understanding of the inter-
dependency between the two tasks; 2) this approach
can potentially reduce the gap in the performance
between two interdependent tasks by conditioning
the prediction of the second task with the prediction
of the first task. In this, the best-performing task is
placed in the first step. To provide evidence of this,
we experimented by replacing the first step with an
oracle providing the ground truth.

The two-step setting is similar to the pipeline
setting (Zhang and Weiss, 2016) and Stack-
Propagation framework (Zhang and Weiss, 2016;
Qin et al., 2019). The two-step prediction is simi-
lar to the pipeline setting because the discrete out-
put of a task is explicitly used in the prediction
of another task, but in the pipeline setting, two
different models are utilised instead of one. More-
over, the two-step prediction is close to the Stack-
Propagation framework as the back-propagation
of the loss updates the weights of the model used
to predict the first task as well as the second task.
However, the label guiding the model’s prediction
of the second task is not differentiable as in the
Stack-Propagation.

Joint Prediction The joint prediction setting
is commonly used in MTL (Cerisara et al., 2018;
Jing et al., 2021) where a single model predicts
labels for the different tasks simultaneously. Thus,
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the prediction of one task does not explicitly con-
tribute to the prediction of another task. The loss is
computed and back-propagated as in the two-step
prediction approach.

4 Models

We experiment with discriminative (BERT) and
generative (GPT-2) models and investigate the per-
formance of the two models for the joint and two-
step prediction of valence and ECs. The joint and
two-step prediction settings along with the two ar-
chitectures are depicted in Figure 2. All the hy-
perparameters and model settings are reported in
Appendix 8 to achieve the reproducibility of the
results.

4.1 Prediction tasks

In the discriminative model, we formalize
the valence and Emotion Carrier prediction
tasks as text classification tasks by following
the formalization of Mousavi et al. (2022).
The valence prediction task is formally de-
fined as calculating the probability for a given
functional unit as p(valYi|FUi), where label
valYi ∈ {positive, negative, neutral} and
FUi = {w1, w2, .., wn} as a sequence i tokens w.
Meanwhile, the EC prediction task is to predict for
each EC candidate span, which is an automatically
extracted verb or noun chunk, in a FU if it is an
EC or not. That is p(ecYj |EC-candidatej , FUi)
where the FU provides context information for the
prediction, EC-candidatej = {wk, .., wl} ∈ FU
and ecYj ∈ {yes, no}.

In the generative model, inspired by (Hosseini-
Asl et al., 2020), we model the two tasks as causal
language modelling tasks, in which the model
is tasked to learn the joint probability over a se-
quence. For valence prediction, the sequence
used to train the model is formally defined as
xi = [FUi; valYi], i.e. the concatenation of
FUi and valYi, where the functional unit FUi

is the context for the model in the prediction of
valYi ∈ {positive, negative, neutral}. While
the training sequence for the EC prediction task
is xi = [FUi;EC-candidatei; ecYi] where FUi

is the functional, EC-candidatei is the complete
list of the EC-candidate spans of FUi, and ecYi is
the list of the EC decision labels, i.e. {yes, no},
corresponding to the list EC-candidate span. In
this sequence, both FUi and EC-candidatei is
the context for the model in the prediction of ecYi.

4.2 Discriminative

Discriminative models based on PLMs have been
effectively used for text classification tasks (Lei
et al., 2019), however, such models may need ad-
ditional architectural components, such as condi-
tional random fields and/or additional feed-forward
layers (Shang et al., 2021), to tackle a specific task.

Architecture Our discriminative model is based
on the same architectural components for valence
and EC predictions proposed by Mousavi et al.
(2022). This architecture is composed of a PLM
and a set of feed-forward layers used to make the
prediction. The PLM is based on AlBERTo which
is BERT-based with 110M parameters pre-trained
on a corpus in the Italian language collected from
Twitter (Polignano et al., 2019). The PLM takes as
input a FU with special tokens [CLS] and [SEP],
added at the head and the tail of the FU, and re-
turns a sequence of hidden states. The valence is
predicted from the hidden state of the [CLS] token
by first applying a feed-forward layer with softmax
to compute the probabilities over the classes of the
valence (positive, negative and neutral). For the
EC prediction, an EC-candidate span is represented
by a set of hidden states corresponding to the to-
kens of the span. Furthermore, the hidden state
of the [CLS] token is concatenated to the hidden
states of the EC span to give context information
contained in the FU. These hidden states are passed
through a max-pooling layer, to get the vector rep-
resentation of the EC candidate, and a feed-forward
layer with softmax to yield the prediction on the
two classes (yes and no).

Joint Regarding the join prediction setting, as
depicted in Figure 2 part A), the valence and ECs
are predicted in one step. In this, the shared part
of the model between the two tasks is the PLM
AlBERTo only.

Two-step The model in the two-step prediction
setting, Figure 2 part B), has the same shared parts
of the joint model, but the prediction of valence
and ECs are done in two steps. The prediction
of the first task is computed on a FU, while the
prediction for the second task is computed on the
concatenation of the FU with the label predicted
in the first task. The prompt that concatenates the
prediction when the first task is valence prediction
is:

FUi = {w1, w2, .., wn}

FUi ⊕ valence:⊕ Predictioni
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where i is a functional unit of the dataset, ⊕ is
the concatenation by white space, valence: is plain
text, Predictioni = (0|1|2), and {0, 1, 2} are the
labels negative, positive and neutral respectively.
When the first task is EC prediction the prompt is

ECj = {wk, .., wl} ∈ FUi

FUi ⊕ EC:⊕ {EC1, .., ECN}
where EC: is plain text, and {EC1, .., ECN}

is the list of EC spans of the detected ECs in the
FUi. Furthermore, to reduce the training time and
stabilise the performance, we experiment with the
teacher forcing technique (Lamb et al., 2016) that
substitutes the prediction of the first task with the
ground truth with a certain probability (to be se-
lected as a hyperparameter).

Loss function In both joint and two-step predic-
tion settings, the loss function is the cross entropy
and the loss values of the two tasks are combined
with a linear interpolation:

losstotal = λ ∗ (lossvalence) + (1− λ) ∗ lossEC

where λ is a hyperparameter with a range from 0
to 1.

4.3 Generative
We used GePpeTto (De Mattei et al., 2020) an
auto-regressive model based on GPT-2 architecture
which is pre-trained for the Italian language with
117M parameters. For valence, EC and two-step
predictions, we have designed three prompts by
following the formalization of the two tasks.

Prompt design The prompt for valence predic-
tion is composed of two segments, where the first
segment is the FUi and the second segment is the
valence label valYi to predict preceded by a spe-
cial token. This prompt is depicted in Figure 2
part C) prompt 1, where Target = (0|1|2) indi-
cating negative, positive and neutral respectively.
The prompt used for EC prediction is organised
into three segments: a) FUi; b) EC-candidatei
spans separated by a special token and; c) the list
of labels corresponding to each EC candidate ecYi
separated by another different special token. This
prompt is shown in Figure 2 part C) prompt 2 where
Target = (y|n). A difference with the discrimi-
native model is that in EC prediction the predicted
label of one EC candidate is used as context to pre-
dict the next EC candidates due to the fact that the
model is auto-regressive.

Joint In the joint prediction setting, we fine-tune
a single model on valence and EC predictions using
the two corresponding distinct prompts appearing
in the same training batch. Thus, the prediction of
one task does not occur in the context of the other
task.

Two-step For the two-step prediction, we de-
signed a specific prompt by combining the prompts
for valence and EC predictions, which is composed
of the 4 segments: a) FUi, b) EC-candidatei
spans, c) valence valYi and d) ECs ecYi targets,
Figure 2 part C) prompt 3. The first two segments
are the FUi and EC-candidatei. The other two
segments are the target labels of the valence and EC
predictions tasks. Thus, in the first step, the model
predicts, based on FUi and EC-candidatei, the
labels of the first task that are used as context in the
second step to predict the other task. Moreover, al-
ternating the order of the last two segments results
in two prediction settings Valence→ EC and EC
→ Valence.

Generation strategy At inference time, the gen-
eration of the target is guided by forcing the special
tokens, i.e. they are not predicted by the model,
into the generated sequence and limiting the possi-
ble output labels by considering the probabilities
of the tokens in our searching space i.e. {0, 1, 2}
for valence prediction and {y, n} for the EC pre-
diction. Moreover, for the EC prediction task, we
force the same number of special tokens of the EC
candidates to get one output label for each EC can-
didate, relieving the model from the complexity of
counting the EC candidates.

Loss function The generative model is trained as
a language model, i.e. the model is tasked to predict
the next most probable word given a sequence of
words. In this, the loss function is the cross entropy
with the objective of minimizing the perplexity on
the training set.

5 Experiments

Table 2 presents the macro F1-score achieved by
AlBERTo and GePpeTto models with single-task,
two-step and joint prediction settings.

The results on valence prediction achieved via
the single-task discriminative model are on-par
with those reported by Mousavi et al. (2022), while
the results achieved on EC prediction are incompa-
rable with Mousavi et al. (2022) since our training
set consists of all FUs with the authors train the
models only using the FU with a valence polarity.
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Valence Prediction

Model Single Task Two-Step Joint
Val. → EC EC → Val. w. ground truth

AlBERTo 76.0 76.0 75.7 81.2 76.0
GePpeTto 77.1 74.7 65.1 86.5 75.6

+ domain adapt. - 77.0 70.6 - -

EC Prediction

AlBERTo 63.7 63.4 64.8 74.9 65.0
GePpeTto 57.8 58.3 58.2 65.4 59.5

+ domain adapt. - 59.5 60.7 - -

Table 2: The macro-F1 scores (average over 10 runs) in percentage of the Valence Prediction and Emotion Carrier
(EC) Prediction tasks. The scores are achieved using discriminative (AlBERTo) and generative (GePpeTto) PLMs
with single-task, two-step and joint prediction settings. Single task and two-step with (w.) ground truth are
respectively the baseline and the upper-bound for the joint and the two-step settings.

Regarding the single task setting, we observe
that AlBERTo outperforms GePeTto for EC pre-
diction, while GePpeTto outperforms AlBERTo on
the valence prediction task.

Regarding the two-step prediction setting Val→
EC, we observe a slight worsening in the perfor-
mance of EC prediction for the AlBERTo model
and a drop in valence prediction score for the gen-
erative model compared to the single-task setting.
Nevertheless, domain adaptation improves the per-
formance to achieve close results on the valence
prediction and boosts the performance on EC pre-
diction. Domain adaptation is performed by ini-
tially fine-tuning only on the first task and fur-
ther fine-tuning on both tasks with the two-step
approach.

Regarding the reverse order of predictions, i.e.
EC→ Val., the models do not manage to outper-
form the single-task alternatives on valence pre-
diction, with the degradation being more signifi-
cant for the generative model. On the contrary, the
models exhibit a better performance for EC predic-
tion in the two-step setting compared to single-task
models, where GePpeTto with domain adoption
achieves its best performance in all settings.

Additionally, we have computed the upper bound
for the two-step prediction by substituting the pre-
diction of the first step with the corresponding
ground truth and fine-tuning the model only on
the second step. The results show a solid contribu-
tion of one task in predicting the other task by out-
performing the models in all the other prediction
settings. Furthermore, GePpeTto and AlBERTo
achieve the highest performance in valence predic-
tion and EC prediction respectively.

The results of the discriminative model in the

joint prediction setting are on par and better than
the other two settings for valence and EC predic-
tions, respectively. While the performance of the
generative model is worse than the two-step predic-
tion for both tasks, but slightly better than the sin-
gle task in EC prediction. In particular, AlBERTo
achieves the highest macro F1-score on the EC pre-
diction task compared to the other settings and the
generative model.

6 Discussion

The inter-dependency between valence prediction
and EC prediction tasks is quantified in terms of
performance by the upper bound computed by sub-
stituting the first step prediction with the ground
truth. We observe that the performance of both
tasks is enhanced. Furthermore, we observe that
the proposed MTL approaches, i.e. two-step and
joint prediction, are effective in exploiting such
inter-dependency. In particular, the two-step pre-
diction boosts the performance of the generative
model, while joint prediction improves the perfor-
mance of the discriminative model. Moreover, we
observe that these improvements affect mainly the
EC prediction task. This is because, compared to
valence prediction, the EC prediction task is objec-
tively more challenging for the models due to the
unbalanced distribution and the sparsity of the ECs
(some ECs are personal w.r.t the narrator). Thus,
the predictions of the EC tasks are too noisy to
be exploited by the models to improve the perfor-
mance of valence prediction. Indeed, the worst
performance for valence prediction is achieved by
both models in the two-step setting in which the
first task is the EC prediction (i.e. EC→ Val.).

Regarding the comparison between discrimina-
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tive and generative models, the best trade-off be-
tween valence and EC prediction tasks is achieved
by AlBERTo, although GePpeTto fine-tuned with
the single-task setting achieves the best perfor-
mance on valence prediction.

7 Conclusions

In this work, we studied the inter-dependency be-
tween valence and ECs in personal narratives. For
valence and EC prediction tasks, we compared task-
specific models with two MTL settings, namely
joint and two-step prediction. We experimented
with discriminative and generative PLMs. The
results indicate that PLMs fine-tuned with MTL
settings achieve improved performance by exploit-
ing the inter-dependency between valence and EC
prediction tasks. In particular, the two-step setting
is more effective for the generative model, while
the joint setting best fits the discriminative model.
Furthermore, the generative model outperforms
the discriminative model on the valence predic-
tion task, while the discriminative model achieves
better results on EC prediction and the best trade-
off between the valence and EC prediction tasks.
Consecutively, one discriminative model performs
the two tasks, reducing the demand for computa-
tional resources at training and inference time and,
therefore, lowering carbon emissions in the envi-
ronment.

8 Future works

In the two-step prediction setting, we have only
experimented with unidirectional inter-dependency
of the two tasks i.e. EC→ Val. and Val. → EC. A
possible future work is to design and experiment
with a neural network that bidirectionally exploits
the two predictions implementing the configura-
tion Val. ←→ EC. However, a larger dataset with
more narratives per narrator is needed as a positive
contribution of ECs to the Valence prediction task
is observed on with ground truth setting only due
to the fact that ECs are sparse in the corpus and
specific w.r.t the narrators.

Limitations

The dataset used in this work is in Italian and the
PLMs are pre-trained for the Italian language. The
performance of the models and the results may be
influenced by language-specific properties.

To reduce the ECs sparsity and, therefore, bet-
ter modelling the inter-dependency between EC

and Valence prediction tasks, particularly in the
experiments EC→ Val., a larger dataset with more
narratives per narrator is needed.
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Model Parameter Single Task Two-Step Joint
Valence Pred. EC Pred. Val. → EC EC → Val.

AlBERTo Learning Rate 5e-5 4e-5 4e-5 6e-5 1e-5
AlBERTo λ - - 0.5 0.4 0.3
GePpeTto Learning Rate 9e-3 8e-3 9e-4 7e-4 8e-3

Table 3: List of hyperparameters used to fine-tune the two models.

Appendix

A Hyperparameters
The special tokens used in the prompts, <val>, <cand> and <EC_pred>, are added to the vocabulary
of the model. Moreover, we encoded valence textual labels with numbers because they are language-
independent and perform better than additional special tokens.

We used AdamW (Loshchilov and Hutter) as an optimization algorithm to fine-tune the discriminative
and generative models. To stabilise the performance while fine-tuning, we used a linear warm-up scheduler
on the learning rate with the warm-up steps set at 10% of the total training steps (Mosbach et al., 2021).
We used the library Optuna optimizer (Akiba et al., 2019) to search for the best hyperparameter for
each setting (single prediction, joint prediction and two-step prediction) and models (discriminative and
generative). The complete list of learning rates is presented in Table 3. The learning rates used in the
two-step with ground truth are the same as Val. → EC when the first step is valence prediction and EC
→ Val. when the first task is EC prediction. Moreover, we used a batch size of 32 for both models, 30
epochs for AlBERTo and 60 epochs for GePpeTto and, early stopping with patience set to 5 epochs. In
the two-step experiments, we used a teacher forcing probability of 1.0 in Val. → EC and 0.1 in EC→ Val.
. We trained our models using one single 3090Ti GPU.
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