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Abstract

Recent advances in the development of large
Pretrained Language Models, such as GPT,
BERT and Bloom, have achieved remarkable
performance on a wide range of different NLP
tasks. However, when used for text generation
tasks, these models still have limitations when
it comes to controlling the content and style of
the generated text, often producing content that
is incorrect, irrelevant, or inappropriate in the
context of a given task. In this survey paper,
we explore methods for controllable text gen-
eration with a focus on sentiment control. We
systematically collect papers from the ACL An-
thology, create a categorisation scheme based
on different control techniques and controlled
attributes, and use the scheme to categorise
and compare methods. The result is a detailed
and comprehensive overview of state-of-the-art
techniques for sentiment-controlled text gen-
eration categorised on the basis of how the
control is implemented and what attributes are
controlled and providing a clear idea of their
relative strengths and weaknesses. 1

1 Introduction

In recent years, there has been a surge of interest in
developing algorithms and models for Controllable
Text Generation (CTG). This research field aims to
enable users to generate text with specific attributes,
controlling e.g. the text’s sentiment, topic, or level
of formality. In this survey paper, we focus on state-
of-the-art CTG techniques that control sentiment.
We provide a comprehensive overview of the exist-
ing literature and categorise approaches based on
their implementation of control, and which specific
attributes they control.

Our main contributions are as follows:

• We propose a categorisation scheme for
Sentiment-Controlled Text Generation spec-

1The categorised list of papers can be found in our
GitHub repository https://github.com/DCU-NLG/
sentimentCTG-survey

Figure 1: Paper selection process from ACL Anthology
to which we added 1 paper (see in text).

ifying control attributes and how control is
implemented.

• We analyse state-of-the-art techniques for Sen-
timent Control, and categorise each technique
using the proposed categorisation scheme.

• We compare the selected papers in terms of
performance, efficiency and generality.

The paper is structured as follows. Section 2 sum-
marises two previous related survey papers, while
Section 3 outlines the scope of the present survey,
the method we used for systematic paper selec-
tion, and some high-level statistics for the selected
papers. The proposed categorisation scheme is de-
scribed in Section 4, consisting of (i) different types
of controlled attributes (Section 4.1), and (ii) dif-
ferent types of control implementation techniques
(Section 4.2). Section 5 describes the CTG tech-
niques from the surveyed papers in terms of the cat-
egorisation scheme, including which attributes are
controlled. Section 6 compares the different tech-
niques in terms of their generality, performance,
and efficiency. We conclude with suggested future
directions (Section 7), some discussion (Section 8)
and final remarks (Section 9).
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2 Related Research

Prabhumoye et al. (2020) propose a schema of the
language generation pipeline based on five compo-
nents that control the generation process: external
input, sequential input, generator operations, out-
put, and training objective. They argue that control
of specific attributes requires modification of these
five components, and present an overview of exist-
ing control techniques in terms of which compo-
nent different techniques use to exert the control.
The work focuses on how the proposed schema can
be applied to enable control of text generation with
a particular focus on autoregressive models.

As part of a general introduction and overview
of techniques in pretrained language model (PLM)
based CTG and evaluation methods, Zhang et al.
(2022) propose a set of control conditions (se-
mantic, structural, lexical), and broadly group to-
gether methods for CTG into finetuning, retrain-
ing/refactoring, and postprocessing. The work ad-
dresses only Transformer-based PLMs, and distin-
guishes seven subtypes of methods, based on how
the control signal works with the PLM.

In this survey, we consider all types of methods
that have been used for sentiment-controlled Text
Generation, not just Transformer-based PLMs, and
we conduct a systematic paper selection process.
We provide a categorisation scheme based on Con-
trol Attribute Types and Control Implementation
Techniques that we use to characterise and compare
the selected methods. Finally, we provide compar-
isons in terms of performance and efficiency.

3 Survey Scope and Paper Selection

This paper aims to fill a gap in the current literature
by surveying recent models applied to Controllable
Text Generation (CTG) with a specific focus on sen-
timent control. Furthermore, we propose a categori-
sation of the selected papers based on controlled
attributes, and how the control is implemented.

We conducted an otherwise unrestricted search
on the ACL Anthology using the keywords “con-
trollable text generation,” “controlled text genera-
tion” and “controlling text generation,” as shown
in Figure 1. After removing duplicates, authors’
profiles, and non-paper resources, we obtained 270
papers. From this original pool, we discard pa-
pers that are not strictly related to CTG, such as
papers that mention CTG but do not explore the
task. Next we only retain papers which present
a new model or control method, discarding those

2019
1
5%

2020
4

21%

2021
3

16%

2022
11
58%

Figure 2: Distribution of selected papers across years.2

that e.g. only present a new dataset or perform a
comparative study. After filtering, we are left with
88 papers from which for the present survey we
select all papers implementing sentiment control,
thus giving us 18 papers. We add one more rele-
vant paper (Dathathri et al., 2019) not present in
the ACL Anthology that was cited in our pool of
papers. Table 1 lists the resulting 19 papers in the
left-most column.

The 19 papers span the period 2019 (1 paper),
2020 (4 papers), 2021 (3 papers), and 2022 (11
papers), illustrating the rapidly growing interest
in this topic, as shown in Figure 2 . Papers re-
port work using Complete Training techniques (3
papers), Model Fine-Tuning (3), Disentanglement
(1), Modification of Token Distribution (6), and Hy-
brid techniques (6). In 10 of the papers, multiple
attributes are controlled simultaneously, whereas in
9, single attributes are controlled one at a time. 14
papers are designed for free text generation (rather
than a specific task), 2 methods are for Story Gen-
eration, 2 for Conversational Agents, and one for
Topic to Essay Generation. We return to proper-
ties of techniques in more detail in Section 6 and
Table 1.

4 Categorisation Scheme

We collect all selected papers and annotate them
based on different aspects, such as control attributes
addressed and architecture used to solve the control
problem with a specific focus on how the control
is implemented and embedded in the proposed ar-
chitecture. Using the collected information, we
cluster control attributes and models to create a cat-
egorisation scheme for Sentiment-Controlled Text
Generation in which we specify types of controlled
attributes and types of control implementation. The
created categorisation scheme will be used to cate-

2The proposed scheme is specific for Sentiment-Controlled
Text Generation, but we are currently working on a general
scheme for CTG.
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Figure 3: Categorisation of Sentiment-Controlled Text Generation methods3 considering Control Attributes Types
(left) and Control Implementation Techniques (right).2

gorise and describe the studied papers.

4.1 Types of controlled attributes

Sentiment-Controlled Text Generation methods
control different attributes, such as sentiment, set
of words, and topics. In order to help gain insights
into different control attributes currently in use and
how they are controlled and combined in different
methods, we distinguish three Control Attribute
Types (Figure 3 left): Polarity Control, Content
Control, and Syntactic Control.

Polarity Control covers attributes that control
whether otherwise similar content is expressed with
positive vs. negative judgment, toxic vs. neutral at-
titude, different political stance, or one of several
competing perspectives e.g. in sport. For example,
the negative sentence The office is poorly main-
tained and dirty at all times and the positive sen-
tence The office is well maintained and clean at all
times have a different polarity, but are otherwise
similar in content, i.e. both are about cleaning and
maintenance of an office. In the 19 papers in our
survey, we encountered two attribute of this type:
Sentiment and Toxicity.

Content Control attributes control the core con-
tent of a text. For example, the set of words {burger,
good, fries} may be used to enforce presence of
these words in the output sentence, e.g.: The burger
was very good and the fries are excellent. In our
19 papers we encountered 4 attriibutes of this type:
Topic, Action, Character, Need.

Syntactic Control attributes control the struc-
ture, syntax, and grammar of the output sentence.
For example, we can give the model a syntactic
template (S (S) (,) (CC) (S) ) to generate the final

3The colours have been tested with Adobe Color Accessi-
bility Tools Color Blind Safe.

text the film is a visual treat, but almost unsur-
passed. (Yang et al., 2021). In our 19 papers, there
was just one attribute of this type: Tense.

A system can in principle simultaneously control
multiple attributes of the same or different types,
thus enabling more fine-grained control. Table 1
lists the seven control attribute types encountered
in the 19 papers in our survey, and which paper im-
plements control over which attribute, in column 5.

4.2 Types of control implementation

We categorise controllable text generation tech-
niques based on how they implement the control,
as shown in Figure 3, right half, distinguishing four
types: Complete Training, Model Fine-Tuning, Dis-
entanglement, Modification of Token Distribution,
and Hybrid.

Complete Training techniques train new mod-
els from scratch in order to obtain specialised mod-
els specifically trained for a Controllable Text Gen-
eration task. Model Fine-Tuning techniques use
a pre-trained model which is fine-tuned to adapt it
to the new task including control attributes. Disen-
tanglement techniques extract a representation of
the control attributes which is applied to steer text
generation toward the specified attributes. Modifi-
cation of Token Distribution techniques modify
the token distribution of a pre-trained model in or-
der to steer text generation. Hybrid techniques
include two or more types of the above control
implementation techniques.

Table 1 shows the control implementation type(s)
addressed by each of the 19 papers in our survey in
column 4.
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Work Model Task Control Control Attributes Sentiment
S T To A C Te N Datasets

Complete Training
Qiao et al. (2020) CVAE TEG Multiple ✓ ✓ ZHIHU (Feng et al., 2018)
Betti et al. (2020) GAN FT Single ✓ ✓ Movie Reviews (Socher et al.,

2013), Customer Reviews (Hu
and Liu, 2004)

Xie et al. (2022) Enc-Dec SG Multiple ✓ ✓ ✓ Story Commonsense
Model Fine-Tuning

Qian et al. (2022) GPT-2 FT Multiple ✓ ✓ ✓ PPLM Prompts
Gu et al. (2022b) BERT FT Multiple ✓ ✓ ✓ PPLM Prompts
Fang et al. (2022) MA FT Multiple ✓ ✓ ✓ Yelp

Disentanglement
Yu et al. (2021) GPT-2 FT Multiple ✓ ✓ PPLM Prompts

Modification of Token Distribution
Dathathri et al. (2019) MA FT Multiple ✓ ✓ PPLM Prompts
Madotto et al. (2020) MA CA Single ✓ ✓ (Adiwardana et al., 2020)

prompts
Goswamy et al. (2020) GPT-2 FT Multiple ✓ ✓ -
Kumar et al. (2022) MA FT Single ✓ ✓ PPLM Prompts
Gu et al. (2022a) MA FT Single ✓ ✓ ✓ PPLM Prompts
Landsman et al. (2022) MA FT Single ✓ OpenWebText Corpus Prompts

Hybrid
Wang et al. (2022) BART SG Multiple ✓ ✓ ✓ ROCStory (Rashkin et al., 2018)
Tian et al. (2022) Enc-Dec CA Single ✓ weibo.com (Shang et al., 2015)
Liu et al. (2021) GPT-2 FT Single ✓ ✓ OpenWebText Corpus Prompts
Zhang and Song (2022) GPT-2 FT Single ✓ ✓ OpenWebText Corpus Prompts
Krause et al. (2021) MA FT Single ✓ ✓ ✓ Bookcorpus (Zhu et al., 2015)
Liu et al. (2022) GPT-2 FT Multiple ✓ ✓ IMDb, OpeNER (Agerri et al.,

2013), SenTube (Uryupina et al.,
2014)

Table 1: Overview of methods for Sentiment Control in Text Generation. Models: MA=Model Agnostic. Tasks:
SG=Story Generation, TEG=Topic to Essay Generation, FT=Free Text, CA=Conversational Agent. Control
Attributes: S=Sentiment, T=Topic, To=Toxicity, A=Action, C=Character, Te=Tense, N=Need.

5 Characterisation of CTG Techniques

Table 1 provides an overview of the 19 papers we
survey (listed in column 1), in terms of the con-
trol implementation technique used (headings in-
serted into the rows), the type of model used (col-
umn 2), the NLP task implemented by the model
(column 3), the attributes controlled by the tech-
nique (column 5), whether a single or multiple
attributes are controlled at a time (column 4), and
finally the datasets used in training (column 6).

In the remainder of this section, we summarise
each of the 19 papers in our survey in more detail,
grouped together in terms of the control implemen-
tation technique used.

5.1 Complete Training

Betti et al. (2020) propose a text GAN composed of
one generator and two discriminators. The genera-
tor is a Relational Memory with self-attention (San-
toro et al., 2018) with the objective to generate text

consistent with the specified control attribute. The
syntax discriminator distinguishes between real and
generated sentences, while the semantic discrimi-
nator assesses whether the generated sentence ex-
presses the control attribute, e.g. positive sentiment.
To solve the well-known problem of differentiation
in GANs applied to text, the Gumbel-softmax trick
(Jang et al., 2016) is applied. This approach en-
ables control only for one attribute at a time and it
has been evaluated on sentiment and topic control.

In order to enable multi-attribute control, Qiao
et al. (2020) propose a Sentiment-Controllable
topic-to-essay generator that deploys a Conditional
Variational Auto-Encoder in adversarial training.
The model simultaneously controls the topics of
the essay and the sentiment of each sentence com-
posing the essay. The topic control is achieved
using a Topic Graph Attention, which includes a
topic knowledge graph in the generation process.
Sentiment control is achieved by injecting the sen-
timent representation both in the encoder and the
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decoder.
In a different direction, Xie et al. (2022) pro-

pose a psychology-guided story generation method
that controls storytelling as the protagonist’s psy-
chological state changes. This technique enables
multi-attribute control considering the protagonist
of the story (Character), their chain of emotions
(Emotion), and chain of needs (Need) representing
the evolution of the psychological state of the pro-
tagonist. The model is an encoder-decoder archi-
tecture with the addition of psychology controllers
designed to integrate the local and global psycho-
logical state into the story context representation.

5.2 Model Fine-Tuning
Model Fine-Tuning can be achieved in many ways.
One way is to focus on prefix tuning, i.e. fine-
tuning a model to extract continuous attribute-
specific vectors that will be prepended to the acti-
vations of the pre-trained model to steer text gen-
eration. E.g., Qian et al. (2022) fine-tune GPT-2
(Radford et al., 2019) to obtain prefixes, but they
use the contrast between prefixes, for example, pos-
itive vs negative sentiment, to encourage the de-
sired attribute and discourage the opposite attribute.
In this method, only the prefixes are trained and
GPT-2 weights are kept frozen.

Similarly, Gu et al. (2022b) fine-tune BERT (De-
vlin et al., 2019) to obtain prefixes. The idea is
to have an Autoencoder structure, i.e. the encoder-
decoder reconstructs the input sentence, to map
attribute-relevant sentences to latent representa-
tions of attributes. At inference time, the model
searches the attribute representation in the attribute
space and uses it as a prefix for the decoder. In
the case of multiple attributes the intersection of at-
tributes is taken as the prefix, instead of contrastive
prefixes (Qian et al., 2022). In this setting, the de-
coder is fixed, while the encoder is fine-tuned to
get the attribute representations.

Fang et al. (2022) further explore the usage of
Variational Autoencoders to learn a latent repre-
sentation of control attributes. The idea is to use
contrastive learning to separate the latent space into
several parts, thus obtaining learnable vectors asso-
ciated with a control attribute. At inference time,
all the vectors associated with the desired attribute
are extracted and combined with a Dirichlet distri-
bution to produce a latent variable, which is fed to
the decoder.

All three methods allow the control of multiple
attributes (sentiment and topic) at the same time.

The last supports control of the tense of the sen-
tences together with the other attributes.

5.3 Disentanglement
Yu et al. (2021) learn an alignment function to trans-
form the control attribute into an aligned attribute
representation. The Bayes rule is used to separate
attributes encouraging the alignment function to en-
code different attributes to different representations.
The aligned representation is given to a pre-trained
LM (PLM) to steer the generation toward the given
control attributes. This method enables control of
multiple attributes at the same time (sentiment and
topic).

5.4 Modification of Token Distribution
Dathathri et al. (2019) propose a Plug and Play Lan-
guage Model (PPLM) which uses external attribute
classifiers to guide text generation without requir-
ing any training of the PLM. The PLM is used
to obtain the next token distribution, which is fed
to external classifiers, called Attribute Models, to
assess whether the token correctly expresses the de-
sired attributes. The internal latent representations
of the LM are updated with a backward pass using
the gradients of the attribute models to increase
the likelihood of the desired attributes. Finally, the
next token distribution is recomputed taking into
account the updated latent representations. This
model allows control of multiple attributes at a
time, such as sentiment and topic.

Inspired by this work, Madotto et al. (2020) pro-
pose a variation of PPLMs in which the backward
pass is executed n times depending on the desired
intensity of the control attribute. Furthermore, they
add Residual Adapters (Houlsby et al., 2019) on
top of each transformer layer to steer the PLM out-
put distribution without changing its parameters.

Goswamy et al. (2020) propose a different vari-
ation of PPLMs based on GPT-2, in which a mod-
ified loss is considered to take into account the
intensity of the controlled sentiment. Furthermore,
instead of considering only positive/negative senti-
ment, control over 8 emotion categories is enabled.

Starting from PPLMs, Gu et al. (2022a) observe
that using a controller alone leads to the trade-off
problem, i.e. the controller used to modify the to-
ken distribution only focuses on how to make the
prefix related to the desired attribute without taking
into account the original distribution of the LM. In
this way, the controller takes over the LM’s control
for the next token distribution. In order to alleviate
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Model Control Attribute Relevance % Fluency ↓ Diversity ↑
Impl Overall Pos Pos Prob Ppl Dist-1 Dist-2 Dist-3 Avg

Yu et al. (2021) D - - 64.49 36.62 0.48 0.85 0.91 0.75
Qian et al. (2022) MFT - 83.3 - - - - - -
Gu et al. (2022b) MFT 86.7 - - 28.4 - - - 0.49
Dathathri et al. (2019) MTD 78.8 - - 46.6 0.36 0.77 0.91 0.68
Kumar et al. (2022) MTD - 96 - 28.9 0.53 0.77 0.74 0.68
Gu et al. (2022a) MTD - - 66.58 48.52 0.40 0.80 0.91 0.70

Table 2: Comparison of techniques evaluated using the PPLM prompts. Different models are used to compute
Attribute Relevance and Perplexity, making techniques comparison difficult. MTD=Modification of Token Distribu-
tion, MFT=Model Fine-Tuning, D=Disentanglement, Pos=Positive, Pos Prob=Positive probability, Ppl=Perplexity.

this problem, they propose a weighted decoding
method that adds a regulator module that permits
fine-grained adjustment of a bias signal from the
controller. At every step, the regulator detects dif-
ferences between the PLM distribution and the tar-
get attribute and it determines whether to suppress
or amplify the bias signal. This method is model
agnostic and has been evaluated with sentiment,
topic, and toxicity attributes.

The last two methods propose sampling proce-
dures that can be applied to any LM. Landsman
et al. (2022) propose to modify beam search by
reweighing the token candidate likelihoods to con-
trol different attributes. Diverse beam search (Vi-
jayakumar et al., 2016) is used to decode k can-
didates, which are then scored using an attribute
model. The obtained scores are used to reweigh the
original likelihoods to produce a reweighed can-
didate distribution that considers both fluency and
attribute characteristics. The resulting distribution
is used to sample the next token.

Lastly, Kumar et al. (2022) propose a sampling
method combining LM log-likelihoods with arbi-
trary constraints in a single energy function gener-
ating samples in a non-autoregressive manner. The
idea is to use a PLM without changing its distri-
bution but sampling from it considering different
constraints, i.e. control attributes. The constraints
are discriminative classifiers trained from scratch
or fine-tuned. This method allows multi-attribute
control (sentiment and toxicity).

5.5 Hybrid

Hybrid techniques combine two or more Control
Implementation techniques. One possibility is to
combine Complete Training and Fine-Tuning, for
example, designing a model composed of differ-
ent modules in which some modules are trained
from scratch and some are fine-tuned models. In
this context, Tian et al. (2022) propose a conversa-

tion model that generates empathetic responses and
guides the mood of the conversation in a positive
direction while acknowledging the user’s emotion.
The idea is to extract the sentiment from the conver-
sation context using a fine-tuned sentiment evalua-
tor and use both the context and the extracted senti-
ment to steer the generation of the next response by
generating a responding strategy that will be used
by the Conditional Conversation model to generate
the final response. The proposed method enables
only single-attribute control (of sentiment).

Another way to enable controllability using a
hybrid technique is to combine Fine-Tuning and
Modification of Token Distribution. Wang et al.
(2022) propose a technique to control Story Gen-
eration by fine-tuning an encoder that learns the
representation of new special tokens identifying
the control attributes, thus allowing the model to
properly include this information in the generation
process. The next token distribution is obtained by
combining the decoder distribution and the atten-
tion distribution, which allows the model to copy
important information from the specified control
attributes. The model allows fine-grained control
taking into account the characters of the story with
their actions and emotions.

In contrast to Wang et al. (2022) who learn the
representation of special tokens during fine-tuning,
Liu et al. (2021) propose to modify an LM’s to-
ken distribution including two fine-tuned versions
of the PLM: an expert, focused on the desired at-
tribute, and an anti-expert, focused on the opposite
of the desired attribute. The next token distribution
is obtained by subtracting the anti-expert distribu-
tion from the expert one and combining the result
with the distribution of the frozen PLM to maintain
fluency. This method enables the control only of
one control attribute at a time and it has been tested
on sentiment and toxicity attributes.

Similarly, Krause et al. (2021) propose to con-
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Target Model Control Positive AR % ↑ Fluency ↓ Diversity ↑
Sentiment Impl Pos Neutr Neg Ppl Dist-1 Dist-2 Dist-3

Positive
Landsman et al. (2022) MTD - 98.87 74.37 51.4 0.56 0.84 0.85
Zhang and Song (2022) H - 94.98 64.96 48.71 0.14 0.50 0.76
Liu et al. (2021) H - 94.46 36.42 45.83 0.56 0.83 0.83

Negative
Landsman et al. (2022) MTD 28.42 1.99 - 53.29 0.57 0.85 0.85
Zhang and Song (2022) H 31.24 6.36 - 45.60 0.12 0.48 0.77
Liu et al. (2021) H 35.99 3.77 - 45.91 0.60 0.84 0.83

Table 3: Comparison of techniques evaluated using the OpenWebText prompts. Different models are used to compute
Perplexity, making techniques comparison difficult. AR=Attribute Relevance, Ppl=Perplexity, Pos=Positive prompts,
Neutr=Neutral prompts, Neg=Negative prompts, MFD= modification of token Distribution, H=Hybrid.

trast the desired control attribute and its opposite.
Instead of fine-tuning specialised LMs for each at-
tribute, GPT-2 is fine-tuned with control codes to
obtain a Class-Conditional LM (CCLM). At each
time step, the generation is guided by computing
classification probabilities for all possible next to-
kens via the Bayes rule by normalizing two class-
conditional distributions: conditioned on the de-
sired attribute and conditioned on the undesired
attribute. Like the previous method, it allows the
control of one attribute at a time and has been evalu-
ated using sentiment, topic, and toxicity attributes.

Liu et al. (2022) also use a CCLM which is fine-
tuned using an external discriminator to generate
texts with the desired attributes, supporting multi-
attribute control. The token distribution is modified
based on a contrastive generator that learns effec-
tive representations by bringing together positive
samples, i.e. samples with desired attributes, and
separating negative samples, i.e. samples without
desired attributes. The obtained distribution is com-
bined with the distribution of a PLM to maintain
the fluency of the generated text. The generated
text is fed to the external discriminator to assess
whether it contains the desired attributes or not.
The model has been tested on the joint control of
sentiment and topic.

Zhang and Song (2022) explore the contrast
between desired and undesired attributes propos-
ing a fine-tuned LM incorporating the attribute
knowledge of a discriminator, similarly to Liu et al.
(2022), to optimize continuous virtual tokens called
control-prompts. The learned control-prompts are
used as prefixes to steer a fixed conditional LM to
generate attribute-specific texts. The LM is fine-
tuned using (i) likelihood training, encouraging the
LM to generate tokens with higher probability as
scored by the discriminator assessing the desired
attribute, and (ii) unlikelihood training, keeping
the generated tokens away from lower-probability

candidates.

6 Comparison of Different Techniques

In this Section, we compare the methods from the
last section in terms of performance, efficiency, and
generality.

6.1 Performance

In the performance comparison below, three quality
criteria from the CTG field are used, namely at-
tribute relevance, fluency, and diversity. Attribute
relevance (AR) (Yu et al., 2021) assesses the pro-
portion of texts correctly generated with the de-
sired sentiment, i.e. the accuracy of the sentiment
attribute measured using an external classifier. De-
tails of the external classifier depends on the evalu-
ation procedure, for more details refer to Appendix
A. In some cases, instead of reporting the accuracy,
the probability of the text being positive is reported
(Pos Prob). Fluency is calculated as the perplexity
of an external LM (Pichel Campos et al., 2018),
while diversity is measured as the proportion of
unique n-grams obtained using the Distinct metric
(Dist-n in Table 2) (Li et al., 2016). Since both AR
and fluency are calculated using an external com-
ponent, it is difficult to obtain a fair comparison
due to the usage of different models.

We consider the techniques that have been eval-
uated using the prompts used in the evaluation of
PPLM (Dathathri et al., 2019) and the prompts ex-
tracted from OpenWebText (Gokaslan and Cohen,
2019), as detailed below.

In Table 2, we compare 6 methods that have
been evaluated using the PPLM prompts, i.e. 15
prefixes used to start text generation. Perplexity
is calculated using three different models; as re-
gards attribute relevance, all the methods train or
fine-tune a different classifier (for details regarding
models see Appendix A.1). Performance results
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are not directly comparable for these two criteria
due to the usage of different models.

Diversity is the only metric for which we can
have a fair comparison and here we can see that the
technique proposed by Yu et al. (2021) manages to
have good variety in the generated texts, while also
maintaining good fluency.

Lastly, we compare three techniques evaluated
using the OpenWebText (OWT) prompts, com-
posed of neutral, positive, or negative prompts (Ta-
ble 3). Two different models have been used to
compute perplexity, while for the computation of
attribute relevance, all the techniques use the same
classifier. More details are in Appendix A.2.

In Table 3, we can see that the technique pro-
posed by Landsman et al. (2022) obtains the high-
est AR and Diversity in both positive and negative
target sentiment. This suggests that the proposed
technique is able to generate text in the correct sen-
timent using diverse tokens. The same classifier is
used to compute AR for every technique, allowing
a fair comparison between them. On the other hand,
different LMs are used to calculate Fluency, so it is
more difficult to decide whether the differences are
due to the model used during evaluation or due to
the proposed technique.

6.2 Generality and parameter efficiency

In terms of generality, some of the techniques we
have discussed are highly specialised and require
many modifications to adapt them to include more
or new control attributes. For example, the tech-
nique proposed by Xie et al. (2022) is specifically
designed to control emotions and needs represent-
ing the psychological state of the story’s protago-
nist. Other techniques require the training or fine-
tuning of specific models for each control attribute
(Liu et al., 2021).

In terms of efficiency, we see some techniques
that require the storage and usage of multiple LMs
(Liu et al., 2021). On the other hand, many tech-
niques are model agnostic, so they can be applied to
any PLM allowing reuse of existing models (Lands-
man et al., 2022 and Dathathri et al., 2019). In Ta-
ble 4, we compare the studied techniques in terms
of the number of trainable parameters. In Model
Agnostic techniques, we consider the number of
parameters considering the models used in the ref-
erence paper. Unfortunately, it is not possible for
all techniques to correctly identify the number of
parameters. In general, the modification of token

Model # trainable parameters
Complete Training

Qiao et al. (2020) 68M
Betti et al. (2020) 1 generator + 2 discriminators*
Xie et al. (2022) 280M + state trackers, planners*

Model Fine-Tuning
Qian et al. (2022) 491.520K/attribute
Gu et al. (2022b) 110M
Fang et al. (2022) 117M

Disentanglement
Yu et al. (2021) 2M

modification of token Distribution
Dathathri et al. (2019) ∼1K/attribute
Madotto et al. (2020) 5.175M
Goswamy et al. (2020) ∼1K/attribute
Kumar et al. (2022) 774M
Gu et al. (2022a) 0
Landsman et al. (2022) 0

Hybrid
Wang et al. (2022) 407M
Tian et al. (2022) 337M + Enc + Strategy gen*
Liu et al. (2021) 1548M/attribute
Zhang and Song (2022) 117M
Krause et al. (2021) 345M
Liu et al. (2022) External Discriminator*

Table 4: Comparison of studied techniques in terms of
the number of trainable parameters. More details in
Appendix B. *=total number of trainable parameters
unclear.

Distribution techniques have fewer trainable pa-
rameters than others. The techniques proposed by
Gu et al. (2022a) and Landsman et al. (2022) have
0 trainable parameters because they are sampling
procedures using a PLM without any training or
fine-tuning. More details regarding model parame-
ters in Appendix B.

7 Future direction and work

In this section, we summarise the future direction
and work described in the analysed papers. Overall,
we can identify two suggested directions: model
generalisation and fine-grained control.

Model generalisation. Different works suggest
to explore the generalisation of the proposed mod-
els to explore their capabilities across domains.
This can be achieved by introducing the usage of
more controlled attributes, such as writer’s style
and dialog acts (Betti et al., 2020, Yu et al., 2021
and Liu et al., 2022), and the usage of more tasks,
such as poetry generation, machine translation, and
intelligent education agents (Xie et al., 2022 and
Fang et al., 2022).

Fine-grained control. Some works also suggest

348



to explore the capabilities of the proposed meth-
ods to support fine-grained control. For example,
we can extend the methods to include control at-
tributes in the table-to-text scenario (Zhang and
Song, 2022) or explore correlation between differ-
ent attributes combination to enable fine-grained
control (Gu et al., 2022b).

8 Discussion

In this Section, we discuss issues and trends ob-
served in the studied techniques, which suggest
possible future directions for the field.

Lack of a standard evaluation procedure. We
observe that it is difficult to directly compare the
performance of models evaluated on the same
dataset using the same metrics, due to the usage of
different methods for the metrics’ evaluation. In
fact, considering the six methods evaluated with
PPLM prompts (Section 6.1), we observe that each
method has been evaluated using a different classi-
fier to calculate the AR metric. The usage of differ-
ent classifiers affects the final result of the metric,
thus requiring that every work recomputes all the
evaluations to have a fair comparison with previous
work. Furthermore, we observe that the papers use
different datasets for the evaluation, making the
comparison between papers even more difficult.

Lack of combination of different control at-
tribute types. We observe that it is mainly topic
and toxicity that are explored in combination with
sentiment. While topic is a Content Control at-
tribute, other content control attributes, such as
data or set of words, are not explored in combi-
nation with sentiment, suggesting that a possible
future direction is to investigate the combination
of such control attributes. Furthermore, we see
that Syntactic Control is not explored in combina-
tion with sentiment. Moreover, there are not many
combinations of different attributes in the same
category. For example, sentiment and toxicity (Po-
larity Control) are used together to enable multiple
control in just two papers (Qian et al., 2022; Gu
et al., 2022b)), but not many other attributes are
widely explored.

9 Conclusion

We have reported a systematic survey of Sentiment-
Control Text Generation techniques spanning the
years 2019–2022. We proposed a categorisation
scheme to analyse the studied papers based on the
control attributes used and on how the control is

implemented. We compared the papers based on
their performance, generality and efficiency. While
analysing the selected papers, we observed some
issues and trends, such as the lack of a standard
evaluation procedure and the lack of combinations
between different control attribute types.

Acknowledgements

This work was conducted with the financial sup-
port of the Science Foundation Ireland Centre for
Research Training in Digitally-Enhanced Reality
(d-real) under Grant No. 18/CRT/6224 and the Sci-
ence Foundation Ireland under Grant Agreement
No. 13/RC/2106_P2 at the ADAPT SFI Research
Centre at Dublin City University. For the purpose
of Open Access, the author has applied a CC BY
public copyright licence to any Author Accepted
Manuscript version arising from this submission.

References
Daniel Adiwardana, Minh-Thang Luong, David R So,

Jamie Hall, Noah Fiedel, Romal Thoppilan, Zi Yang,
Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu,
et al. 2020. Towards a human-like open-domain chat-
bot. arXiv preprint arXiv:2001.09977.

Rodrigo Agerri, Montse Cuadros, Sean Gaines, and
German Rigau. 2013. Opener: Open polarity en-
hanced named entity recognition. Procesamiento del
Lenguaje Natural, (51):215–218.

Federico Betti, Giorgia Ramponi, and Massimo Piccardi.
2020. Controlled text generation with adversarial
learning. In Proceedings of the 13th International
Conference on Natural Language Generation, pages
29–34, Dublin, Ireland. Association for Computa-
tional Linguistics.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2019. Plug and play language mod-
els: A simple approach to controlled text generation.
arXiv preprint arXiv:1912.02164.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Xianghong Fang, Jian Li, Lifeng Shang, Xin Jiang, Qun
Liu, and Dit-Yan Yeung. 2022. Controlled text gen-
eration using dictionary prior in variational autoen-
coders. In Findings of the Association for Computa-

349

https://aclanthology.org/2020.inlg-1.5
https://aclanthology.org/2020.inlg-1.5
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.findings-acl.10
https://doi.org/10.18653/v1/2022.findings-acl.10
https://doi.org/10.18653/v1/2022.findings-acl.10


tional Linguistics: ACL 2022, pages 97–111, Dublin,
Ireland. Association for Computational Linguistics.

Xiaocheng Feng, Ming Liu, Jiahao Liu, Bing Qin, Yibo
Sun, and Ting Liu. 2018. Topic-to-essay generation
with neural networks. In IJCAI, pages 4078–4084.

Aaron Gokaslan and Vanya Cohen. 2019. Openwebtext
corpus.

Tushar Goswamy, Ishika Singh, Ahsan Barkati, and
Ashutosh Modi. 2020. Adapting a language model
for controlled affective text generation. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 2787–2801, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Yuxuan Gu, Xiaocheng Feng, Sicheng Ma, Jiaming Wu,
Heng Gong, and Bing Qin. 2022a. Improving control-
lable text generation with position-aware weighted
decoding. In Findings of the Association for Com-
putational Linguistics: ACL 2022, pages 3449–3467,
Dublin, Ireland. Association for Computational Lin-
guistics.

Yuxuan Gu, Xiaocheng Feng, Sicheng Ma, Lingyuan
Zhang, Heng Gong, and Bing Qin. 2022b. A distri-
butional lens for multi-aspect controllable text gen-
eration. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 1023–1043, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Mark Heitmann, Christian Siebert, Jochen Hartmann,
and Christina Schamp. 2020. More than a feeling:
Benchmarks for sentiment analysis accuracy. Ssrn.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168–177.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categori-
cal reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann,
Nitish Shirish Keskar, Shafiq Joty, Richard Socher,
and Nazneen Fatema Rajani. 2021. GeDi: Gener-
ative discriminator guided sequence generation. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 4929–4952, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Sachin Kumar, Biswajit Paria, and Yulia Tsvetkov. 2022.
Gradient-based constrained sampling from language
models. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 2251–2277, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

David Landsman, Jerry Zikun Chen, and Hussain Zaidi.
2022. BeamR: Beam reweighing with attribute dis-
criminators for controllable text generation. In Find-
ings of the Association for Computational Linguis-
tics: AACL-IJCNLP 2022, pages 422–437, Online
only. Association for Computational Linguistics.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and William B Dolan. 2016. A diversity-promoting
objective function for neural conversation models.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 110–119.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha
Swayamdipta, Chandra Bhagavatula, Noah A. Smith,
and Yejin Choi. 2021. DExperts: Decoding-time con-
trolled text generation with experts and anti-experts.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
6691–6706, Online. Association for Computational
Linguistics.

Guisheng Liu, Yi Li, Yanqing Guo, Xiangyang Luo,
and Bo Wang. 2022. Multi-attribute controlled text
generation with contrastive-generator and external-
discriminator. In Proceedings of the 29th Inter-
national Conference on Computational Linguistics,
pages 5904–5913, Gyeongju, Republic of Korea. In-
ternational Committee on Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the associ-
ation for computational linguistics: Human language
technologies, pages 142–150.

Andrea Madotto, Etsuko Ishii, Zhaojiang Lin, Sumanth
Dathathri, and Pascale Fung. 2020. Plug-and-play
conversational models. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2020,
pages 2422–2433, Online. Association for Computa-
tional Linguistics.

Jose Ramom Pichel Campos, Pablo Gamallo, and Iñaki
Alegria. 2018. Measuring language distance among
historical varieties using perplexity. application to
European Portuguese. In Proceedings of the Fifth

350

https://doi.org/10.18653/v1/2020.coling-main.251
https://doi.org/10.18653/v1/2020.coling-main.251
https://doi.org/10.18653/v1/2022.findings-acl.272
https://doi.org/10.18653/v1/2022.findings-acl.272
https://doi.org/10.18653/v1/2022.findings-acl.272
https://aclanthology.org/2022.emnlp-main.67
https://aclanthology.org/2022.emnlp-main.67
https://aclanthology.org/2022.emnlp-main.67
https://doi.org/10.18653/v1/2021.findings-emnlp.424
https://doi.org/10.18653/v1/2021.findings-emnlp.424
https://aclanthology.org/2022.emnlp-main.144
https://aclanthology.org/2022.emnlp-main.144
https://aclanthology.org/2022.findings-aacl.40
https://aclanthology.org/2022.findings-aacl.40
https://doi.org/10.18653/v1/2021.acl-long.522
https://doi.org/10.18653/v1/2021.acl-long.522
https://aclanthology.org/2022.coling-1.516
https://aclanthology.org/2022.coling-1.516
https://aclanthology.org/2022.coling-1.516
https://doi.org/10.18653/v1/2020.findings-emnlp.219
https://doi.org/10.18653/v1/2020.findings-emnlp.219
https://aclanthology.org/W18-3916
https://aclanthology.org/W18-3916
https://aclanthology.org/W18-3916


Workshop on NLP for Similar Languages, Varieties
and Dialects (VarDial 2018), pages 145–155, Santa
Fe, New Mexico, USA. Association for Computa-
tional Linguistics.

Shrimai Prabhumoye, Alan W Black, and Ruslan
Salakhutdinov. 2020. Exploring controllable text
generation techniques. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 1–14, Barcelona, Spain (Online). Interna-
tional Committee on Computational Linguistics.

Jing Qian, Li Dong, Yelong Shen, Furu Wei, and Weizhu
Chen. 2022. Controllable natural language genera-
tion with contrastive prefixes. In Findings of the As-
sociation for Computational Linguistics: ACL 2022,
pages 2912–2924, Dublin, Ireland. Association for
Computational Linguistics.

Lin Qiao, Jianhao Yan, Fandong Meng, Zhendong Yang,
and Jie Zhou. 2020. A sentiment-controllable topic-
to-essay generator with topic knowledge graph. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 3336–3344, Online.
Association for Computational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Hannah Rashkin, Antoine Bosselut, Maarten Sap, Kevin
Knight, and Yejin Choi. 2018. Modeling naive psy-
chology of characters in simple commonsense stories.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2289–2299.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Adam Santoro, Ryan Faulkner, David Raposo, Jack Rae,
Mike Chrzanowski, Theophane Weber, Daan Wier-
stra, Oriol Vinyals, Razvan Pascanu, and Timothy
Lillicrap. 2018. Relational recurrent neural networks.
Advances in neural information processing systems,
31.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neu-
ral responding machine for short-text conversation.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1577–1586.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.

In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Zhiliang Tian, Yinliang Wang, Yiping Song, Chi Zhang,
Dongkyu Lee, Yingxiu Zhao, Dongsheng Li, and
Nevin L. Zhang. 2022. Empathetic and emotion-
ally positive conversation systems with an emotion-
specific query-response memory. In Findings of the
Association for Computational Linguistics: EMNLP
2022, pages 6364–6376, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Olga Uryupina, Barbara Plank, Aliaksei Severyn, Agata
Rotondi, and Alessandro Moschitti. 2014. Sentube:
A corpus for sentiment analysis on youtube social
media. In LREC, pages 4244–4249.

Ashwin K Vijayakumar, Michael Cogswell, Ram-
prasath R Selvaraju, Qing Sun, Stefan Lee, David
Crandall, and Dhruv Batra. 2016. Diverse beam
search: Decoding diverse solutions from neural se-
quence models. arXiv preprint arXiv:1610.02424.

Xinpeng Wang, Han Jiang, Zhihua Wei, and Shan-
lin Zhou. 2022. CHAE: Fine-grained controllable
story generation with characters, actions and emo-
tions. In Proceedings of the 29th International Con-
ference on Computational Linguistics, pages 6426–
6435, Gyeongju, Republic of Korea. International
Committee on Computational Linguistics.

Yuqiang Xie, Yue Hu, Yunpeng Li, Guanqun Bi, Luxi
Xing, and Wei Peng. 2022. Psychology-guided con-
trollable story generation. In Proceedings of the 29th
International Conference on Computational Linguis-
tics, pages 6480–6492, Gyeongju, Republic of Korea.
International Committee on Computational Linguis-
tics.

Erguang Yang, Mingtong Liu, Deyi Xiong, Yujie Zhang,
Yao Meng, Changjian Hu, Jinan Xu, and Yufeng
Chen. 2021. Syntactically-informed unsupervised
paraphrasing with non-parallel data. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2594–2604, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Dian Yu, Zhou Yu, and Kenji Sagae. 2021. Attribute
alignment: Controlling text generation from pre-
trained language models. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2021,
pages 2251–2268, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Hanqing Zhang and Dawei Song. 2022. DisCup: Dis-
criminator cooperative unlikelihood prompt-tuning
for controllable text generation. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 3392–3406, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

351

https://doi.org/10.18653/v1/2020.coling-main.1
https://doi.org/10.18653/v1/2020.coling-main.1
https://doi.org/10.18653/v1/2022.findings-acl.229
https://doi.org/10.18653/v1/2022.findings-acl.229
https://doi.org/10.18653/v1/2020.findings-emnlp.299
https://doi.org/10.18653/v1/2020.findings-emnlp.299
https://aclanthology.org/2022.findings-emnlp.475
https://aclanthology.org/2022.findings-emnlp.475
https://aclanthology.org/2022.findings-emnlp.475
https://aclanthology.org/2022.coling-1.559
https://aclanthology.org/2022.coling-1.559
https://aclanthology.org/2022.coling-1.559
https://aclanthology.org/2022.coling-1.564
https://aclanthology.org/2022.coling-1.564
https://doi.org/10.18653/v1/2021.emnlp-main.203
https://doi.org/10.18653/v1/2021.emnlp-main.203
https://doi.org/10.18653/v1/2021.findings-emnlp.194
https://doi.org/10.18653/v1/2021.findings-emnlp.194
https://doi.org/10.18653/v1/2021.findings-emnlp.194
https://aclanthology.org/2022.emnlp-main.223
https://aclanthology.org/2022.emnlp-main.223
https://aclanthology.org/2022.emnlp-main.223


Hanqing Zhang, Haolin Song, Shaoyu Li, Ming Zhou,
and Dawei Song. 2022. A survey of controllable
text generation using transformer-based pre-trained
language models. arXiv preprint arXiv:2201.05337.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems, volume 28. Curran Associates, Inc.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE in-
ternational conference on computer vision, pages
19–27.

A Performance Comparison of Different
Techniques

In this Section, we provide further details about
the automatic evaluation reported in Section 6.1.
Furthermore, we report all the models that have
been used in the different techniques to calculate
the evaluation metrics explained.

A.1 Comparison using PPLM prompts

Perplexity has been calculated using three differ-
ent models. Dathathri et al. (2019) and Gu et al.
(2022a) used GPT (Radford et al., 2018), Qian
et al. (2022), Gu et al. (2022b), and Yu et al. (2021)
used GPT-2 Large, Kumar et al. (2022) used while
GPT-2 XL. Regarding attribute relevance, all the
methods trained or fine-tuned a different classifier.
Dathathri et al. (2019) trained a classifier on SST-5
(Socher et al., 2013), while Gu et al. (2022a) trained
a classifier on IMDb movie reviews (Maas et al.,
2011). Qian et al. (2022) and Gu et al. (2022b)
fine-tuned RoBERTa (Liu et al., 2019) and De-
BERTa (He et al., 2020), respectively, on the Yelp
Review dataset (Zhang et al., 2015). Finally, Yu
et al. (2021) fine-tune BERT with IMDb movie re-
views dataset, while Kumar et al. (2022) fine-tuned
SieBERT (Heitmann et al., 2020) on 15 different
polarity datasets.

A.2 Comparison using OWT prompts

The techniques in Table 3 have been evaluated us-
ing the OpenWebText prompts, which are prompts
randomly selected from OpenWebText dataset. For
each selected prompt 25 completions are generated
using a base LM. Based on the average sentiment
of these completions, each prompt is labeled as
neutral, positive, or negative resulting in 3 datasets

of prompts containing respectively 5K, 2,5K, and
2.5K prompts

In order to compute perplexity, Zhang and Song
(2022) used GPT-2 Large, and Landsman et al.,
2022 and Liu et al., 2021 used GPT-2 XL. While for
the computation of attribute relevance, all the tech-
niques used the same classifier, i.e. a DistilBERT
(Sanh et al., 2019) sentiment classifier provided
by Huggingface and fine-tuned on SST-2 (Socher
et al., 2013).

B Parameters Comparison of Different
Techniques

In Table 5, we show the number of parameters in
each studied technique. We report all the compo-
nents of the techniques with the respective parame-
ters (Column 2), the number of trainable parame-
ters (Column 3), and the total number of parameters
(Column 4).

In some of the techniques, we can see a huge
difference between the number of trainable param-
eters and the total number of parameters, for exam-
ple, (Zhang and Song, 2022) and (Landsman et al.,
2022).
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Model Model components # trainable # parameters
parameters

Complete Training
Qiao et al. (2020) Encoder (biGRU) + Recognition network (MLP) +

Prior network (MLP) + Sentence decoder (GRU) +
Discriminator (CNN)

68M 68M

Betti et al. (2020) Generator (Relational Memory with self-attention)
+ Syntax Discriminator (Conv net) + Semantic Dis-
criminator (Conv net)

1 generator + 2 dis-
criminators*

1 generator + 2 dis-
criminators*

Xie et al. (2022) Encoder (BART) 140M + State trackers, planners
(BiGRU) + Decoder (BART) 140M

280 + state track-
ers, planners*

280 + state track-
ers, planners*

Model Fine-Tuning
Qian et al. (2022) PLM (GPT-2 medium) 345M + 491.520K/attribute 491.520K/attribute 345.491M
Gu et al. (2022b) Encoder (BERT-base-uncased) 110M + Decoder

(GPT-2 medium) 345M
110M 455M

Fang et al. (2022) Encoder (BERT-base-uncased) 110M + Decoder
(GPT-2) 117M + Deep Dual function network 1K

117M 227M

Disentanglement
Yu et al. (2021) PLM (GPT-2 medium) 345M + Attribute Alignment

function (MLP) 2M
2M 347M

modification of token Distribution
Dathathri et al. (2019) PLM (GPT-2 medium) 345M + PPLM Discrimina-

tor ∼1K/attribute
∼1K/attribute 345M

Madotto et al. (2020) PLM (DialoGPT medium) 345M parameters +
Residual Adapters 5.175M parameters + Discrimi-
nator ∼1K/attribute

5.175M 350.175M

Goswamy et al. (2020) PLM (GPT-2 medium) 345M + PPLM Discrimina-
tor 1K/attribute

1K/attribute 345M

Kumar et al. (2022) PLM (GPT-2 Large) 774M + Discriminative Classi-
fier (GPT-2 Large) 774M

774M 1548M

Gu et al. (2022a) PPLM 345M + Trainable Regulator (TF-IDF) 0 345M
Landsman et al. (2022) PLM (DExperts expert) 774M 0 774M

Hybrid
Wang et al. (2022) PLM (BART-large-cnn) 407M 407M 407M
Tian et al. (2022) Encoder + Emotion detector (BERT) 110M + Re-

sponding Strategy Generator + GPT 117M + BERT
110M

337M + Encoder
+ Strategy genera-
tor*

337M + Encoder
+ Strategy genera-
tor*

Liu et al. (2021) PLM (GPT-2 Large) 774M + Expert (GPT-2 Large)
774M and anti-Expert (GPT-2 Large) 774M /at-
tribute

1548M/attribute 1548M/attribute +
774M

Zhang and Song (2022) CLM (GPT-2 large) 774M + Attribute Discrimina-
tor (GPT-2 small) 117M

117M 891M

Krause et al. (2021) PLM (GPT-2 medium) 345M 345M 345M
Liu et al. (2022) PLM (GPT-2 medium) 345M + External Discrimi-

nator (biGRU)
External Discrimi-
nator*

345M + External
Discriminator*

Table 5: Comparison of studied techniques in terms of the number of parameters. In Model Agnostic techniques,
we consider the number of parameters considering the models used in the reference paper. * the total number of
trainable parameters is unclear.
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