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Abstract

Social media provide a rich source of data that
can be mined and used for a wide variety of re-
search purposes. However, annotating this data
can be expensive, yet necessary for state-of-
the-art pre-trained language models to achieve
high prediction performance. Therefore, we
combine pool-based active learning based on
prediction uncertainty (an established method
for reducing annotation costs) with unsuper-
vised task adaptation through Masked Lan-
guage Modeling (MLM). The results on three
different datasets (two social media corpora,
one benchmark dataset) show that task adap-
tation significantly improves results and that
with only a fraction of the available training
data, this approach reaches similar F1-scores
as those achieved by an upper-bound base-
line model fine-tuned on all training data. We
hereby contribute to the scarce corpus of re-
search on active learning with pre-trained lan-
guage models and propose a cost-efficient anno-
tation sampling and fine-tuning approach that
can be applied to a wide variety of tasks and
datasets.

1 Introduction

Approximately 59% of the population worldwide
use social media (Chaffey, 2023). Collectively,
they post more than half a million comments on
Facebook each minute, and a grand total of 500
million tweets per day (Shepherd, 2023; Aslam,
2023). These statistics indicate that social media
are a virtually inexhaustible source of data, and a
large part of this data can be accessed for research
purposes. However, annotating this data, which is
often necessary to achieve high prediction perfor-
mance with pre-trained language models, can be
an expensive and time-consuming process. One
approach that has been proposed in previous re-
search to reduce annotation costs is active learning
(AL), which aims at optimizing the annotation ef-
fort by selecting specific data points from an unla-
beled data pool which are expected to contribute
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the most to a model’s learning phase (Settles, 2009).
Although AL has proven its usefulness throughout
decades of research, it remains a data selection
method, which makes it challenging to use as only
tool for annotation cost reduction and to reach up-
per bound performance (achieved by supervised
learning on all available data).

In this work, we therefore exploit the capabilities
of transformer-based pre-trained language models
to learn from unsupervised data through their pre-
training task. Concretely, we combine AL based
on the prediction uncertainty of a model with unsu-
pervised task adaptation through masked language
modeling (MLM) to investigate whether this com-
bination of techniques allows reaching the upper
bound and with how much data. We test this ap-
proach by using different AL protocols on three
publicly available datasets (2 social media datasets
and 1 benchmark) that are costly to annotate, e.g.,
because they contain many fine-grained labels or
the task is difficult to learn with little data. The
experiments presented in this work show that using
task adaptation before AL has a significant effect
on model performance, and that substantially less
data is needed to reach upper bound performance,
therefore reducing annotation expenses.

2 Related research

2.1 Active learning

Active learning, or "sequential sampling", has been
studied since the 1990’s (Lewis and Gale, 1994,
Lewis and Catlett, 1994; Cohn et al., 1994, 1996).
Originally, AL referred to prioritizing certain en-
tries in an unlabeled dataset during the annotation
process, based on the prediction confidence of a
model trained on a small initial subset of labeled
data, as shown in Figure 1. The intuition behind
this sampling strategy is that the less certain a
model is about a prediction, the more the model can
learn from this data point during training, thereby
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Figure 1: Illustration of a pool-based active learning
process (Settles, 2009): A random sample is first
labeled by an oracle (human annotator) and used to
train a prototype model. This model then predicts the
labels of the rest of the unlabeled data. Afterwards, the
n data points with the lowest prediction confidence are
annotated and used to update the model. This process
continues until the annotation budget is depleted or
until no more improvements are observed in the
learning curve.

maximizing the return on annotation investment.

In the last decades, AL has shown improvements
in different tasks and models, such as text classifi-
cation with k-nearest neighbors (Shi et al., 2008),
word sense disambiguation with support vector ma-
chines (Zhu and Hovy, 2007), and machine trans-
lation with recurrent neural networks (Vashistha
et al., 2022). Although AL is most commonly
based on prediction uncertainty, sampling can also
be based on model disagreement, such as in BALD
(Bayesian AL by Disagreement, (Houlsby et al.,
2011)), gradient information, such as in BADGE
(Batch AL by Diverse Gradient Embeddings, Ash
et al. (2019)), typicality or density (Zhu et al.,
2008), batch diversity or representativeness (Shi
et al., 2021), and other metrics (or a combination
of any of the aforementioned, Settles (2009)).

2.2 Active learning with language models

Although AL with pre-trained transformers has
gained interest in recent years, the amount of re-
search remains relatively scarce compared to AL
with traditional machine learning or neural models.
Existing work, e.g. Schroder et al. (2022), has ex-
amined the vanilla uncertainty-based query strategy
for various binary and multi-class text classifica-
tion experiments and shown that this strategy is
also effective for pre-trained language models such
as BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019). Similarly, Ein-Dor et al. (2020) in-
vestigate the effect of annotation sample selection

based on prediction uncertainty, expected gradient
length and batch representativeness compared to
random sample selection. They hereby focus on
binary text classification tasks where the positive
class is in the minority and show that all strategies
perform substantially better than a random sam-
pling strategy.

Recently, Rotman and Reichart (2022) were the
first to explore multi-task AL with pre-trained lan-
guage models, building upon the work of Reichart
et al. (2008), who introduced the concept for tradi-
tional machine learning methods, and Ikhwantri
et al. (2018), who used it for (non-pre-trained)
neural architectures. Entropy-based confidence,
both in isolation and when using dropout agree-
ment, was used for multi-task AL, and compared to
single-task AL and random sampling. Additionally,
they investigated the effect of task weighting in
ranking samples on informativeness. Their experi-
ments showed that multi-task AL is an efficient way
for annotation cost reduction, but that the precise
method should depend on the task(s).

Finally, it is noteworthy that any model utilized
in an AL setting can be trained in two ways: by up-
dating it after each step, or by re-initializing it and
training the entire model on all available annotated
data (Schroder et al., 2022; Ein-Dor et al., 2020; Hu
et al., 2018; Shen et al., 2017). In general, language
models are more frequently re-initialized than up-
dated, because they tend to be unstable when incre-
mentally fine-tuned on low amounts of data, result-
ing in lower performance and higher standard de-
viations across different random seeds or hyperpa-
rameters (Dodge et al., 2020). However, the effect
of re-initializing versus updating language models
during AL is understudied. This work will there-
fore investigate whether re-initializing language
models is indeed the preferred approach when us-
ing the standard uncertainty-based AL approach,
and when combining it with task adaptation.

2.3 Task adaptation

As mentioned, this work combines AL with task
adaptation. The latter refers to learning training
data in an unsupervised manner before fine-tuning
on it for a specific end task. For example, Buhmann
et al. (2022) show that task adaptation has a positive
effect on their question-answering model used for
VaccinChat!: a user interface that answers Dutch-
language user questions about the COVID-19 vac-

1ht’cps: //vaccinchat.be/
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cine, specifically for Flemish (Dutch speaking Bel-
gian) users. Similarly, Mehri et al. (2020) show
that task adaptation through performing MLM on
the training data before fine-tuning increases the
performance of their task-oriented dialogue sys-
tem. In the experiments presented in this paper, we
adopt the MLM approach as task adaptation step
before commencing AL.

3 Methodology

3.1 Data

Existing AL research often relies on datasets that
are inexpensive to annotate or tasks that are rela-
tively easily learned by models, even when little
data is available. Examples are the IMDB movie
review, YELP polarity, SST-2, and TREC datasets
for NLP (Maas et al., 2011; Zhang et al., 2015;
Socher et al., 2013; Hovy et al., 2001), and the
MNIST and Fashion-MNIST for computer vision
(Deng, 2012; Xiao et al., 2017). This results in
experiments where very small initial training sam-
ples are used, which are then increased in equally
small steps, while still achieving relatively high pre-
diction performances. Although it is necessary to
create artificial AL setups, the aforementioned ex-
perimental settings are in our opinion inappropriate
for research on AL, because the method is in reality
the most effective when working with data that is
expensive to annotate or when many examples are
needed to gain high prediction accuracy.

Taking this into account, we use the FRENK
(Ljubesic et al., 2019), and GoEmotions (Demszky
et al., 2020) datasets for our experiments and val-
idate the results on an additional benchmark: the
20 News Groups dataset (Lang, 1995). A detailed
description of these datasets and why they are use-
ful for AL experiments can be found below, and a
summary of the statistics of each of these datasets
can be found in Table 1. A fine-grained overview of
the class distributions of the datasets can be found
in Appendix A.

Table 1: Statistics of the data used in our experiments.

Dataset Labels Train Val Test
FRENK 4 (multi-class) | 8,404 933 | 2,301
GoEmotions 28 (multi-label) | 43,410 | 5,426 | 5,427
20 News Groups | 20 (multi-class) | 10,182 | 1,131 | 7,532

3.1.1 FRENK

The FRENK dataset” consists of Facebook com-
ment threads on news item posts about two topics:
migrants and the LGBTQ+ community (Ljubesic
et al., 2019). Although the dataset contains Slovene
and English comments, the current work only uti-
lizes the English partition. The data contains labels
concerning the topic (LGBTQ+ or migrants), the
target of the hate speech (topic, related to topic,
journalist/medium, other, no target), and the type
of hate speech, which is the task we tackle in
this study. FRENK distinguishes six types of hate
speech in its annotation scheme:

1. Background-violence consists of messages
that call for violence based on the personal
background of the target (e.g., religion, gen-
der, race or ethnicity).

2. Other-violence contains messages that call
for violence for another reason than the back-
ground of the target, e.g., an opinion ex-
pressed by the target.

3. Background-offensive refers to messages
that contain offensive statements that are
aimed at the background of the target.

4. Other-offensive are messages that contain of-
fensive language towards any aspect of the
speaker but their personal background.

5. Inappropriate speech pertains to messages
that contain vulgar and/or other types of of-
fensive language that is not aimed towards a
specific target (hence this category is techni-
cally not hate speech).

6. Appropriate speech, which does not contain
any form of offensive or violent language.

Since the violent language classes contain very
few entries, and the experiments in this paper re-
quire using small samples of training data, labels
(1) and (2) were combined to form one "violent
language" class, and labels (3) and (4) were used to
form an "offensive language" class for the purpose
of this paper, resulting in a total of 4 labels (the
label distribution with these newly formed classes
can be found in Table 15, Appendix A). The train-
ing, validation, and test partitions contain 8,404,
933 and 2,301 entries, respectively.

Since hate speech is a term that is open for in-
terpretation and its identification depends on the
personal and cultural background of the annotator,

*https://huggingface.co/datasets/classla/
FRENK-hate-en
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multiple annotators are needed to generate high
quality labels and avoid bias (Sap et al., 2022). In
addition, the labels in FRENK show strong class
imbalances, which is why many comments are
needed in order to collect sufficient annotations
for the underrepresented classes, resulting in high
annotation costs. Further, annotators were required
to read the comments thoroughly, since the labels
contain a hierarchy of importance in cases where
multiple types of hate speech occur in one message
(other < background; offensive language < violent
language), which increases annotation time even
more.

3.1.2 GoEmotions

The GoEmotions dataset® contains Reddit com-
ments annotated with 28 emotions (incl. "neutral")
in a multi-label setting (Demszky et al., 2020). The
dataset is divided in 43,410 cases for training, 5,426
for validating, and 5,427 for testing.

Due to its high number of classes and multi-
label scheme, annotating the GoEmotions dataset
is labor-intensive. Given its large class imbalances,
it is particularly difficult to gain a performance
increase in the smaller classes by annotating more
samples, since many samples need to be annotated
before collecting a substantial amount of messages
that express emotions that are infrequent in the
dataset.

3.1.3 20 News Groups

The 20 News Groups dataset* contains approxi-
mately 20,000 news groups posts each associated
with 1 out of 20 different topic classes (Lang, 1995).
We use this benchmark with many fine-grained
classes as an additional test for the proposed ap-
proach next to the above mentioned social media
datasets, which are the focus of this paper.

3.2 Approaches

3.2.1 Baseline approaches

Random sampling For this baseline, the training
data was sampled randomly so that the effect of the
AL strategies could be measured.

Upper bound This approach refers to fine-tuning
with all available training data in order to esti-
mate the highest possible performance that can be
achieved with standard fine-tuning.

3https://huggingface.co/datasets/go_emotions
*https://huggingface.co/datasets/SetFit/20_
newsgroups

3.2.2 AL approaches

Model re-initialization This method refers to
the standard AL strategy for language models as
proposed in (Schroder et al., 2022; Ein-Dor et al.,
2020): An initial sample is used to fine-tune a
model, which then predicts labels for the rest of
the training data. A second sample is then selected
based on the confidence of the model and a new
model is initialized and fine-tuned using all anno-
tated data. This process then repeats itself n times.

Checkpoint updating This method is identical
to the approach above, with the only difference
being that each time a new batch of annotated data
is selected, the model is not re-initialized, but fine-
tuning continues with the new annotated sample
starting from the final checkpoint of the previous
round of fine-tuning.

Two-step learning This approach is a specific
form of AL where a model is first fine-tuned and
then updated once. For the first fine-tuning stage,
an initial random sample is used. After predicting
the labels of the rest of the training data with this
model, it is fine-tuned a second time using the top
n most uncertain entries, where n is determined
by the rest of the annotation budget. In contrast,
"checkpoint updating" refers to annotating various
batches of fixed size and updating the model after
each batch (i.e., in more than two steps).

3.3 Experimental setup

The annotation process was replicated as follows:
assuming that a labeled validation and test set are
available, a random batch consisting of ca. 10%
of all training data was used as an initial sample
for fine-tuning. Then, the amount of training data
was incrementally increased until approx. 50%
of the available training data was used. For all
classification experiments, a BERT-base-uncased
model (Devlin et al., 2019) was fine-tuned for 5
epochs with a batch size of 32 and a learning rate
of Se-5. The model was evaluated after each epoch,
and predictions on the test set were made with the
checkpoint that yielded the highest macro-averaged
F1-score on the validation set.

In experiments where task adaptation was used,
the model was first fine-tuned on the entire unla-
beled training dataset through MLM for the dura-
tion of 5 epochs with a batch size of 64 and learning
rate of 1e-4. The model checkpoint with lowest val-
idation loss was used for further experiments.
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Table 2: Macro-averaged results on FRENK using
random sampling. The last row represents the upper
bound baseline.

n Pre | Rec F1 Std

1,000 | 47.5 | 425 | 434 | 1.5
1,500 | 47.4 | 454 | 459 | 0.7
2,000 | 54.1 | 463 | 48.0 | 4.7
2,500 | 63.1 | 49.0 | 52.0 | 4.8

3,000 | 654 | 50.8 | 542 | 3.5
3,500 | 669 | 49.1 | 529 | 4.6
4,000 | 67.2 | 534 | 56.4 | 1.7
8,404 | 62.0 | 57.8 | 59.1 | 1.5

Table 3: Macro-averaged results on FRENK using AL
with model re-initialization. Best F1 are in bold,
experiments reaching the upper bound are in grey, and
statistical significance is indicated with asterisks.

Re-initialization + Adaptation

Table 4: Macro-averaged results on FRENK using AL
with model updating. Best F1 are in bold, experiments
reaching the upper bound are in grey.

Checkpoint updating + Adaptation

n Pre | Rec | F1 | Std || Pre | Rec | F1 | Std
1,000 | 47.5 | 425|434 | 1.5 |] 50.2 | 444 | 45.7 | 2.1
1,500 | 49.6 | 45.6 | 46.8 | 4.0 || 55.7 | 453 | 46.5 | 0.9
2,000 | 51.6 | 47.7 | 483 | 3.5 || 56.9 | 48.3 | 50.7 | 5.3
2,500 | 54.4 | 49.8 | 50.7 | 3.5 || 65.8 | 49.0 | 53.1 | 1.9
3,000 | 56.7 | 479 | 49.7 | 43 || 649 | 51.6 | 55.3 | 1.1
3,500 | 57.2 | 52.4 | 53.8 | 4.7 || 60.8 | 52.9 | 54.8 | 54
4,000 | 62.7 | 53.3 | 56.2 | 2.8 || 61.8 | 524 | 552 | 2.9

Table 5: Macro-averaged results on FRENK using AL
with two-step learning. Best F1 are in bold,
experiments reaching the upper bound are in grey.

Two-step + Adaptation
n Pre | Rec | F1 | Std || Pre | Rec | F1 | Std

n Pre | Rec | F1 | Std | Pre | Rec F1 Std

1,000 | 47.5 | 425 | 434 | 1.5 || 50.2 | 44.0 | 45.7 | 2.1

1,000 | 47.5 | 42.5 | 434 | 1.5 || 50.2 | 44.4 | 45.7%* | 2.1

1,500 | 49.6 | 45.6 | 46.8 | 4.0 || 55.7 | 453 | 46.5 | 0.9

1,500 | 50.2 | 45.8 | 46.9 | 4.6 || 57.5 | 46.9 | 48.7 3.8
2,000 | 63.7 | 45.8 | 485 | 1.8 || 59.8 | 49.2 | 51.8%* | 3.3
2,500 | 63.4 | 509 | 545 | 5.0 || 65.6 | 56.0 | 59.4* 1.5
3,000 | 62.8 | 51.8 | 55.0 | 3.1 || 65.3 | 56.5 | 59.4 2.1
3,500 | 63.9 | 54.1 | 57.1 | 2.6 || 66.2 | 56.0 | 59.3 2.8
4,000 | 65.0 | 53.7 | 574 | 2.3 || 63.3 | 59.6 | 61.0%* | 3.2

4 Results

4.1 FRENK

Table 2 shows the random and upper bound base-
lines on the FRENK dataset, whereas Table 3, 4,
and 5 show the results achieved for AL with model
re-initialization, checkpoint updating, and two-step
learning, respectively. The upper bound F1-macro
amounts to 59.1%, which was surpassed when us-
ing 2,500 training instance in an AL fine-tuning
process with model re-initialization after task adap-
tation. Specifically, using 29.7% of the available
labeled training data led to a performance of 59.4%
F1-macro. When increasing the training data to
4,000 entries, 47.6% of all available training data,
the F1-score reached 61.0%.

Overall, model re-initialization when fine-tuning
after querying a new sample of annotated data
achieves best results, followed by two-step learning,
and finally incremental checkpoint updating. In the
case of the latter, we even observe a small decrease
in performance (from 55.3% to 54.8%) and high
standard deviation of the Fl-score (5.4%) when
updating the model with 500 unseen entries after
it was already fine-tuned cumulatively on 3,000
entries. This shows that updating model check-
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2,000 | 54.7 | 46.5 | 48.5 | 4.3 || 69.5 | 51.4 | 55.6 | 2.7
2,500 | 55.4 | 48.0 | 50.2 | 5.3 || 64.1 | 53.6 | 56.7 | 2.2
3,000 | 62.9 | 489 | 52.4 | 5.0 || 65.3 | 51.7 | 55.6 | 2.1
3,500 | 61.9 | 54.4 | 55.8 | 3.0 || 63.8 | 56.7 | 58.5 | 1.7
4,000 | 64.2 | 52.1 | 55.5 | 45 || 673 | 554 593 | 3.3

points with smaller samples of data is inefficient, cf.
Schroder et al. (2022); Ein-Dor et al. (2020). For
the best AL approach, i.e. model re-initialization, a
McNemar test was conducted for each sample size
to determine whether the improvements after task
adaptation are statistically significant (McNemar,
1947), as shown in Table 3. These tests indicate
that the improvements in 4 out of 7 experiments are
statistically significant, while the other three still
show substantial improvements.

To illustrate where most improvements were
made after using task adaptation, Table 19 (Ap-
pendix C), shows the results per class after fine-
tuning on 2,500 training entries using different sam-
pling approaches (random sampling, standard AL,
AL after task adaptation). In this table, it can be
observed that the highest improvements were made
in the most difficult and underrepresented class,
namely the "violent speech" class. More precisely,
results improved from 18.3% to 32.3% when us-
ing standard AL instead of random sampling, and
to 47.1% after using task adaptation before AL.
Noteworthy is that the performance for the "inap-
propriate speech” class dropped with 1.4% when
using standard AL (compared to random sampling),
but when using task adaptation, this performance
drop was no longer observed.



Table 6: Macro-averaged results on GoEmotions using
random sampling. The last row represents the upper
bound baseline.

n Pre | Rec F1 Std
4,000 12.8 | 8.7 9.7 2.6
6,000 182 | 130 | 142 | 14
8,000 | 31.3 | 18.7 | 21.5 | 0.9
10,000 | 37.7 | 22.8 | 263 | 1.5
12,000 | 489 | 28.1 | 32.7 | 2.5
14,000 | 51.1 | 325 | 375 | 14
16,000 | 54.6 | 34.7 | 39.7 | 0.4
18,000 | 52.2 | 36.1 | 40.9 | 0.4
20,000 | 52.1 | 37.1 | 41.8 | 0.9
22,000 | 52.4 | 38.7 | 43.1 | 0.8
43410 | 544 | 4377 | 472 | 0.7

Table 7: Macro-averaged results on GoEmotions using
AL with model re-initialization. Best F1 are in bold,
experiments reaching the upper bound are in grey. See
Appendix B, Table 18 for statistical significance per
class / sample size.

Re-initialization + Adaptation

n Pre | Rec | F1 | Std || Pre | Rec | F1 | Std
4,000 | 128 | 87 | 9.7 | 2.6 || 155|119 | 129 | 04
6,000 |22.0 | 153 |17.0| 09 || 363 | 21.8 | 24.7 | 0.5
8,000 | 36.6 | 22.6 | 25.8 | 1.4 || 47.6 | 30.0 | 34.3 | 0.5
10,000 | 49.0 | 29.6 | 34.2 | 0.7 || 51.2 | 342 | 39.3 | 0.6
12,000 | 52.0 | 33.0 | 38.1 | 0.9 || 54.5 | 36.8 | 41.9 | 0.8
14,000 | 54.7 | 35.5 | 40.8 | 0.6 || 56.9 | 39.2 | 44.2 | 0.4
16,000 | 56.6 | 38.1 | 43.5 | 0.6 || 55.2 | 40.5 | 45.2 | 0.6
18,000 | 55.5 | 38.9 | 439 | 0.7 || 55.2 | 40.9 | 45.5 | 0.1
20,000 | 55.7 | 40.3 | 45.1 | 0.5 || 54.6 | 41.8 | 46.2 | 0.5
22,000 | 55.7 | 41.0 | 45.6 | 0.8 || 54.4 | 42.5 | 46.3 | 0.4

4.2 GoEmotions

The results of the GoEmotions dataset are shown
in Table 6 (random and upper bound baselines), 7
(model re-initialization), 8 (model updating), and
9 (two-step learning). As shown, the upper bound
baseline achieves an Fl-macro score of 47.2%
on the test set (using all 43,410 samples for fine-
tuning). In contrast with the experiments on the
FRENK dataset, we observe that the upper bound
baseline could not be matched with the utilized
sample sizes. Nevertheless, it can be observed
that task adaptation improves results for all AL
approaches and sample sizes. Similarly to the re-
sults of the FRENK dataset, model re-initialization
yields better results than checkpoint updating (re-
gardless of whether this is done incrementally or
through two-step learning). In the case of AL
by checkpoint updating, we even observe a de-
crease in performance compared to random sam-
pling when using 22,000 entries cumulatively for

Table 8: Macro-averaged results on GoEmotions using
AL with checkpoint updating. Best F1 are in bold,
experiments reaching the upper bound are in grey.

Checkpoint updating + Adaptation

n Pre | Rec | F1 | Std | Pre | Rec | F1 | Std
4,000 | 12.8 | 87 | 9.7 | 2.6 || 14.1 | 11.6 | 12.6 | 0.2
6,000 | 224 | 162 | 179 | 1.7 || 29.7 | 20.7 | 22.9 | 2.1
8,000 | 33.8 | 21.6 | 24.7 | 1.7 || 424 | 25.7 | 29.1 | 3.2
10,000 | 44.1 | 26.6 | 30.5 | 1.9 || 50.9 | 30.3 | 349 | 2.0
12,000 | 51.7 | 29.9 | 349 | 1.8 || 53.5 | 357 | 40.6 | 1.5
14,000 | 56.5 | 33.8 | 394 | 1.0 || 55.9 | 36.8 | 42.0 | 0.7
16,000 | 57.2 | 34.7 | 40.6 | 1.2 || 559 | 37.7 | 42.7 | 0.7
18,000 | 56.2 | 34.4 | 41.1 | 0.7 || 54.5 | 39.1 | 43.6 | 0.4
20,000 | 56.1 | 37.6 | 43.1 | 0.9 || 55.0 | 38.8 | 43.6 | 0.7
22,000 | 559 | 37.7 | 43.0 | 0.8 || 54.8 | 39.3 | 43.7 | 0.6

Table 9: Macro-averaged results on GoEmotions using
AL with two-step learning. Best F1 are in bold,
experiments reaching the upper bound are in grey.

Two-step + Adaptation

n Pre | Rec | F1 | Std || Pre | Rec | F1 | Std
4,000 | 128 | 8.7 | 97 | 2.6 || 14.1 | 11.6 | 12.6 | 2.5
6,000 | 224|162 | 17.9 | 1.7 || 29.7 | 20.7 | 22.9 | 2.1
8,000 | 250|192 | 209 | 2.6 || 38.6 | 246 | 27.5 | 2.4
10,000 | 35.1 | 22.6 | 24.8 | 2.5 || 41.4 | 283 | 314 | 2.5
12,000 | 45.8 | 26.1 | 293 | 0.9 || 469 | 30.5 | 34.2 | 2.2
14,000 | 469 | 28.9 | 32.7 | 0.8 || 47.8 | 33.3 | 37.3 | 2.0
16,000 | 50.0 | 32.0 | 36.1 | 1.6 || 49.9 | 354 | 39.6 | 2.8
18,000 | 52.2 | 353 | 396 | 1.8 || 51.8 | 37.3 | 41.3 | 1.4
20,000 | 53.3 | 36.0 | 40.7 | 1.2 || 54.0 | 39.1 | 42.8 | 1.6
22,000 | 53.2 | 39.0 | 433 | 1.1 || 55.4 | 40.6 | 44.6 | 0.2

fine-tuning. This evidences the inefficiency of in-
cremental fine-tuning of pre-trained language mod-
els on small data samples. Statistical significance
for the experiments with model re-initialization in
this multi-label setting was determined by conduct-
ing a McNemar test for each individual class for
each sample size. A summary of these tests can
be found in Appendix B, Table 18. The three emo-
tions where statistically significant improvements
were observed the most frequently were "approval",
"confusion", and "amusement", and in total, 6 out
of 28 emotions were never predicted more accu-
rately with statistical significance.

Finally, Table 20 (Appendix C) shows that the
improvements are primarily found in the most dif-
ficult classes, namely those that were not predicted
in the experiments with random sampling: "annoy-
ance", "caring", "confusion", "desire", "disappoint-
ment", "excitement", "fear" and "surprise". The
bulk of these did also not get predicted when using
standard AL, but improvements could be observed

when using task adaptation.
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Table 10: Macro-averaged results on 20 News Groups
using random sampling. The last row represents the
upper bound baseline.

n Pre | Rec F1 Std
1,000 | 56.7 | 554 | 51.8 | 0.9
1,500 | 59.6 | 60.0 | 58.0 | 1.0
2,000 | 63.1 | 63.4 | 624 | 0.5
2,500 | 64.0 | 63.8 | 63.1 | 1.0
3,000 | 654 | 647 | 643 | 0.7
3,500 | 66.0 | 65.6 | 653 | 0.3
4,000 | 66.1 | 655 | 652 | 0.3
4500 | 66.8 | 66.1 | 659 | 04
5,000 | 67.4 | 66.5 | 66.5 | 0.4
5,500 | 68.0 | 67.1 | 67.1 | 0.4
10,182 | 69.8 | 68.9 | 69.1 | 0.5

Table 11: Macro-averaged results on 20 News Groups
using AL with model re-initialization. Best F1 are in
bold, experiments reaching the upper bound are in grey.

Re-initialization + Adaptation

n Pre | Rec | F1 | Std || Pre | Rec F1 Std
1,000 | 56.7 | 55.4 | 51.8 | 0.9 || 62.2 | 60.9 | 58.3*** | (0.7
1,500 | 56.9 | 57.6 | 54.7 | 1.3 || 62.8 | 62.2 | 60.2*** | (.8
2,000 | 59.8 | 60.6 | 58.9 | 1.3 || 64.6 | 64.2 | 63.4*** | 1.1
2,500 | 62.7 | 62.2 | 61.4 | 1.5 || 66.5 | 65.6 | 65.3*** | 0.5
3,000 | 644 | 639 | 63.5 | 0.8 || 67.4 | 66.6 | 66.5%** | 0.5
3,500 | 659 | 65.2 | 65.1 | 0.5 || 68.3 | 67.5 | 67.4%** | 0.2
4,000 | 66.8 | 66.2 | 66.1 | 0.5 || 68.5 | 67.8 | 67.7%%* | 0.3
4,500 | 67.4 | 66.4 | 663 | 0.6 || 68.8 | 68.1 | 68.0%** | 0.9
5,000 | 68.1 | 67.3 | 67.3 | 0.4 || 69.4 | 68.6 | 68.7*** | 0.9
5,500 | 68.8 | 68.0 | 68.1 | 0.4 || 69.9 | 69.0 | 69.2*** | (.2

4.3 20 News Groups

As shown in Table 10, the upper bound F1-macro
score achieved on the 20 News Groups dataset is
69.1%. This score was (only) achieved when using
the AL protocol with model re-initialization and
task adaptation after sampling 5,500 training en-
tries, which equals 54.0% of the available training
data.

Similarly to the experiments on the other
datasets, task adaptation improves all three
explored AL protocols, although model re-
initialization remains the best of the three. Interest-
ingly, however, AL without task adaptation yields
lower results than random sampling. For AL with
model re-initialization, for example, there is an av-
erage decrease of 0.8% in F1-macro across all sam-
ple sizes. This shows that the standard uncertainty-
based AL makes worse sampling choices than ran-
dom sampling, and that uncertainty is therefore a
suboptimal metric for measuring informativeness
in this particular dataset. A possible explanation
for this observation is that language models are

Table 12: Macro-averaged results on 20 News Groups
using AL with model updating. Best F1 are in bold,
experiments reaching the upper bound are in grey.

Checkpoint updating + Adaptation

n Pre | Rec | F1 | Std | Pre | Rec | F1 | Std
1,000 | 56.7 | 55.4 | 51.8 | 0.9 | 62.2 | 60.9 | 58.3 | 0.7
1,500 | 54.3 | 52.7 | 50.0 | 3.7 | 62.1 | 58.5 | 56.4 | 1.0
2,000 | 57.1 | 549 | 544 | 23 | 62.7 | 61.3 | 60.0 | 2.3
2,500 | 59.5 | 58.5 | 58.0 | 0.8 | 64.1 | 63.3 | 624 | 1.2
3,000 | 63.8 | 60.2 | 60.1 | 1.5 | 66.0 | 64.1 | 634 | 1.5
3,500 | 63.7 | 62.2 | 63.3 | 1.3 | 67.0 | 65.5 | 65.7 | 0.9
4,000 | 649 | 632 | 642 | 0.5 | 67.7 | 66.4 | 66.4 | 0.5
4,500 | 66.4 | 64.4 | 652 | 0.5 | 67.6 | 66.5 | 66.5 | 1.0
5,000 | 66.5 | 652 | 655 | 0.2 | 68.3 | 66.6 | 66.7 | 0.8
5,500 | 66.7 | 64.7 | 66.3 | 0.3 | 67.4 | 65.5 | 652 | 1.7

Table 13: Macro-averaged results on 20 News Groups
using AL with two-step learning. Best F1 are in bold,
experiments reaching the upper bound are in grey.

Two-step + Adaptation

n Pre | Rec | F1 | Std || Pre | Rec | F1 | Std
1,000 | 56.7 | 55.4 | 51.8 | 0.9 || 62.2 | 60.9 | 58.3 | 0.7
1,500 | 54.3 | 52.7 | 50.0 | 3.7 || 62.1 | 58.5 | 56.4 | 1.0
2,000 | 59.0 | 56.4 | 544 | 2.3 || 63.8 | 61.6 | 60.6 | 1.5
2,500 | 599 | 59.3 | 58.0 | 0.8 || 649 | 62.8 | 62.3 | 1.6
3,000 | 62.5 | 60.9 | 60.1 | 1.5 || 65.8 | 64.6 | 64.4 | 1.6
3,500 | 64.6 | 63.4 | 63.3 | 1.3 || 67.2 | 65.9 | 65.0 | 0.9
4,000 | 65.2 | 643 | 642 | 05 || 67.5 | 664 | 66.3 | 0.9
4,500 | 66.2 | 65.3 | 652 | 0.5 || 68.1 | 669 | 67.1 | 0.5
5,000 | 66.5 | 65.6 | 655 | 0.2 || 68.6 | 67.5 | 67.6 | 0.3
5,500 | 67.1 | 66.3 | 66.3 | 0.3 || 69.0 | 68.0 | 68.2 | 0.4

often ill-calibrated and tend to be overconfident,
even if their prediction is false (Yuan et al., 2020;
Park and Caragea, 2022). Additionally, low pre-
diction confidence may indicate that an entry is
noisy, not just difficult to predict. A qualitative
analysis of the entries that are selected early in the
AL process shows that this is the case for the 20
News Groups dataset: many sampled posts con-
tain merely a few words that are irrelevant to the
topic, whereas other posts are lengthy and discuss
a multitude of (irrelevant) topics causing the low
prediction confidence in the classifier. Since data
selection based on prediction uncertainty collects
more noise than a random selection of data in this
case, it prevents the model from learning useful
information, especially in earlier samples.

After task adaptation, however, there is an aver-
age improvement of 2.6% over the random base-
line, and an average gain of 3.2% over standard AL
(improvements for all sample sizes are statistically
significant). This shows that although sample se-
lection based on model prediction uncertainty is
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suboptimal on some datasets, task adaptation can
act as a safety net to avoid performance impairment
due to the use of suboptimal metrics for measuring
informativeness.

Finally, and similarly to the results observed
on the other datasets, the highest performance in-
creases are observed in the most difficult classes.
For example, "talk.religion.misc" improves from
8.9% (random sampling) to 22.4% (AL with model
re-initialization and task adaptation), as shown in
Appendix C (Table 21).

The results of the experiments until this point
have shown that task adaptation has a positive ef-
fect on AL: Significant improvements in F1-score
could be observed, and in two datasets, the upper
bound could be reached with a fraction of the anno-
tations, while still showing substantial gains in the
third dataset. In the case of 20 News Groups, we
observed that traditional AL had a negative effect
on model performance, although task adaptation
countered this effect. Finally, the results indicate
that AL with model re-initialization leads to more
stable fine-tuning than with model updating.

4.4 Ablation study

In this section, we investigate the effect of task
adaptation in isolation, and whether using AL still
has beneficial effects on model performance af-
ter task adaptation. In order to gain insights into
this matter, task adaptation was used without AL,
i.e. with random sample selection. The result of
this experiment was then compared to the result
achieved with random sampling, standard AL, and
task adaptation combined with AL (as reported in
the previous subsections).

The results of the above mentioned experiments
can be found in Table 14: For FRENK, it can be
concluded that task adaptation alone does not im-
prove results when using random sample selection,
although using task adaptation and AL leads to
improvements of 4.6% on average. In compari-
son, standard AL leads to average improvements
of 1.7%. This surprising result indicates that BERT
does not learn new knowledge from task adapta-
tion, but that this technique causes better sample
selection during the AL stage. There may be dif-
ferent reasons why task adaptation has less effect
on FRENK than on the other datasets. For exam-
ple, the data in FRENK could resemble the data
used to pre-train BERT more than is the case for
the other datasets, so that less new information is
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Table 14: Improvements (F1) of task adaptation and AL over random sampling across all sample sizes (first sample size was not included in the calculations for the standard AL

experiments, since this experiment is identical to that of random sample selection).

20 News Groups
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being learned. Determining the exact cause of this
observation, however, is beyond the scope of this
paper and can be the subject of future work.

With respect to the GoEmotions dataset, which
yielded the lowest F1-scores compared to FRENK
and 20 News Groups, the improvements of using
both task adaptation and AL was the highest of
all datasets: 7.2% on average. Individually, task
adaptation and AL showed improvements similar
to each other, namely 4.2% and 4.1%, respectively.

Regarding 20 News Groups, we observe that
standard active learning has a negative effect on
performance overall, especially in the smaller sam-
ple sizes, as mentioned before. Task adaptation,
however, shows improvements of 2.9% and 2.6%,
without and with the additional use of AL, respec-
tively. This shows that when active learning has a
negative effect on performance, task adaptation can
negate this effect and still improve upon standard
fine-tuning with random data selection.

5 Conclusion

Main findings The current work combines
uncertainty-based AL with task adaptation in order
to learn from the data that could not be labeled due
to limited annotation budget. It investigates the
following research questions:

* What is the the effect of task adaptation on
AL?

* How much data is needed to achieve the same
performance with the proposed approach as
with standard fine-tuning on all data?

The results of the experiments conducted on
multiple datasets provide the following answers
to these questions:

» Task adaptation has a significantly positive
effect on AL, regardless whether the model
is re-initialized or updated (although re-
initialization consistently leads to better re-
sults). An analysis of the performance per
class shows that the improvements are high-
est in the most difficult or underrepresented
classes, and that the most difficult tasks in
general show the highest improvements.

* In our experiments, 29.7% and 54% of all
annotated data in the FRENK and 20 News
Groups dataset, respectively, was needed to
achieve the upper bound baseline. Although
the proposed approach did not reach the up-
per bound baseline in the GoEmotions dataset

with 50% or less of the training data, these
results show that the proposed combination
of approaches can lower annotation costs sub-
stantially.

Future research directions As mentioned ear-
lier, AL with pre-trained language models remains
understudied, in spite of it being an efficient an-
notation cost reduction method. Future research
directions for AL with language models may in-
clude investigating the effect of calibration quality
on uncertainty-based AL. An additional direction
worth investigating is combining AL with other
methods, such as data augmentation, weak super-
vision and domain adaptation, which are until now
topics that are studied more extensively in other
machine learning fields, such as computer vision
(Zhao et al., 2020; Biegel et al., 2021; Xie et al.,
2021; Hao et al., 2021; Zhan et al., 2022).

Limitations

The current work focuses on AL with pre-trained
language models based on lowest prediction confi-
dence. In spite of the effectiveness of the strategy
shown both in these experiments and in previous
work (Schroder et al., 2022; Ein-Dor et al., 2020),
neural models are often not calibrated well (Yuan
et al., 2020; Park and Caragea, 2022), which im-
plies that the output of the softmax function could
be a suboptimal metric for measuring prediction
confidence, i.e. informativeness, for a given train-
ing sample. Future work on this topic should there-
fore investigate whether other metrics work bet-
ter for AL with pre-trained language models and
whether these metrics also benefit from unsuper-
vised task adaptation. Additionally, experiments
could only be conducted on a limited amount of
tasks and datasets. Future work should shed new
light on the usefulness of the proposed approach in
different settings.
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A Label distribution per dataset o .
Table 17: Class distribution of the GoEmotions dataset.

Class name id | Train Val Test
Table 15: Class distribution of the FRENK dataset after Admiration 0 | 4130 | 488 | 504
combining the violent and offensive classes. Amusement 1 | 2328 | 303 252
Anger 2 1,567 195 197
Class name Train | Val | Test Annoyance 3 | 2470 | 303 286
Violent language 96 11 15 Apprpval 4 2,939 397 318
Offensive language | 1,487 | 165 | 477 Caring > | 1087 | 153 | 114
Inappropriate language | 1,490 | 165 | 410 Confusion 6 | 1368 152 139
Acceptable language | 5,331 | 592 | 1,399 Curiosity 7 | 2,191 | 248 | 233
Desire 8 641 77 74
Disappointment | 9 1,269 163 127
Disapproval 10 | 2,022 292 220
o Disgust 11 793 97 84
Table 16: Class distribution of the 20 News Groups Embarrassment | 12 303 35 30
dataset. Excitement 13 853 96 84
Fear 14 596 90 74
Class name Train | Val | Test Gratitude 15 | 2,662 358 288
alt.atheism 534 59 394 Grief 16 77 13 6
comp.graphics 538 60 | 398 Joy 17 | 1,452 172 116
comp.os.ms-windows.misc 508 56 376 Love 18 2,086 252 169
comp.sys.ibm.pc.hardware 535 60 | 396 Nervousness 19 164 21 16
comp.sys.mac.hardware 532 59 | 393 Optimism 20 | 1,581 209 120
comp.windows.x 520 58 | 385 Pride 21 111 15 8
misc.forsale 526 59 | 390 Realization 22 | 1110 127 109
rec.autos 418 47 310 Relief 23 153 18 7
rec.motorcycles 526 58 389 Remorse 24 545 68 46
rec.sport.baseball 491 55 | 364 Sadness 25 | 1,326 143 108
rec.sport.hockey 534 59 | 395 Surprise 26 | 1,060 129 92
sci.crypt 535 59 | 396 Neutral 27 | 14,219 | 1,766 | 1,606
sci.electronics 539 60 | 398
sci.med 339 38 | 251
sci.space 535 59 396 . oni
soc.religion.christian 540 60 | 399 B GoEmotions Slgnlﬁcance per class
talk.politics.guns 531 59 | 392
talk.politics.mideast 432 48 | 319
talk.politics.misc 532 | 59 | 3% Table 18: Indices of emotions that were predicted
talk religion.misc 237 | 60 | 397 significantly more accurately when using task

adaptation before AL with model re-initialization (per
sample size).

n ® R EE
4,000 - - 0,1,18
6,000 20 26 1,2,4,7,14,17,25
8,000 1,8,9,26 24 13
10,000 | 6,10, 24,25, 26 27 4
12,000 2,13,20 - 4
14,000 14,27 3,6,10 4,12
16,000 6 9,12,22 4
18,000 3,5,6,12, 14 - 4,22
20,000 2,6 4,22 -

22,000 1,22 - -
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C Results per class

Table 19: Comparison of results per class on the FRENK dataset after fine-tuning on 4,000 entries using different
sampling approaches. The reported results are averaged across 5 runs with different random seeds. The best results
are in bold.

Random Re-initialization + Adaptation
Class name Pre | Rec | F1 Pre | Rec | F1 Pre | Rec | F1
Acceptable speech 76.0 | 87.7 | 81.4 || 76.2 | 88.5 | 81.8 || 77.4 | 874 | 82.1
Offensive speech 56.4 | 445 | 49.5 || 58.1 | 46.7 | 51.3 || 59.5 | 50.3 | 54.1
Violent speech 733 | 10.7 | 183 || 54.0 | 24.0 | 32.3 || 61.2 | 38.7 | 47.1
Inappropriate speech | 63.2 | 47.3 | 54.0 || 65.3 | 442 | 52.6 || 64.3 | 47.3 | 54.3

Table 20: Comparison of results per class on the GoEmotions dataset after fine-tuning on 22,000 entries using
different sampling approaches. The reported results are averaged across 5 runs with different random seeds. The
best results are in bold.

Random Re-initialization + Adaptation
Class Pre | Rec F1 Pre | Rec Fl1 Pre | Rec F1

Admiration 71.8 | 60.8 | 65.8 || 70.2 | 63.8 | 66.8 || 68.3 | 66.0 | 67.0
Amusement 80.9 | 81.4 | 81.2 || 81.5 | 80.1 | 80.7 || 80.4 | 84.9 | 82.6
Anger 679 | 103 | 174 || 645 | 27.5 | 37.8 || 61.3 | 334 | 43.0
Annoyance 0.0 0.0 0.0 0.0 0.0 0.0 243 | 1.2 24
Approval 58.1 | 23.0 | 329 || 326 | 2.6 4.8 514 | 253 | 33.2
Caring 0.0 0.0 0.0 0.0 0.0 0.0 59.9 | 17.8 | 26.0
Confusion 0.0 0.0 0.0 0.0 0.0 0.0 472 | 438 8.7
Curiosity 582 | 36.7 | 44.9 || 452 | 24.8 | 31.5 || 54.8 | 35.8 | 43.3
Desire 0.0 0.0 0.0 637 | 94 | 159 || 67.1 | 20.2 | 30.3
Disappointment | 0.0 0.0 0.0 0.0 0.0 0.0 53.7 | 49 8.5
Disapproval 385 | 6.7 | 10.8 || 345 | 3.1 54 469 | 194 | 274
Disgust 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Embarrassment | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Excitement 0.0 0.0 0.0 200 | 0.6 1.1 79.5 | 19.2 | 30.5

Fear 0.0 0.0 0.0 66.5 | 33.8 | 439 || 675 | 63.3 | 65.3
Gratitude 934 | 88.0 | 90.6 || 92.8 | 89.1 | 90.9 || 93.0 | 89.3 | 91.1
Grief 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Joy 73.2 | 30.8 | 42.8 || 72.4 | 43.5 | 539 || 69.1 | 48.7 | 57.1
Love 82.0 | 77.0 | 79.4 || 81.1 | 80.5 | 80.8 || 82.0 | 78.7 | 80.3

Nervousness 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Optimism 70.7 | 319 | 438 69.5 | 38.8 | 49.5 67.0 | 42.2 | 51.7

Pride 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Realization 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Relief 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Remorse 357 | 43 7.0 493 | 300 | 344 || 63.0 | 52.1 | 56.9
Sadness 77.0 | 146 | 23.6 || 744 | 373 | 49.2 || 68.1 | 404 | 50.6
Surprise 0.0 0.0 0.0 416 | 87 | 13.0 || 594 | 339 | 42.8
Neutral 67.7 | 56.6 | 61.6 || 659 | 59.2 | 62.4 || 67.4 | 57.3 | 61.8
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Table 21: Comparison of results per class on the 20 News Groups dataset after fine-tuning on 4,500 entries using
different sampling approaches. The reported results are averaged across 5 runs with different random seeds. The
best results are in bold

Random Re-initialization + Adaptation

Class name Pre | Rec | F1 Pre | Rec | F1 Pre | Rec | F1
alt.atheism 39.3 | 57.0 | 46.4 || 44.0 | 47.0 | 45.1 || 46.5 | 47.0 | 46.1
comp.graphics 64.0 | 682 | 659 || 664 | 68.7 | 67.5 || 66.6 | 70.7 | 68.4
comp.os.ms-windows.misc | 59.7 | 63.2 | 61.3 || 65.6 | 61.2 | 63.2 || 66.5 | 63.9 | 65.1
comp.sys.ibm.pc.hardware | 61.3 | 57.1 | 59.1 || 59.8 | 64.7 | 61.9 || 64.8 | 67.3 | 65.9
comp.sys.mac.hardware 49.8 | 655 | 56.1 || 70.5 | 65.3 | 67.7 || 729 | 704 | 71.5
com.windows.x 804 | 732 | 76.5 || 82.4 | 74.7 | 783 || 81.9 | 76.6 | 79.1
misc.forsale 75.6 | 793 | 774 || 82.7 | 80.5 | 81.6 || 82.3 | 82.6 | 82.3
rec.autos 65.8 | 76.0 | 70.1 || 52.1 | 76.3 | 61.9 || 51.7 | 75.1 | 61.2
rec.motorcycles 71.1 | 659 | 68.3 || 71.8 | 66.7 | 69.1 || 76.5 | 68.7 | 72.3
rec.sport.baseball 88.9 | 82.5 | 85.5 || 85.8 | 82.1 | 83.8 || 90.1 | 82.7 | 86.2
rec.sport.hockey 93.7 | 84.1 | 88.6 || 90.6 | 83.1 | 86.7 || 89.9 | 86.8 | 88.2
sci.crypt 725 1 68.6 | 70.5 || 75.1 | 65.8 | 70.1 || 79.6 | 67.7 | 73.1
sci.electronics 582 | 57.7 | 579 || 57.9 | 60.0 | 58.9 || 62.9 | 60.5 | 61.6
sci.med 823 | 80.2 | 81.2 || 84.6 | 80.4 | 82.4 || 82.0 | 82.8 | 82.4
sci.space 76.0 | 73.8 | 74.8 || 70.2 | 76.3 | 73.1 || 72.7 | 76.4 | 74.5
soc.religion.christian 682 | 740 | 70.8 || 68.3 | 755 | 71.6 || 67.4 | 81.2 | 73.6
talk.politics.guns 532 | 63.6 | 57.9 || 53.5 | 63.9 | 58.1 || 564 | 655 | 60.5
talk.politics.mideast 89.3 | 739 | 80.9 || 87.2 | 73.6 | 79.7 || 83.0 | 744 | 78.2
talk.politics.misc 547 1 439 | 48.6 || 46.5 | 479 | 47.0 || 524 | 433 | 473
talk.religion.misc 30.1 | 5.5 8.9 32.1 | 13.8 | 185 || 299 | 182 | 224
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