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Abstract

Unsupervised text style transfer is a challeng-
ing task that aims to alter the stylistic attributes
of a given text without affecting its original
content. One of the methods to achieve this is
controllable style transfer, which allows for the
control of the degree of style transfer. How-
ever, an issue encountered with controllable
style transfer is the instability of transferred text
fluency when the degree of the style transfer
changes. To address this problem, we propose
a novel approach that incorporates additional
syntax parsing information during style transfer.
By leveraging the syntactic information, our
model is guided to generate natural sentences
that effectively reflect the desired style while
maintaining fluency. Experimental results show
that our method achieves robust performance
and improved fluency compared to previous
controllable style transfer methods.

1 Introduction

Text style transfer has been garnering increasing
interest in the field of natural language generation.
Its applicability spans a wide range of tasks, includ-
ing data augmentation (Chen et al., 2022), stylis-
tic writing for marketing purposes (Kaptein et al.,
2015; Jin et al., 2020), and natural chatbot response
generation (Kim et al., 2019).

Text style transfer aims to modify a given text
to represent a target style attribute. Key consider-
ations for this task include ensuring that the gen-
erated text: (i) reflects the desired style attribute,
(ii) preserves style-irrelevant content, and (iii) gen-
erates a sentence that seems natural to humans.
Target style attributes can include various styles
such as sentiment, formality, politeness, offensive-
ness, and genre. In this work, we primarily focus
on sentiment as the target style attribute.

Some approaches, such as those by Jhamtani
et al. (2017), Carlson et al. (2018), and Wang et al.
(2019b), train their models using parallel datasets
consisting of pairs of source text and transferred
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Figure 1: Comparison of inverse-perplexity between
controllable style transfer models as the style transfer
degree changes. A higher inverse-perplexity score in-
dicates better fluency of generated text. Each dot rep-
resents the inverse-perplexity corresponding to style
control degrees from 1 to 10. The x-axis represents the
transfer accuracy.

text. However, collecting human-generated trans-
ferred text can be both time-consuming and costly.
As a result, mainstream research has primarily fo-
cused on unsupervised methods that rely solely on
source text.

Unsupervised methods for text style transfer can
be broadly categorized into two approaches: dis-
entanglement and entanglement. Hu et al. (2018),
Shen et al. (2017), and John et al. (2018) proposed
models that disentangle content and style in the
latent space. However, content and style cannot be
entirely separated. As a result, rather than separat-
ing content and style, an alternative approach was
proposed that uses entangled latent representation.

In the entanglement approach, style information
is used to overwrite the latent representation of the
source text, resulting in the text reflecting the target
style. Multiple approaches have been proposed to
achieve this, including the use of back-translation
loss (Sennrich et al., 2016a) or a combination of
reconstruction, cycle loss, and style classification
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loss in the method proposed by Dai et al. (2019).

Expanding upon the entanglement approach,
Wang et al. (2019a) and Kim and Sohn (2020) at-
tempted to control the degree of style during the
transfer process. The advantage of these models
lies in their ability to generate diversely transferred
sentences with varying degrees of style. However,
although these models transfer sentences effec-
tively, the generated sentences often lack natural-
ness. To address this issue, we have endeavored to
improve the fluency of our model by incorporating
additional syntax information.

Figure 1 highlights that our method substantially
outperforms the models proposed by Kim and Sohn
(2020) (ADAPT) and Wang et al. (2019a) (CTRL)
in terms of perplexity, a metric used to measure
the fluency of generated sentences. It should be
noted that in the figure, we have inverted the per-
plexity score, meaning that a higher score indi-
cates better fluency. The comparison reveals that
as both the style degree and the accuracy of the
transferred style increase, the inverted perplexity
score declines in both models. However, our model
maintains stable perplexity scores. This suggests
that the incorporation of syntax parses helps to
preserve the syntactic structure of transferred sen-
tences across diverse levels of accuracy. We found
that the other models tend to prioritize generating
more tokens containing the target style to enhance
accuracy, regardless of fluency. As a result, the
generated sentences become less fluent as the style
degree increases.

To enhance the fluency of controllable text style
transfer, we extract syntax parses from constituency
parse trees and encode them into syntactic embed-
dings. After encoding, we concatenate these em-
beddings with semantic and style embeddings.

Our experimental results on two datasets demon-
strate that our method outperforms several text style
transfer baselines. Specifically, our model shows
remarkable performance in relation to perplexity.
Furthermore, we present an ablation study and
qualitative analysis. We also evaluate the syntax
preservation capability among controllable models
to validate the effectiveness of incorporating syntax
parses. Our contributions are suggested as follows:

* We propose a novel approach to enhance the
fluency of the controllable text style transfer
task. We place emphasis on the fluency of the
generated text, ensuring that it sounds natural
as if written by a human. By incorporating ad-

ditional syntax information as a model input,
we effectively improve the model’s fluency
regardless of the transfer strength.

* We validate the effectiveness of our approach
by conducting experiments utilizing automatic
evaluation metrics. Moreover, we analyze our
method with respect to syntax preservation
and fluency. The results show that our method
helps the model comprehend the syntactic
structure of the input sentences and serves
as a constraint, steering the model towards
generating more natural text.

* We present text-level outputs and compare
them to outputs from controllable text style
transfer baselines, demonstrating that our
model generates fluent sentences while pre-
serving both the syntactic structure and con-
tent integrity of the input text.

2 Related Work

Entangle-based text style transfer

One of the approaches employed in unsupervised
text style transfer is entanglement. Rather than
dividing the latent representation of an input text
into content and style components, the entangle-
ment approach directly integrates the input text’s
latent representation with target style information.
Subramanian et al. (2019) use back-translation loss
(Sennrich et al., 2016a) to enable learning in two
steps: first, the model transfers the input sentence
x reflecting the target style s’, and second, it recon-
structs the output from the previous step with the
original style s. Dai et al. (2019) train their model
with both reconstruction and cycle loss. Addition-
ally, a style classifier is used to incorporate a style
classification loss during training.

Controllable style transfer

Controllable style transfer involves adjusting the
magnitude of style transfer strength in the trans-
ferred text. Wang et al. (2019a) proposed the Fast-
Gradient-Iterative-Modification algorithm to mod-
ify the latent representation of the input text to
follow the target style. A modification weight is
used to control the transfer strength.

Similarly, Kim and Sohn (2020) use the modifi-
cation weight and train style embeddings to control
the style transfer strength. Two style embeddings
— positive and negative — are trained in training
time. By multiplying these embeddings by the
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Figure 2: The architecture of our proposed model, consisting of four components: semantic encoder, syntactic
encoder, style selector, and decoder. The upper figure shows the overall model architecture. The input sentence =,
its style label s, and syntax parse p are provided to the model. The semantic encoder, style selector, and syntactic
encoder each output an embedding. A concatenated latent representation of the three embeddings—semantic,
syntactic, and style—is then fed to the decoder, which generates the reconstructed sentence x’. The bottom figure
shows Style Selector which selects the style embedding of input x.

modification weight, the model can generate style-
controlled text.

Our model adopts the approach by Kim and Sohn
(2020) but with the additional step of incorporating
style embeddings alongside semantic and syntac-
tic embeddings. The integration of all three types
of embeddings, along with the additional syntax
information, enables our model to generate more
sophisticatedly controlled and natural text.

Syntax-guided generation

Syntax-guided generation generally uses additional
syntax information, particularly in machine transla-
tion and paraphrasing. In both tasks, syntax infor-
mation is typically derived from constituency parse
trees. After the parse tree has been extracted, it is
linearized and then provided to the model along
with the input text.

In machine translation, Yang et al. (2020) predict
soft target templates and use them to provide syn-
tactical guidance during the translation procedure.
Sun et al. (2021) and Huang and Chang (2021)
utilize syntax templates to generate syntactically
controlled paraphrases that conform to these tem-
plates. Sun et al. (2021) use a ranker and retriever
to select target parse templates and then generate
texts according to the templates. Huang and Chang
(2021) train a parse generator to generate diverse
syntax templates.

Previous research has explored the importance of

syntax in text style transfer. Hu et al. (2021) demon-
strated that previous style classifiers were incapable
of learning syntax and could worsen models’ per-
formance, especially in formality transfer. They
employed Graph Convolutional Networks (GCN5s)
to extract syntactic information and used it to train
both syntax-classifier and syntax-encoder. Rather
than relying on GCNs for incorporating syntactic
information, our approach extracts syntax infor-
mation from the constituency parse trees. Subse-
quently, we combine the encoded linearized parse
information with semantic and style embeddings.

3 Proposed Method

We formulate the syntax-guided text style transfer
as follows: given an input text z, its corresponding
style label s, and syntax parse p as model inputs,
we train our model using an autoencoder to recon-
struct x while preserving the style s. Training the
model based on reconstruction is necessary in an
unsupervised setting due to the lack of a parallel
dataset. The actual style transfer takes place during
inference time.

3.1 Model Architecture

Figure 2 shows our overall model architecture. Our
model consists of four key components: i) a se-
mantic encoder that encodes the input text x; ii)
a syntactic encoder that encodes the input text’s
syntax parse p; iii) a style selector that chooses the
appropriate style embedding se for the input text
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x; iv) a decoder that generates either reconstructed
sentences or transferred sentences.

Semantic encoder. The semantic encoder con-
verts the input text x into a semantic embedding
Zsem-. We represent each token in the input text as
1,9, ..., Ly, Where n is the number of tokens in
x. The semantic encoding process is expressed as
follows:

sem

— £ sem sem
Zsem = (2}

72‘2‘ sy Ry ) - Encse’m((th% "'7$"))

where Encgen, represents the semantic encoder.
We do not use positional encoding from Trans-
former (Vaswani et al., 2017) for the semantic em-
bedding, but we apply it to the syntactic encoder.
This leads to a semantic embedding that is less af-
fected by word order and thus mainly captures the
meaning of the text. In other words, the semantic
embedding without positional encoding functions
similarly to a bag of words representation. Previous
studies have shown that bag of words representa-
tion can be effective in various tasks. For example,
Xu et al. (2010) demonstrated that generating ab-
stract summaries using only keywords in a bag of
words is feasible. In addition, Tao et al. (2021)
showed that neural models can successfully recon-
struct sentences from an unordered bag of words.

Syntactic encoder. The goal of the syntac-
tic encoder is to produce a syntactic embedding
Zsyn by taking the linearized syntax parse p =
{p1,p2, ..., P} as input. This can be expressed as
follows:

syn _syn syn

Zsyn = (zl aZQ 7"'7Zk ) = Encsyn((plaPQa 7p1€))

To ensure that the syntax parse includes the in-
formation about the order of words, we utilize a
Transformer encoder with positional encoding.

Style selector. ~ We define two types of style em-
beddings: positive and negative. The style selector
predicts the style of the input text x and then se-
lects the appropriate style embedding. The process
involves three phases, represented at the bottom
of Figure 2. In the first phase, we calculate the
similarities between each style embedding and the
semantic embedding of x. To accomplish this, we
use the dot product. In the second phase, we predict
the style label of z by utilizing a style classifier Cy.
Finally, in the third phase, we select the final style
embedding of x. This is achieved by leveraging the
predicted style label in the second phase to select
the proper style embedding of z.

Decoder.  To generate the reconstructed text 2,
we concatenate the semantic, syntactic, and style
embeddings of the input text z, and feed the result-
ing concatenated embedding to the Transformer
decoder. The decoder then generates x’ autoregres-
sively. This process can be represented as follows:

= (2, 2h, ..., x),)

= Dec(concat(zsems Zsyns Zstyle))
3.2 Training

Since we do not have access to a parallel dataset
for this task, we train our model in an unsuper-
vised manner by combining the reconstruction loss
from a Transformer-based autoencoder with a style
classification loss from a style classifier.

Reconstruction loss.  We employ a Transformer-
based autoencoder. We calculate the reconstruction
loss by comparing the reconstructed sentence to
the original sentence. The reconstruction loss is
represented as follows:

n
Lyes = ZlogP(azé = 24|%, pr, Sz, Ty ooy i)
i=1

where Z represents an unordered list containing
all tokens in the input text z, while p, represents
the syntax parse, and s, represents the style label
of z. Additionally, z; represents the generated
i-th token, with 2/, ..., 2}_, being the previously
autoregressively generated tokens. By considering
the relationships between the semantic, syntactic,
and style embeddings, our model gains the ability
to reconstruct the input text x.

Style classification loss.  In the second phase
of the style selector, we utilize a style classifier
denoted as Cy to predict the sentiment of the input
text. The classifier is comprised of simple linear
layers. Style embeddings S E; contain two embed-
dings: a positive embedding and a negative em-
bedding in this task. The similarity between the
semantic embedding zg.,, and each style embed-
ding in SE; is given as an input of the classifier.
Since the gold label is already provided in the train-
ing data, we calculate the loss by comparing the
predicted label to the gold label y. This procedure
is based on the following loss function:

k
Lstyle(CH(Sim(zsem; Sei))7 y) = - Z (jzlo.g(%)
=1

where Cy denotes the style classifier, Sim is the
similarity calculation performed via dot product
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and se; refers to one of the style embeddings in
SFE;. q; represents the true style label probability
distribution, while g; represents the predicted style
label probability distribution. By optimizing this
Liy1e loss function, we train the style embeddings.

Joint training loss. Reconstructing the input
text is influenced by the style embedding since the
style embedding is concatenated with the semantic
and syntactic embeddings. Therefore, we train the
autoencoder and the style classifier together using
the joint loss as follows:

L= L'res + Lstyle

This approach allows the model to learn to recon-
struct the input text while also considering the style
information.

3.3 Inference

During inference, the semantic embedding is ad-
justed to perform style transfer. We use the style
embedding that was learned during training. The
style transfer operation is represented as follows:

!/

Zsem

= Zsem T W - seg

where 2.y, is the semantic embedding, w is a style
transfer weight, and se represents the style em-
bedding of the target style. The hyperparameter
w controls the degree of style transfer. Following
the adjustment of z.,,, it is concatenated with the

syntactic and style embeddings before being input
into the decoder.

4 Experiment
4.1 Dataset

We evaluate our model with Yelp and Amazon
datasets, which are commonly used in unsuper-
vised text style transfer. Table 1 presents the num-
ber of data samples for the train, validation, test
split in Yelp and Amazon datasets. Each dataset
contains human transferred references.

Dataset Train Valid Test
Yelp 443,259 | 1,000/ style | 500/ style
Amazon | 554,997 | 1,000/ style | 500/ style

Table 1: Details of Yelp and Amazon datasets.

Yelp. The dataset consists of restaurant reviews
on Yelp. The reviews include scores that range
from 1 to 5. Each sentence is labeled with the
sentiment, either positive or negative according to

the score. Sentences with scores of 1 and 2 are
labeled as negative, and 4 and 5 are labeled as
positive. We use the preprocessed version of the
dataset from Li et al. (2018).

Amazon. The dataset contains product reviews
from Amazon. The same labeling scheme as the
Yelp dataset is used. We use the dataset from He
and McAuley (2016).

4.2 Evaluation Metric

We evaluate the performance of our model by com-
paring it to previous works using three commonly
used metrics.

Accuracy measures how well the transferred sen-
tences conform to the target style. To calculate
the accuracy, we use a fasttext classifier (Joulin
et al., 2016) that is trained on each training dataset.
A higher accuracy indicates better model perfor-
mance.

Content preservation metric evaluates the model’s
ability to maintain the meaning of the input text,
regardless of its stylistic attributes. We measure
this using the BLEU score (Papineni et al., 2002),
which quantifies how much the transferred sen-
tences overlap with human-written sentences. A
higher BLEU score indicates greater similarity be-
tween the two sentences. To compute the BLEU-2
score, we utilize the nlg—eval1 (Sharma et al., 2017)
package.

Fluency shows how natural the transferred text is.
We use perplexity (PPL) as a measure of fluency.
In our work, GPT-2 language model (Radford et al.,
2019) is used. The GPT-2 model is fine-tuned with
the training data of each dataset, and it calculates
the 3-gram PPL score.

4.3 Baseline Models

To evaluate the effectiveness of our model, we com-
pare it with several unsupervised text style transfer
models. These models can be categorized into two
groups based on their ability to control the degree
of style transfer.

Uncontrollable models

1) Cross-Align (Shen et al., 2017): this model dis-
entangles style and the content of the input text
using a variational autoencoder. It uses an align-
ment approach to match the input and the trans-
ferred text. 2) StyleEmb (Fu et al., 2017): this
model also disentangles the latent into the style and

"https://github.com/Maluuba/nlg-eval
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Model Yelp Amazon
ACCT BLEUT PPL| ACCT BLEUT PPL|
Human reference 73.4 100.0 42.3 42.7 100.0 71.3
Cross-Align 74.5 21.5 66.9 82.9 8.6 27.5
StyleEmb 8.8 33.9 61.6 44.5 24.6 114.3
DeleteAndRetrieve 79.0 16.0 69.4 50.2 42.4 83.3
(D Style transformer 84.9 42.3 164.0 62.0 42.3 104.6
RACoOLN 87.4 42.2 55.8 90.1 52.1 100.2
PromptAndRerank 0-shot 52.2 214 65.4 43.8 32.5 91.7
PromptAndRerank 4-shot 61.2 30.2 57.7 50.0 30.4 68.5
Controllable-transfer 71.1 35.5 124.2 55.0 36.0 109.6
) Adaptive-StyleEmb 87.6 33.9 101.3 74.1 34.19 90.6
Ours 82.5 18.8 40.9 76.8 22.44 26.8

Table 2: Evaluation results conducted on the Yelp and Amazon datasets. We divided the models into two groups: (1)
uncontrollable models, (2) controllable models. We selected the style transfer weight for models in (2) based on the

geometric mean of the accuracy and BLEU score.

the content part using an adversarial network. It
uses style embeddings that control the generated
styles. 3) DeleteAndRetrieve (Li et al., 2018): this
model first removes the stylistic attributes in the
input text and transfers the input by replacing those
attributes with retrieved target attribute markers.
The model is based on recurrent neural networks.
4) Style transformer (Dai et al., 2019): unlike
other models mentioned above, it overwrites the
latent representations with target stylistic attributes.
The model architecture is based on Transformer. 5)
RACOLN (Lee et al., 2021): this model is imple-
mented using a gated recurrent unit architecture,
and it utilizes a reverse attention mechanism to
preserve the content of the input text during style
transfer. 6) PromptAndRerank (Suzgun et al.,
2022): pre-trained language models are utilized to
generate transferred text. We use the zero-shot and
few-shot results from EleutherAI’s GPT-J-6B using
curly brackets as delimiters.

Controllable models

1) Controllable-transfer (Wang et al., 2019a): it
modifies the latent representation of the input text
iteratively until the desired degree of style trans-
fer is achieved. 2) Adaptive-StyleEmb (Kim and
Sohn, 2020): it controls the style of the input text
by adding style embeddings learned during train-
ing to the input latent representation. For these two
models, we used pretrained models provided by the
authors to get the model outputs.

4.4 Implementation Details

We apply byte pair encoding (Sennrich et al.,
2016b) for tokenization and utilize the Stanford

CoreNLP parser (Manning et al., 2014) to obtain
constituency parses. The maximum token length of
the input sentences is 40 and the max token length
of linearized syntax parses is 180. Word embed-
dings are initialized using GloVe (Pennington et al.,
2014). The encoder and decoder architecture of our
model is implemented with standard Transformer
architecture (Vaswani et al., 2017) with its default
parameters. We employ the Adam optimizer with
a learning rate of le-4 and a weight decay of 1e-5.
The word dropout probability is set to 0.4. The
training process is carried out for 10 epochs.

5 Results
5.1 Quantitative Evaluation

Table 2 presents the results of our quantitative eval-
uation on the Yelp and Amazon datasets. For con-
trollable text style transfer models, there are mul-
tiple output candidates that can be generated by
varying the style transfer weight. To select the best
candidate, we choose the output with the highest
geometric mean of the accuracy and BLEU score.

Our model demonstrates competitive accuracy
on the Yelp dataset compared to both controllable
and uncontrollable text style transfer models. No-
tably, our model achieves the lowest PPL score
among all the compared models, with a score of
40.9, which is close to the PPL of human reference
42.3. On the Amazon dataset, our model achieves
the highest accuracy among controllable models
and also shows the lowest PPL score. Overall,
these results suggest that our proposed method ef-
fectively improves the fluency of transferred text
while maintaining high accuracy, although there is
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Negative— Positive

Input
Controllable-transfer
Adaptive-StyleEmb

other than that , food here is pretty gross .
other than that , food is here pretty fun makes you delicious .
other than that , food here is pretty good and enjoy warm .

Ours other than that , food here is pretty good .
Positive— Negative
Input the service is friendly and attentive.

Controllable-transfer
Adaptive-StyleEmb
Ours

the service was not less but then disappointed had the wait fries.
the service is then rude and had old fill that is your worse.
the service is slow and rude.

Table 3: Comparison of transferred outputs at the text-level in controllable models. Bolded text indicates differences

from the input text.

room for improvement in terms of the BLEU score.
5.2 Qualitative Evaluation

In Table 3, we compare transferred outputs from
the controllable style transfer models. To select the
optimal style transfer weight for the controllable
text style transfer models, which is a hyperparame-
ter, we use the same criterion used in 5.1, selecting
the weight that shows the highest geometric mean
of the accuracy and BLEU score. In the first sam-
ple, where a negative sentence is transferred into
a positive one, our model is able to convert the
token gross to good while preserving the content
of the sentence. In contrast, the other compared
models, suggested by Wang et al. (2019a) and Kim
and Sohn (2020), generate some tokens that are not
present in the original input sentence, such as fun
makes you delicious and good and enjoy warm.

In the second sample, where a positive sentence
is transferred into a negative one, our model is able
to effectively transfer the sentiment of the input
sentence by converting friendly and attentive into
slow and rude while maintaining the naturalness
and fluency of the sentence. The other compared
models are also able to transfer the input into a
negative sentiment. However, their outputs are less
natural and fluent compared to ours.

These results indicate that our proposed method
is highly effective in transferring the sentiment of
the input text to the target style, while ensuring that
the content and fluency of the transferred text are
maintained.

5.3 Ablation Study

To further demonstrate the importance of incor-
porating syntax parse information, we conduct an
ablation study. Table 4 shows the impact of con-
catenating syntactic and style embedding on the
three evaluation metrics of the transferred text. Our

Synemb Styleemb | ACC BLEU PPL
) (e} O 82.5 188 40.9
2) X ¢} 57.3 13.7 458
3) o X 21.0 146 413
(€))] X X 16.0 16.1 58.6

Table 4: Ablation study of the impact of concatenating
syntax and style embeddings. We set the style transfer
weight w of each model with the geometric mean of
accuracy and BLEU score.

Model Original Human-transferred
Ours 92.0 67.4
Controllable-transfer 71.4 56.6
Adaptive-StyleEmb 71.4 56.9

Table 5: Syntax similarity of each model using a metric
based on weighted ROUGE scores. It compares the
linearized syntax parses of generated sentences to those
of reference sentences. Our approach was compared
to two controllable text style transfer baselines on the
Yelp dataset to demonstrate its ability to preserve syntax
while transferring style.

proposed model (Model 1) outperformed the other
models across all three metrics. When we excluded
the syntactic embedding (Model 2), the resulting
transferred text was less fluent, as evidenced by an
increase of approximately 5 points in PPL. Simi-
larly, when we removed both syntactic and style
embeddings, the performance of the model dropped
significantly, particularly in terms of accuracy and
PPL. Conversely, adding the syntactic embedding
to Model 4 (Model 3) resulted in a substantial de-
crease in PPL. These results underscore the crucial
role of syntax parsing information in generating
fluent and natural transferred text.

5.4 Syntax Preservation

As demonstrated in 5.2, the controllable style trans-
fer models tend to generate more tokens than the
input text in order to incorporate more stylistic
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Figure 3: Semantic embedding visualization differing style weight w.

attributes. While this approach can contribute to
higher accuracy, it may compromise the fluency of
the output. Therefore, we conducted an experiment
to assess the syntax preservation capabilities.
Syntax preservation is determined by the similar-
ity between the syntax parse of the source text and
that of the reference text. We employ the syntax
parse similarity measure using weighted ROUGE
scores (Lin, 2004) proposed in Sun et al. (2021).

S(PsresPref) = ax ROUGEL 4 b* ROUGE?2
+c* ROUGEL

We set a = 0.2, b = 0.3, ¢ = 0.5, following
previous work. We applied the style transfer to
the test set and compared the transferred output
with two types of references: the original test set
and human-transferred references. Table 5 demon-
strates that the output generated by our model is
considerably more similar to both references. This
finding suggests that concatenating syntax parses
aids the model in retaining the syntactic structures
even though the sentiment has transferred.

5.5 Syntax-guided Reconstruction Ability

We evaluate the impact of syntax information on
the reconstruction ability of our model, which is
trained using reconstruction loss. To assess the pure
reconstruction ability, we exclude style information
from all models.

Model ACC Self-BLEU PPL
Ours 3.0 90.9 36.9
Controllable-transfer 4.1 78.7 534
Adaptive-StyleEmb 54 71.5 63.2

Table 6: Impact of syntax parses on model’s reconstruc-
tion ability evaluated on Yelp dataset.

The results presented in Table 6 highlight the
impact of additional syntax information on the re-
construction ability of our model. To evaluate this
ability, we use the self-BLEU metric which mea-
sures the similarity between the original input text

and the reconstructed text, where a higher score
indicates better reconstruction ability. Conversely,
for accuracy, a lower score indicates better recon-
struction ability since it is the accuracy for style
transfer. The PPL is calculated using GPT-2 lan-
guage model. Our findings indicate that incorpo-
rating additional syntax parses not only enhances
transfer capability but also improves reconstruction
ability.

5.6 Embedding visualization

We visualize semantic embeddings in Figure 3 us-
ing PCA (Wold et al., 1987) after they are trans-
ferred using learned style embeddings. Red dots
represent positive sentences that were originally
negative, while green dots indicate negative sen-
tences that were originally positive. At w=0, the
two colors of dots are entangled. However, as the
transfer weight increases, these embeddings gradu-
ally separate. At w=3, it is evident that the embed-
dings are completely transferred and distinctly sep-
arated. This implies that the style transfer weight
effectively controls the degree of transfer.

6 Conclusion

In this paper, we proposed a controllable, syntax-
guided text style transfer model. We improved
the fluency of transferred sentences, irrespective of
the style transfer strength, by incorporating syntax
parses and concatenating their embeddings with
semantic and style embeddings. Our approach out-
performed previous controllable models on two
datasets in terms of consistent PPL scores and nat-
ural sentence generation while preserving context.
However, our model yielded lower BLEU scores
compared to other controllable style transfer mod-
els. Future work aims to improve content preser-
vation capabilities while maintaining performance
across varying style transfer weights.
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Limitation

Our proposed method demonstrates stable perplex-
ity even as the style transfer weight changes, but
it yields a lower BLEU score compared to other
controllable style transfer models. We hypothesize
that the lower BLEU score may be attributed to the
fact that the BLEU score calculation is based on
just one human-written transferred sentence option
per source sentence. This lower score could be a
result of our model generating diverse sentences
that do not necessarily overlap with the provided
human-written references.

Ethics Statement

There are several ethical considerations that must
be taken into account when developing a text style
transfer model. One important consideration is
the risk of the generated text being used to spread
hate speech or misinformation. It is also crucial
to ensure that the model does not exhibit bias to-
wards a particular demographic, which could result
in harmful outcomes. Another potential ethical
concern is the misuse of the model for malicious
purposes, such as generating negative comments or
fake news. These issues need to be addressed to
ensure that the development and use of the model
align with ethical principles and values.
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