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Abstract

The present work describes the solutions pro-
posed by the UnibucNLP team to address the
closed format of the DSL-TL task featured in
the tenth VarDial Evaluation Campaign. The
DSL-TL organizers provided approximately 11
thousand sentences written in three different
languages and manually tagged with one of 9
classes. Out of these, 3 tags are considered
common label and the remaining 6 tags are
variety-specific. The DSL-TL task features 2
subtasks: Track 1 - a three-way and Track 2 - a
two-way classification per language. In Track
2 only the variety-specific labels are used for
scoring, whereas in Track 1 the common label
is considered as well. Our team participated
in both tracks, with three ensemble-based sub-
missions for each. The meta-learner used for
Track 1 is XGBoost and for Track 2, Logis-
tic Regression. With each submission, we are
gradually increasing the complexity of the en-
semble, starting with two shallow, string-kernel
based methods. To the first ensemble, we add
a convolutional neural network for our second
submission. The third ensemble submitted adds
a fine-tuned BERT model to the second one. In
Track 1, ensemble three is our highest ranked,
with an F1 − score of 53.18%; 5.36% less
than the leader. Surprisingly, in Track 2 the en-
semble of shallow methods surpasses the other
two, more complex ensembles, achieving an
F1− score of 69.35%.

1 Introduction

Discriminating between Similar Languages us-
ing a manually annotated data set of True Labels
(Zampieri et al., 2023) was included on the list
of shared tasks in the tenth VarDial evaluation
campaign (Aepli et al., 2023), under the DSL-TL
acronym. The topic of discriminating among lan-
guage varieties and similar languages has been
addressed in previous VarDial editions (Zampieri
et al., 2017; Malmasi et al., 2016; Zampieri et al.,
2015, 2014). However, we find the DSL-TL task

compelling as it introduces qualitative human-
annotations from multiple sources.

In DSL-TL organizers provide a set of sentences
coming from news reports1 written in either En-
glish, Spanish or Portuguese and split in a train,
development and test subsets. The test split rep-
resents a collection of unlabelled sentences, with
labels being subject to further submissions from
participants. The examples in the train and develop-
ment sets are tagged with one of nine labels, namely
EN-GB, EN-US, EN, ES-ES, ES-AR, ES, PT-PT, PT-
BR and PT. Six of the labels provided, aside from
the language itself, also specify the language va-
riety, marked with the initials of the country (i.e.
GB – Great Britain, US – USA, ES – Spain, AR –
Argentine, PT – Portugal, BR – Brazil). These are
referenced to, by the organizers, as variety-specific
labels. The remaining three tags, i.e. EN, ES and
PT, are considered common labels. Based on this
terminology, the task features two subtasks:

• Track 1 - a nine-way classification, where both
the variety-specific (e.g. EN-GB or EN-US)
as well as the common label (e.g. EN) are
considered for scoring.

• Track 2 - evaluates a six-way classification
setup, considering only the variety-specific
labels.

The DSL-TL task is presented in both the open
and closed formats for each of the two aforemen-
tioned tracks. Three submissions are allowed for
each pair (subtask, format), which amounts to a
total of maximum 12 different sets of predictions
that can be submitted by each team.

Our team chose the closed format and partici-
pated in both tracks, with three submissions for
each subtask. All the models submitted are pow-
ered by ensemble learning. For Track 1, the meta-
learning is based on Extreme Gradient Boosting

1https://github.com/LanguageTechnologyLab/
DSL-TL
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(XGBoost) (Chen and Guestrin, 2016), while for
Track 2 we employ Multinomial Logistic Regres-
sion (Peng et al., 2002) as our meta-classifier. The
same subset of individual learners is used for each
set of ensembles submitted , independent of its
meta-learner (i.e. XGBoost or Logistic Regression)
and destination (i.e. subtask).

With each submission, we gradually increase the
complexity of the models plugged into the afore-
mentioned ensembles. We start by combining the
powers of two shallow methods, namely Support
Vector Machines (SVM) (Cortes and Vapnik, 1995)
and Kernel Ridge Regression (KRR) (Hoerl and
Kennard, 1970), both using string kernels - a fea-
ture extraction technique that proved useful in pre-
vious endeavours of identifying language varieties
(Ionescu and Popescu, 2016). For our second sub-
mission, we augment the ensemble of shallow mod-
els with a Character-level Convolutional Neural
Network (Char-CNN) (Zhang et al., 2015), which
adds depth to the ensemble and a new way of re-
garding the data (i.e. at the character level). The
third ensemble submitted for each track contains
the two string kernel based shallow methods, the
Char-CNN and also a fine-tuned BERT (Devlin
et al., 2019) as individual learners.

We fine-tuned and evaluated all of the individual
models and meta-learners previously mentioned
using the development set provided by Zampieri
et al. (2023). Our final submissions include the
development subset in the training routine. More-
over, our preference for only submitting ensemble
models reflect the best results obtained locally with
models trained on the training split and tested on
the development data.

The rest of the present paper is structured as
follows. In Section 2 we present related work in
the space of language varieties identification. We
describe in detail our approach for the DSL-TL
task in Section 3. The experiments conducted and
the empirical results obtained are discussed across
Section 4. A set of conclusions will be drawn in
Section 5.

2 Related Work

Usually modeled as a text classification problem
and tackled using supervised learning approaches
(Jauhiainen et al., 2019b), Language Identification
(LI) research dates from the mid-60’s (Mustonen,
1965), with periodic updates until the early 2000s
(Takcı and Soğukpınar, 2004; Sibun, 1996; Grefen-

stette, 1995). Initially focused on dissimilar lan-
guages, LI has reached a peak when McNamee
(2005) achieved a nearly-perfect outcome using
character n-grams based models to discriminate
among different languages in samples collected
online.

In the last decade, language identification re-
search has regained momentum, with social media
becoming a rich and resourceful source of data.
User-generated content (Tromp and Pechenizkiy,
2011) and free-form short texts (Anand, 2014) can
be counted among the reasons why the research
in the area of language identification was resumed.
New challenges have arisen - e.g. mixing two or
more different languages in social media content
(Molina et al., 2016). Moreover, the idea of dis-
criminating among similar languages or language
varieties started gathering an entire community
around it, especially in the VarDial evaluation cam-
paign (Aepli et al., 2022; Chakravarthi et al., 2021;
Gaman et al., 2020).

The problem of discriminating among similar
languages has been tackled, to date, using a va-
riety of ML-powered techniques practicing both
shallow (Ljubešic and Kranjcic, 2014), as well as
deep-learning (Li et al., 2018) with an accuracy
surpassing a 95% threshold.

For language varieties on the other hand, we
can observe fluctuations in performance as shown
in the VarDial reports to date (Aepli et al., 2022;
Chakravarthi et al., 2021; Gaman et al., 2020). For
instance, Goutte et al. (2014) applies a common
approach to three different language varieties: Eu-
ropean vs Brazilian Portuguese, Castilian vs Ar-
gentine Spanish and British vs American English.
The same model achieves an accuracy above 90%
for the first 2 varieties and just below 53% for
the third. In the Arabic dialect identification task
(Malmasi et al., 2016), the highest ranking systems
were based either on ensemble learning or on single
SVMs trained on character and word-level n-grams
(Malmasi and Zampieri, 2016; Eldesouki et al.,
2016) and achieved accuracies of around 50%. Re-
cent shared tasks (Aepli et al., 2022; Chakravarthi
et al., 2021; Gaman et al., 2020; Zampieri et al.,
2019, 2018, 2017) continued the work in the space
of language varieties, with multiple different lan-
guages targeted over the years. Among these, we
count German (Malmasi and Zampieri, 2017b),
Chinese (Jauhiainen et al., 2019a) and Italian Jauhi-
ainen et al. (2022) dialects, Dutch vs Flemish (Çöl-
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tekin and Rama, 2017), Romanian vs Moldavian
(Çöltekin, 2020), etc. Performance was consis-
tent with the results in earlier campaigns (2014 -
2016) – the highest ranked results varied greatly
from task to task, with n-gram based shallow mod-
els often outperforming other approaches. These
works show that language identification is not a re-
solved problem, as we still see a struggle in perfor-
mance in automatically identifying certain dialects
and language varieties.

Among the most recent works on language iden-
tification, we should mention the one on which the
current DSL-TL shared task is based. Zampieri
et al. (2023) introduce DSL-TL as the first human-
annotated multilingual data set for language va-
riety classification. DSL-TL uses instances from
DSLCC (Tan et al., 2014) - an extensive collec-
tion of samples for LI, introduced and enhanced
in prior VarDial evaluation campaigns (Zampieri
et al., 2017; Malmasi et al., 2016; Zampieri et al.,
2014). DSL-TL also uses news reports from Zellers
et al. (2019). The authors label the data from multi-
ple human sources using a crowdsourcing platform.
Moreover, alongside the qualitative data set, the
authors train multiple models on these samples.
The approaches used count Naive Bayes, Adaptive
Naive Bayes and deep learning based methods such
as mBERT, XLM-R, and XLM-R-LD and are em-
ployed as baselines in the shared task referred in
the present paper. Intriguing perhaps, the authors
observe similar performance across the shallow
and deep learning based methods. Additionally,
in some cases, the shallow methods even surpass
the deep ones - an observation consistent with prior
findings (Jauhiainen et al., 2019b; Medvedeva et al.,
2017).

Analyzing the baselines introduced by Zampieri
et al. (2023), we consider appropriate to tackle the
classification problem posed by the DSL-TL task
from both angles. Thus, as previously mentioned,
we are combining shallow and deep learning tech-
niques in our ensemble-powered solutions. Our
choice is encouraged by prior research in the space
of LI, which shows good results obtained by stack-
ing ensembles (Malmasi and Zampieri, 2017b,a).
Moreover, we choose most of the individual learn-
ers used based on their prior impact in language
identification tasks: SVM with string kernels (Kru-
engkrai et al., 2005), CNNs (Jaech et al., 2016) and
BERT (Zaharia et al., 2020). From our perspective,
prior success in LI is an indication that these meth-

ods have a high chance of being suitable for the
DSL-TL use-case as well. Additionally, each of the
two choices of meta-learners were also used before
in language variety identification: Logistic Regres-
sion (Porta and Sancho, 2014; Chen and Maison,
2003) and XGBoost (Barbaresi, 2016).

3 Methods

Our team submitted three distinct ensemble-based
systems for each of the two tracks of the DSL-
TL task. The choice of architecture for the meta-
learner represents the one difference between the
ensembles submitted for each track. For the first
subtask, we use an XGBoost-based meta-learner,
whereas for the second one, we rely on Logistic
Regression. As mentioned in both Section 1 and
Section 2, we gradually increase the complexity of
the ensemble used in each submission. Figure 1
displays the prediction pipeline of the third and
most complex system submitted, which is similar
with a system that we used in a previous VarDial
geo-location challenge (Gaman et al., 2021). From
left to right, also in Figure 1, we can infer how
the other pipelines are composed: the first system
submitted only uses two shallow models (i.e. SVM
and KRR) and the second submission adds a char-
level CNN to the first system. In the continuation
of this section, we briefly describe each individual
machine learning technique used in the ensembles
submitted, as well as the meta-learners.

3.1 Shallow Learning based on String Kernels
String Kernels. Introduced by Lodhi et al.
(2001), string kernels represent an effective method
(Cozma et al., 2018; Ionescu and Butnaru, 2018;
Giménez-Pérez et al., 2017; Ionescu et al., 2014)
of comparing two textual samples. String kernels
use the inner product generated by all the character
n-grams in a given document. We observe good per-
formance of string kernel-based systems in dialect
identification, with emphasis on previous VarDial
editions (Butnaru and Ionescu, 2018; Ionescu and
Popescu, 2016).

Using the technique introduced by Popescu et al.
(2017), we obtain a kernel matrix X where the
element Xij measures the similarity between two
documents xi and xj . The similarity function used
is the presence bits string kernel (Popescu and
Ionescu, 2013), which is defined as follows:

k0/1(xi, xj) =
∑

g∈Sn

#(xi, g) · #(xj , g), (1)
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Figure 1: Full ensemble (submission 3) proposed by UnibucNLP for the DSL-TL shared task. Best viewed in color.

where S is a set of characters; xi and xj are the
strings to be compared; n is the length of the char
n-grams used and #(x, g) is a function with binary
outcome that returns 1 when n-gram g occurs at
least once in x.

Support Vector Machines – SVM(s). The goal in
SVMs (Cortes and Vapnik, 1995) is to find the best
hyperplane that separates the training data points
in their respective classes. At the same time, in
order to achieve better generalization, SVM tries to
maximize the margin that separates the two classes,
using support vectors (i.e. the points closest to
the decision boundary). An advantage of SVM
is the kernel trick (Shawe-Taylor and Cristianini,
2004) - a technique used to map the non-linearly
separable data in a higher-dimensional space,
where it becomes separable through a hyperplane.
Although designed with 2-way classification
in mind, SVMs can be used in the multi-class
setup through the training of multiple models in a
one-vs-one or one-vs-rest scheme. In our current
experiments, we use the one-vs-one technique.
Moreover, instead of using a standard kernel, we
employ the SVMs with the custom n-gram based

string kernel defined in Equation 1.

Kernel Ridge Regression (KRR). Considered a
generalization of Ridge Regression (Hoerl and Ken-
nard, 1970), KRR is obtained by combining L2 lin-
ear regression with the kernel trick (Saunders et al.,
1998). Thus, KRR presents the same two big ad-
vantages as is the case with SVM - (1) it can model
non-linearly separable data and (2) we can use a
custom kernel function. For the DSL-TL task, we
employ the presence bits kernel from Equation 1.
We also follow two steps to repurpose the trained re-
gressor for multi-class classification: (1) we round
the continuous predictions to match the values in
{−1, 1} and (2) we use the one-versus-rest scheme.

3.2 Deep Learning

Character-level Convolutional Neural Network
(Char-CNN). Regarded as the base unit in any
given vocabulary, characters represent a popular
(Al-Rfou et al., 2019; Kim et al., 2016; Zhang
et al., 2015; Sutskever et al., 2011) non-pretentious
source of features for text-based ML models. When
working at character level, we remove dependen-
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cies of syntax and semantic structure (Ballesteros
et al., 2015). Given that in DSL-TL we have mul-
tiple languages mixed in the same data set, the
aforementioned property represents a welcomed
advantage for the present use-case.

CNNs are a type of neural network that joins
convolutions and pooling operations in convolu-
tional blocks. Towards the end of the network we
usually add a sequence of fully connected layers,
followed by a terminal prediction layer. In this
work, we employ a convolutional neural network
operating at char level (Zhang et al., 2015) with
squeeze-and-excitation (SE) blocks, introduced
and successfully used in dialect identification by
Butnaru and Ionescu (2019).

Transformers (BERT). With an encoder-decoder
based architecture, transformers (Vaswani et al.,
2017) are among the most important advancements
in NLP in the past decade. Widely used since its
release, BERT (Devlin et al., 2019) is a special type
of transformer, which pre-trains deep bidirectional
representations of language in a self-supervised
fashion. For downstream tasks, such as our cur-
rent language varieties identification problem, it
is straightforward to fine-tune a pretrained BERT
model. BERT is our last choice of individual
learner given the good results obtained in simi-
lar dialect / language variety identification setups
(Zaharia et al., 2020).

3.3 Ensemble Learning

XGBoost. XGBoost is a tree-based ensemble
model (Chen and Guestrin, 2016; Friedman, 2001),
effectively employed in both academic research (Li,
2010; Burges, 2010; Bennett et al., 2007) as well as
the industry (He et al., 2014). In our experiments,
XGBoost is the chosen meta-learner for Track 1.
We train XGBoost over the predictions of each in-
dividual models previously described in the current
section.
Logistic Regression (LR). Multinomial Logistic
Regression is a generalization of LR (Peng et al.,
2002) to multi-class classification problems. Lo-
gistic Regression has been historically employed
in language identification tasks (Porta and Sancho,
2014; Chen and Maison, 2003). Moreover, in our
experiments, the ensembles that used multinomial
Logistic Regression as meta-learner achieved simi-
lar performance when compared to the XGBoost
meta-learner. Thus, we decided to also submit the

predictions of the set of ensembles based on LR.
We should mention that we trained the LR-based
ensembles on all of the tags available, including the
common labels (i.e. GB, ES and PT). No language-
variety specifics were enforced for this ensemble
whose predictions were submitted for Track 2.

4 Experiments

4.1 Data Set

The DSL-TL data set (Zampieri et al., 2023) is tar-
geted towards the task of discriminating between
language varieties. Consistent with its purpose, the
data set contains a total of 12, 900 instances written
in either English (EN), Spanish (ES) or Portuguese
(PT) and manually labelled from multiple sources.
DSL-TL makes a distinction among two different
varieties for each of the three languages included.
Thus, we observe the following six composed la-
bels in the data set: EN-GB - British English, EN-
US - American English, ES-ES - Castilian Spanish,
ES-AR - Argentine Spanish, PT-PT - European Por-
tuguese and PT-BR - Brazilian Portuguese. More-
over, we also have 3 common labels, namely EN,
ES and PT, for the samples not containing any vari-
ety specific markers.

DSL-TL provides three splits for training, devel-
opment and the final testing of the solutions pro-
posed to address the task. The split was performed
following the 70/20/10 rule. The training and de-
velopment textual samples are provided alongside
their respective language labels. The test set only
contains the textual samples, pending further sub-
mission of predictions such that the organizers can
evaluate them against the ground truth.

4.2 Hyperparameter Tuning

SVM. In our experiments, we use SVM with a
pre-computed string kernel and the regularization
parameter C = 10. We select the best regulariza-
tion value via grid search from a range of values
from 10−4 to 104, with a multiplication step of
10. For the string kernel used, we experiment with
multiple presence-bits string kernels based on var-
ious n-gram lengths, from 3 to 6 characters long.
The best performance in terms of accuracy and
macro F1− score was achieved by a string kernel
based on the blended spectrum of 3 to 5 character
n-grams.
KRR. For KRR, we tune the regularization λ using
a set of values that range from 10−6 to 10−1, and
a multiplication step of 10. The best value for λ

234



in our 9-way classfication setup was 10−2. Similar
with the SVMs, the string kernel used in KRR is
based on a blended spectrum of 3 to 5 character
n-grams.

CharCNN. The third individual learner used is a
character-level CNN (Zhang et al., 2015), operating
on an input window of maximum 256 characters in
each sample, as indicated by a closer inspection of
the data. The architecture used is very similar with
the one employed by Butnaru and Ionescu (2019) in
Romanian dialect identification. Each of the maxi-
mum 256 characters considered in the input layer is
embedded into a vector of size 128, selected from
a set of powers of 2 as potential embedding sizes,
ranging from 16 up until 256. Three convolutional
blocks follow, each having a convolutional layer
with 128 filters, a stride of 1 and filter sizes 7, 5
and 3. We use max pooling with a filter of size 3 to
downsample the output of the convolutional layer.
Each convolutional block is followed by a Squeeze-
and-Excitation (SE) block with a reduction ratio
r = 64. The sequence of convolutional blocks is
followed by one fully connected layer with 128
neural units, out of which we drop neurons with
a probability of 0.5. The neural network is also
equipped with a final Softmax-activated prediction
layer, of size 9 to retrieve a probability for each
of the classes in DSL-TL. We use a learning rate
of 10−4 and train the network for 100 epochs on
mini-batches of 128 samples. Early stopping is
used with a tolerance of 10 consecutive epochs for
stalled performance.

Fine-tuned BERT. Our fourth and last individ-
ual learner consists in a fine-tuned multilingual
BERT model (Devlin et al., 2019). Prior to fine
tuning the model, we use the multilingual BERT
tokenizer to encode each example into a list of
token IDs. Then, each token is translated into a
768-dimensional embedding vector. Furthermore,
the architecture is augmented with a global aver-
age pooling layer to achieve a Continuous Bag-of-
Words (CBOW) representation of the data. In the
end, a Softmax output layer predicts the likeliness
of a sample being marked with each of the nine
language tags provided. We fine-tune the model
described above for 30 epochs with early stopping.
We train on mini-batches of 32 samples and op-
timize using Adam with decoupled weight decay
(AdamW) (Loshchilov and Hutter, 2019), a learn-
ing rate of 5 · 10−5 and an ϵ equal to 10−8. We
tuned the learning rate using a few different values

in the range of 10−5 and 10−4 and tested two loss
options, cross-entropy vs. negative log-likelihood.
In the end, we opted for the cross-entropy loss.
XGBoost. We fine-tune the XGBoost meta-learner
separately, for each of the three submissions. The
set of values considered for the maximum depth
of a tree is [3, 5, 7, 9, 10]. We fine-tuned the learn-
ing rate in a range starting from 10−4 up to 10−1,
with a multiplying step of 10. The subsample ra-
tio of columns when constructing each tree was
picked from [0.1, 0.3, 0.5, 0.7]. The number of es-
timators is gradually initialized with values rang-
ing from 50 and up to 400 with an additive step
of 50. For each submission, a different set of pa-
rameters was deemed optimal. Thus, for the en-
semble composed of shallow models, the best pa-
rameters were: max_depth=5, learning_rate=10−1,
n_estimators=50 and colsample_bytree=0.5. When
adding the character-level CNN into the mix
of shallow models, the best choice of hyper
parameters changes slightly: max_depth and
learning_rate remain the same as previously men-
tioned; however, in this case, n_estimators=100
and colsample_bytree=0.7. With BERT in-
cluded in the ensemble of shallow and deep
models, all the optimal parameters change
as follows: max_depth=7, learning_rate=10−3,
n_estimators=200 and colsample_bytree=0.5.
Logistic Regression. In the case of the Logistic
Regression based meta-learner, we use L2 regular-
ization and only fine tune the inverse of the regular-
ization strength parameter, noted as C. The range
of values tested starts with 10−5 and ends with 105.
Different optimal values are observed for each run,
as we gradually increase the number of learners
and their respective depths. For the ensemble of
shallow methods, we observe that a C=103 gives
the best scores both in terms of accuracy, as well as
for the macroF1−score. The optimal value for C
decreases to 102 when we combine the Char-CNN
with the two shallow models. We observe a further
decrease in the best value for C, i.e. 101, when we
add the BERT model to the second ensemble.

4.3 Results

Track 1 For Track 1 we submitted 3 XGBoost
stacking ensembles, gradually adding more com-
plex individual learners to the ensemble as follows.
For the first run, we combine only the powers of
two shallow models, namely SVM and KRR. In
the second run, we add a character-level CNN to
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the ensemble of shallow models. Finally, in the
third run, we add a fine tuned BERT model to the
second run. In our local testing, the performance
on the development set increased with the addition
of each individual learner. Thus, we deemed our
first run, UnibucNLP-run-1, as being the weakest
of the three submissions for this track, followed
by the second run, UnibucNLP-run-2 and with
UnibucNLP-run-3 being the top performing sys-
tem that we have submitted.

Method Rank F1-score
VaidyaKane-run-3 1 0.5854
baseline-mBERT 4 0.54
baseline-XLM-R 5 0.536
UnibucNLP-run-3 6 0.5318
baseline-XLM-R-LD 7 0.529
baseline-NB 8 0.503
UnibucNLP-run-1 11 0.4875
UnibucNLP-run-2 13 0.4572

Table 1: The final results for the closed format of Track
1 obtained by our XGBoost based ensembles on the
DSL-TL test set. For simplicity, we compare ourselves
only against the baseline and the top scoring method. In
bold are the methods that we submitted and described
in the current work.

Table 1 partially confirms our intuition, as our
third run is indeed out-performing the other two
ensemble-based systems. Surprisingly perhaps, the
ensemble that combines the predictions of the Char-
CNN and the ones of SVM and KRR falls behind
the model that employs only the shallow individual
models. Our best performing submission is situ-
ated just below two of the best performing baselines
provided for Track 1, and immediately above the
worst-performing baselines in this subtask. The 9-
way classification proved to be a difficult problem,
as most of the submissions are below the worst per-
forming baseline provided by the organizers. Three
submissions of the same team (i.e. VaidyaKane)
are above all of the baselines, then our best per-
forming system is right in the middle, ranking sixth
if we consider the baselines and fourth if we don’t,
then, below the baselines we can see the scores of
all the other systems submitted (including ours -
run 1 and run 2).

Table 2 shows the ranking and score of our
best performing method for each of the 9 classes
considered. We achieve a good position in
classifying the samples that are written in English -
ranking first for EN-US, second for the common

Tag Method Rank F1-score
EN VaidyaKane-run-3 1 0.3333
EN UnibucNLP-run-3 2 0.32
EN baseline-mBERT 3 0.303
EN-GB VaidyaKane-run-1 1 0.8148
EN-GB UnibucNLP-run-3 4 0.8034
EN-GB baseline-XLM-R 5 0.793
EN-US UnibucNLP-run-3 1 0.8454
EN-US baseline-mBERT 3 0.829
ES VaidyaKane-run-2 1 0.4738
ES UnibucNLP-run-3 2 0.4573
ES baseline-mBERT 3 0.455
ES-AR VaidyaKane-run-1 1 0.6204
ES-AR baseline-mBERT 4 0.518
ES-AR UnibucNLP-run-3 9 0.4884
ES-ES VaidyaKane-run-1 1 0.7692
ES-ES baseline-XLM-R 3 0.719
ES-ES UnibucNLP-run-1 7 0.6858
PT VaidyaKane-run-2 1 0.1633
PT baseline-NB 4 0.126
PT UnibucNLP-run-3 7 0.1165
PT-PT ssl-run-1 1 0.7923
PT-PT baseline-XLM-R 5 0.769
PT-PT UnibucNLP-run-3 7 0.7618
PT-BR baseline-XLM-R 1 0.562
PT-BR UnibucNLP-run-1 12 0.4683
PT-BR UnibucNLP-run-2 13 0.378
PT-BR UnibucNLP-run-3 14 0.3575

Table 2: The performance per class reported on the test
set for the closed format of Track 1 obtained by our best
performing ensemble compared to the baseline and the
top scoring method. We mark in bold our own work.

label EN and fourth for EN-GB. Although for
the common Spanish tag we rank second, for
the Castilian and Argentine language varieties,
we only achieve the seventh and ninth positions
respectively. The common label for Portuguese
seems to bring ourselves and everyone other
participant down, with the best model not being
able to obtain an F1− score greater than 0.1633.
The results for European Portuguese are better,
and with values very close to each other across
all of the systems submitted. In these conditions,
for PT-PT we achieve an F1 − score of 0.7618.
In the end, as shown in the final rows of Table 2,
all of our systems achieve the worst results for
Brazilian Portuguese.

Track 2 Track 2 tests a six-way classification,
using only the variety-specific tags and ignoring the
common labels. For this subtask, we submit three
stacking ensembles, following the same logic as
for the submissions in Track 1, the only difference
being that we use Logistic Regression as meta-
learner. We do not perform any variety-specific
transformations and we do not exclude the common
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labels at training for the three runs submitted for
Track 2. Thus, our expectations are consistent with
the results obtained and displayed in Table 3.

Method Rank F1-score
VaidyaKane-run-1 1 0.8561
baseline-ANB 4 0.799
baseline-NB 5 0.794
baseline-XLM-R 6 0.78
baseline-XLM-R-LD 7 0.772
baseline-mBERT 9 0.755
UnibucNLP-run-1 13 0.6935
UnibucNLP-run-3 14 0.6855
UnibucNLP-run-2 15 0.6182

Table 3: The final results for the closed format of Track
2 obtained by our Logistic Regression based ensembles
on the DSL-TL test set. For simplicity, we compare
ourselves only against the baselines and the top scoring
method. In bold are the methods that we submitted and
described in the current work.

One interesting fact observed in Table 3 is that
our first run - an ensemble of string kernel based
shallow models, outperforms our other two runs,
based on more complex models such as the Char-
CNN and BERT models.

5 Conclusions

In this work we propose six ensemble models to ad-
dress the problem of language-variety identification
in news reports. To tackle the two tracks proposed
by the DSL-TL task, we employ two similar sets
of ensembles which differ only in the choice of
meta-learner: XGBoost for the 9-way classification
in the first track, and Logistic Regression for the
6-way classification in the second one. By the def-
inition of Track 2, our Logistic Regression based
systems are evaluated only on the variety-specific
labels provided. However, we have trained these
LR powered ensembles also on the common labels,
in hopes that the model will learn additional useful
representations. For each set of ensembles sub-
mitted, we follow a similar strategy: increase the
number of models and individual models’ complex-
ity for each run. Thus, our first submission only
combines predictions from KRR and SVM - two
shallow models. In the second ensemble we add a
CNN working at character level, and in the third
one, we augment the second ensemble with a fine
tuned multilingual BERT model.

For the 9-way classification, our best performing
model achieves a macro F1-score of 53.18%, 5%

less than the top scoring submission. Overall, our
model ranks fourth out of 9 total submissions and
surpasses two of the four strong baselines proposed
by the organizers. In the variety-specific, 6-way
classification of Track 2, most of the models sub-
mitted by participants (including ours) fall behind
the proposed baselines. Interestingly, our best per-
forming submission in this case is the ensemble of
shallow models, which obtains a score of 69.35%,
surpassing the other 2, more complex ensembles,
that we submitted.

Given the final results, we conclude that in future
similar endeavours we should not underestimate the
power of shallow models, as they consistently seem
to achieve good results in language identification
setups. Moreover, we intend on performing a closer
analysis of the baselines proposed in Zampieri et al.
(2023) - the paper that introduces DSL-TL, try to
replicate and perhaps enhance the already impres-
sive methods that the authors used for this task.

Limitations

Limitations of the present work and results include
tackling the closed format of the DSL-TL task. As
shown in Zampieri et al. (2023) using additional
data, from the broader DSLCC corpus (Tan et al.,
2014), would have likely helped both the 9-way as
well as the 6-way classification attempted in our
submissions.

Hardware limitations represent another disadvan-
tage, due to which a better, broader fine-tuning of
the deep learning based models could not be fully
achieved in time.
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Mădălina Cozma, Andrei Butnaru, and Radu Tudor
Ionescu. 2018. Automated essay scoring with string
kernels and word embeddings. In Proceedings of
ACL, pages 503–509.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of NAACL, pages 4171–
4186.

Mohamed Eldesouki, Fahim Dalvi, Hassan Sajjad, and
Kareem Darwish. 2016. QCRI @ DSL 2016: Spoken
Arabic dialect identification using textual features. In
Proceedings of VarDial, pages 221–226.

Jerome H Friedman. 2001. Greedy function approx-
imation: a gradient boosting machine. Annals of
statistics, pages 1189–1232.

Mihaela Gaman, Sebastian Cojocariu, and Radu Tudor
Ionescu. 2021. UnibucKernel: Geolocating Swiss
German jodels using ensemble learning. In Proceed-
ings of VarDial, pages 84–95.

Mihaela Gaman, Dirk Hovy, Radu Tudor Ionescu,
Heidi Jauhiainen, Tommi Jauhiainen, Krister Lindén,
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mann, Chris van der Lee, Stefan Grondelaers,
Nelleke Oostdijk, Dirk Speelman, Antal van den
Bosch, Ritesh Kumar, Bornini Lahiri, and Mayank
Jain. 2018. Language identification and morphosyn-
tactic tagging: The second VarDial evaluation cam-
paign. In Proceedings of VarDial, pages 1–17.

Marcos Zampieri, Shervin Malmasi, Yves Scherrer,
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