
Tenth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial 2023), pages 14–30
May 5, 2023 ©2023 Association for Computational Linguistics

Optimizing the Size of Subword Vocabularies in Dialect Classification

Vani Kanjirangat
IDSIA-USI/SUPSI, Switzerland

vanik@idsia.ch

Tanja Samardžić
URPP Language and Space, UZH
tanja.samardzic@uzh.ch

Ljiljana Dolamic
armasuisse S+T, Switzerland

Ljiljana.Dolamic@armasuisse.ch

Fabio Rinaldi
IDSIA-USI/SUPSI, Switzerland
fabio.rinaldi@idsia.ch

Abstract

Pre-trained models usually come with a pre-
defined tokenization and little flexibility as to
what subword tokens can be used in down-
stream tasks. This problem concerns espe-
cially multilingual NLP and low-resource lan-
guages, which are typically processed using
cross-lingual transfer. In this paper, we aim to
find out if the right granularity of tokenization
is helpful for a text classification task, namely
dialect classification. Aiming at generalizations
beyond the studied cases, we look for the op-
timal granularity in four dialect datasets, two
with relatively consistent writing (one Arabic
and one Indo-Aryan set) and two with con-
siderably inconsistent writing (one Arabic and
one Swiss German set). To gain more control
over subword tokenization and ensure direct
comparability in the experimental settings, we
train a CNN classifier from scratch comparing
two subword tokenization methods (Unigram
model and BPE). For reference, we compare
the results obtained in our analysis to the state
of the art achieved by fine-tuning pre-trained
models. We show that models trained from
scratch with an optimal tokenization level per-
form better than fine-tuned classifiers in the
case of highly inconsistent writing. In the case
of relatively consistent writing, fine-tuned mod-
els remain better regardless of the tokenization
level.1

1 Introduction

The change from word to subword tokenization
opened a large space of tokenization possibilities:
any substring of a word (subword) is potentially a
good token, but some might be more useful than
others. In contrast to this, pre-trained models usu-
ally come with a predefined tokenization and little
flexibility in input preprocessing.

This problem is even more important in a mul-
tilingual setting, where, for many languages, only

1We will release our code for replication of our results.

a little data is available, often written in a non-
standard writing (e.g. transcriptions of spoken lan-
guage, social media posts) with pronounced re-
gional differences. Fine-tuning pretrained mod-
els (with cross-lingual transfer) has become the
primary approach to processing such languages.
Predefined tokenization, which is part of this re-
search framework, is likely not to be suitable for
the level of inconsistency that is typical for target
low-resource languages.

In this paper, we study the benefits of optimal
subword tokenization in one of the basic tasks in
multilingual NLP — dialect classification. This
task can be seen as a stand-alone task (e.g., for
tracing the source of media posts) or a step in other
end-user tasks such as machine translation or natu-
ral language understanding (NLU). We choose this
task as an especially challenging case of text encod-
ing bridging the work on language modelling and
text classification. Although it is a classification
task, it does not rely on an abstract semantic rep-
resentation of the whole sentence (as in usual text
classification) but on surface features of the text,
such as distinctive suffixes or prefixes of words,
phonetic clusters, and order of tokens, closer to
language modelling. These features show up oc-
casionally in the text, which otherwise might look
the same in two different dialects (Zampieri et al.,
2017; Tiedemann and Ljubešić, 2012). The right
level of tokenization can be expected to help iden-
tify these features and thus encode the text better
for other purposes too.

Aiming at generalizations beyond the studied
cases, we work with four data sets (two Arabic,
one Indo-Aryan, and one Swiss German) represent-
ing two levels of writing consistency (transcribed
speech vs. originally written text) and three differ-
ent types of languages. We consider three levels of
tokenization (character, subword, word) testing two
main subword tokenization methods: one example
of a probabilistic model (Unigram model (Kudo,

14

2018)) and one example of a bottom-up compres-
sion algorithm (BPE (Sennrich et al., 2016), also
implemented by Kudo and Richardson (2018)). To
gain flexibility with varying the level of tokeniza-
tion, we train our own classifiers (one Bidirectional
Long Short Term Memory (BiLSTM) and two Con-
volutional Neural Networks (CNNs)), which we
also evaluate against comparable fine-tuned clas-
sifiers with BERT-based pre-trained models. Our
findings are expected to generalize to other tasks
similar to dialect classification and, to a certain
degree, to NLU tasks.

2 Related Work

Dialect identification replaces language identifica-
tion whenever a language has many regional vari-
ants as in the case of Arabic, Chinese or (Swiss)
German. Such cases are mostly covered in a series
of shared tasks (Zampieri et al., 2017, 2018, 2019;
Chakravarthi et al., 2021; Gaman et al., 2020). The
solutions submitted to the shared tasks range from
traditional machine learning to state-of-the-art deep
learning models. Traditional machine learning clas-
sifiers such as Support Vector Machines (SVM),
Logistic Regression (LR), and Naive Bayes (NB)
utilizing character or word level n-gram features
were found to perform quite well across different
languages and dialects (Çöltekin and Rama, 2016;
Jauhiainen et al., 2018b; Zirikly et al., 2016; Best-
gen, 2021; Jauhiainen et al., 2021). For instance, a
version of a character-level n-gram language model
with a domain adaptation technique is the state
of the art for identifying Swiss German (F-score
0.75) and Indo-Aryan (F-score 0.96) dialects with-
out acoustic features (Jauhiainen et al., 2018a,b,
2019). This approach, however, requires numerous
model retraining iterations, which is not suitable
for larger models.

Neural networks have been used for this task
too including CNN, LSTM, and pre-trained Trans-
formers models, in which are currently prevailing
(Bernier-Colborne et al., 2019; Ceolin, 2021; Za-
haria et al., 2020; Butnaru, 2019). The performance
of these models varies depending on the datasets.
Ensembles of neural and traditional models are
also utilized (Popa and S, tefănescu, 2020; Hu et al.,
2019; Yang and Xiang, 2019).

Character-level tokenization proves useful for
capturing the relevant features, but previous studies
do not address specifically the question of input
granularity.

Outside of dialect identification, Domingo et al.
(2018) suggest that tokenization could impact neu-
ral machine translation (NMT) quality. They com-
pared tokenizers such as Moses, SentencePiece,
OpenNMT, Stanford, and Mecab on Japanese, Rus-
sian, Chinese, German and Arabic translations to
English. They found that Moses tokenizer gave the
best result for Arabic, Russian and German; Mecab
for Japanese; and Stanford for Chinese. Uysal and
Gunal (2014) studied the effect of pre-processing
in the English and Turkish languages and they ob-
served that using appropriate domain and language
dependant pre-processing can improve the perfor-
mance. Gowda and May (2020) propose a general
optimization method for finding subword tokens
for machine translation. Mielke et al. (2019) find
that the surprisal of a language model is minimised
cross-linguistically at a particular level of subword
segmentation with the resulting size of the input
vocabulary being the word-level vocabulary multi-
plied by 0.4. Gutierrez-Vasques et al. (2021) find
that much smaller vocabularies minimize text re-
dundancy and lead to a converging text entropy
across 47 languages.

Quite a few solutions have been proposed for
unsupervised subword segmentation (Creutz and
Lagus, 2005; Schuster and Nakajima, 2012; Poon
et al., 2009; Narasimhan et al., 2015; Sennrich et al.,
2016; Bergmanis and Goldwater, 2017; Grönroos
et al., 2020; Kudo, 2018). The SentencePiece li-
brary (Kudo and Richardson, 2018) implements
two very popular methods: BPE, a general data
compression algorithm (Gage, 1994) first applied to
text by Sennrich et al. (2016) and Unigram model
(Kudo, 2018), similar to Morfessor (Creutz and
Lagus, 2005; Grönroos et al., 2020) in that it con-
siders multiple possible subword splits at the same
time. Some related works on fine-tuning vocab-
ulary sizes for NLP applications include (Cherry
et al., 2018; Xu et al., 2021; Ding et al., 2019; Li
et al., 2021).

The work on comparing subword tokenization
algorithms reports rather inconsistent outcomes.
For instance, Vania and Lopez (2017) find that
BPE gives better results than Morfessor on the task
of language modeling, but Ataman and Federico
(2018) show that linguistically motivated vocab-
ulary reduction (LMVR), which is an extension
of Morfessor, gives better results in the context of
machine translation. The benefit of using LMVR
increases with increased morphological richness.

15

A similar conclusion is reached in a wide-scope
multilingual comparison with language modeling
as the downstream task is performed by Park et al.
(2021). A study on English by Bostrom and Dur-
rett (2020) compares BPE preprocessing with the
Unigram method by Kudo and Richardson (2018),
again on the task of language modeling, obtaining
lower results with BPE tokenization, which also
gives a slightly larger vocabulary than the compet-
ing method.

For our study, we select representative examples
of neural models for dialect classification and sub-
word tokenization methods, which are detailed in
the next section.

3 Data and Methods

Four datasets used in the main study have been
selected so that they represent different language
types and different levels of consistency in writ-
ing. Table 1 shows the sizes of four datasets ex-
pressed as the number of utterances, the number
of unique characters (character-level vocabulary)
and the number of unique word types (word-level
vocabulary). Three of the datasets were released
as a part of the VarDial workshop shared tasks
(Zampieri et al., 2017, 2018, 2019): the German Di-
alect Identification (GDI)2, Indo-Aryan Language
Identification (ILI) 3 and the Arabic Dialect Identi-
fication (ADI) datasets4. The fourth is the Arabic
Online Commentary (AOC) (Zaidan and Callison-
Burch, 2011) dataset.

The GDI dataset is compiled from the Archi-
Mob corpus of Spoken Swiss German and covers
four areas, namely Basel, Bern, Lucern, and Zurich
(Samardzic et al., 2016). We used the GDI-2018
dataset for our experiments and worked in a 4-way
classification setting.

The ILI dataset includes five closely related
Indo-Aryan language dialects: Hindi, Braj Bhasha,
Awadhi, Bhojpuri, and Magahi. For each language,
15,000 sentences are extracted, mainly from the
literature domain.

The ADI VarDial task (Malmasi et al., 2016; Ali
et al., 2016) includes five Arabic dialects: Mod-
ern Standard Arabic (MSA), Egyptian (EGY), Gulf
(GLF), Levantine (LAV), Moroccan (MOR), and
North-African (NOR). MSA is the modern variety

2https://drive.switch.ch/index.php/s/
DZycFA9DPC8FgD9

3https://github.com/kmi-linguistics/
VarDial2018

4https://arabicspeech.org/resources/

of language which is used in news and educational
articles. It differs lexically, syntactically, and pho-
netically from the actual communication language
of native speakers. The VarDial ADI dataset is
both speech transcribed and transliterated to En-
glish from Arabic.

AOC constitutes a large-scale repository of Ara-
bic dialects extracted from reader commentary of
three Arabic online newspapers. It covers MSA and
the dialectal varieties, viz., Egyptian (EGY), Gulf
(GLF), Levantine (LEV), and Moroccan (MOR).

The languages and dialects represented in these
four datasets belong to two language families (Indo-
European and Semitic). Two of the data sets (GDI
and ADI) are created by transcribing spoken lan-
guage and show a high level of inconsistency in
writing. The other two (ILI and AOC) are originally
written texts with lower level of inconsistency.

In addition to these four datasets used in the main
study, we perform additional experiments on the
data from the Nuanced Arabic Dialect Identifica-
tion (NADI) shared task, which deals with country-
level and province-level Arabic dialect identifica-
tions (Abdul-Mageed et al., 2020, 2021). NADI
2022 shared task covers 18 country dialects with a
training set of ≈ 20K tweets (Abdul-Mageed et al.,
2022).

3.1 Levels of Tokenization

Dialect classification is usually performed at the
level of utterance (loosely structured sentence):
each utterance in a dataset is assigned a label. Clas-
sification features (typically n-grams) are typically
either word-level or character-level. We introduce
subword-level features and compare them to both
character and word-level ones.

Word Level The most common tokenization is
at the word level, mainly using white spaces and
punctuation as delimiters. However, this approach
is not convenient for languages lacking clear word
boundaries (e.g., Chinese and Japanese). This type
of tokenization produces large vocabularies, but
shorter sequences, which are both important con-
cerns for memory and time complexity.

Character Level Character level tokenization
is the simplest way of segmenting the text using
Unicode characters as tokens. This level is good
for generalizing across languages (many languages
share alphabets). It also helps solving some prob-
lems of word-level tokenization, such as out-of-

16

https://drive.switch.ch/index.php/s/DZycFA9DPC8FgD9
https://drive.switch.ch/index.php/s/DZycFA9DPC8FgD9
https://github.com/kmi-linguistics/VarDial2018
https://github.com/kmi-linguistics/VarDial2018
https://arabicspeech.org/resources/

GDI ILI ADI AOC NADI
Train 14647 68453 14591 86541 20398
Dev 4659 8286 1566 10820 4871
Test 4752 9032 1492 10812 4871
Word vocabulary (Train) 15041 115766 43150 171184 56163
Character vocabulary (Train) 30 209 52 158 445

Table 1: The size of datasets expressed as the number of utterances. The character (Character vocabulary) and word
vocabulary (Word vocabulary) sizes (unique number of characters and words in the training set) is also given.

vocabulary (OOV) symbols. However, represent-
ing single characters is hard (too general) and se-
quences of character-level tokens are very long.
Both of these factors have a negative impact on the
performance on downstream tasks.

Subword Level The main idea behind the
subword-level tokenization is to balance generaliza-
tion and specificity so that frequently used words
are considered a single token (as in word-level to-
kenization) and rare words are split into smaller
units (as in character-level tokenization) called sub-
words. For instance, the word lowest, may be split
into low and est depending upon the vocabulary
sizes or merge operations. This helps in creating
smaller vocabularies while preserving some of the
lexical meaning.

3.2 Subword Tokenization Methods

Among many possibilities listed in Section 2, we
select two methods, which represent two main ap-
proaches to finding subword units. We select BPE
(Gage, 1994; Sennrich et al., 2016) as a bottom-up
algorithm that goes from single characters to sub-
words by a sequence of merges. As an alternative
approach, we select the Unigram model (Kudo,
2018), which considers all possible splits of a word
gradually discarding some of them.

For BPE, text input is first tokenized at the word
level. Each word is then split into a sequence of
characters to which a special “end of the word”
symbol is appended. The base vocabulary is cre-
ated from the unique characters in the training cor-
pora. The algorithm iterates through the data many
times merging the most frequent pair of symbols
into a single symbol every time. The new symbol
is added to the vocabulary for the next iteration.
The procedure is repeated until the desired vocabu-
lary size, or a specific number of merge operations
is obtained, which are the hyperparameters to be
tuned.

Unlike the BPE algorithm, the Unigram model

can be viewed as a probabilistic mixture model,
where the likelihood of the whole data is computed
under a given subword split hypothesis. The algo-
rithm starts from a large vocabulary that contains
many possible subword splits (a “reasonably” big
seed vocabulary). It then reduces the vocabulary
gradually by discarding a percentage of vocabulary
entries. The decision on what entries to discard
relies on a loss function: for each vocabulary entry,
measure the difference in the overall likelihood of
the data with and without that entry. Those entries
that result in the smallest difference are discarded.
A threshold η% is set to decide the percentage
of vocabulary entries to be discarded. The pro-
cess is repeated until the desired vocabulary size is
reached, which is the hyperparameter to be tuned.

3.3 Optimizing the Size of the Subword
Vocabulary

We optimize vocabulary sizes (vocab_sizes) for
word-level and subword-level tokenization and take
the character-level vocabularies from the data as
the only option.

In case of the word-level tokenization, we con-
ducted experiments with different vocab_sizes
(2000-20000) and selected the vocab_size that
yielded maximum performance on the dev set.
Based on the experiments, we found the preferred
word level vocab_size is 2000 for the dialect classi-
fication task on the specific languages tested. The
unknown tokens are represented by UNK.

To find the range of vocab_sizes for subword
level experiments, we consider different sizes from
the character set to a limit identified by Mielke
et al. (2019), who find that a BPE vocabulary cor-
responding to a proportion of the size of all word
types |V | minimizes the negative log-likelihood on
the data (dev sets) across 21 languages from the
Europarl dataset 5. This proportion is the same
for all languages: 0.4 ∗ |V |. Given this measure,

5https://www.statmt.org/europarl/

17

https://www.statmt.org/europarl/

we consider all the subword vocab_sizes ranging
from character level vocab_size to 0.4 ∗ |V |. These
ranges for each dataset are reported in Table B1.

For finding the BPE and Unigram model vocab-
ularies, we use the Google SentencePiece library6,
which is an unsupervised tokenizer-detokenizer
that accepts raw input (no pre-tokenizations) with
predefined vocabulary sizes as arguments. It adopts
the BPE algorithm by Sennrich et al. (2016), but
unlike specifying the required number of subword
merge operations, here the desired final vocab_size
has to be given (both approaches yield similar re-
sults). We start from the character vocab_size and
increment the size by 100 if vocab_size ≤ 1000
and then by 1000 if vocab_size ≤ 10000. The pro-
cess is repeated until the merge_size (number of
merges) ≤ optimal_merge_size (0.4 ∗ |V |).

3.4 Models for Classification
For selecting the classification models, we con-
sider two kinds of neural networks with shared
parameters: convolutional (CNNs) and recurrent
(specifically LSTM RNN). On the side of CNNs,
we evaluate two concrete architectures: Kim_CNN
(Kim et al., 2016) and Zhang_CNN (Zhang et al.,
2015), which are known to perform well on the
task of text classification and are widely used. On
the side of RNNs, we evaluate the architecture
Lin_SA_BiLSTM (Lin et al., 2017), which has
been shown to give good results on the task of di-
alect classifications (Goswami et al., 2020). We
manipulated the tokenizers of these models using
different granularity levels without changing the
overall architecture. The model architectures are
briefly described in this section.

Lin_SA_BiLSTM This is a BiLSTM architec-
ture with a self-attention component (Lin et al.,
2017), where the sentence embeddings are com-
puted by multiplying the hidden states from BiL-
STM with the attention weights obtained across
multiple attention hops. If S = (w1, w2, ..., wn)
represents a sentence with n tokens, where wi rep-
resents a d dimensional word embedding, then the
sentence is represented by a 2D matrix of the shape
n×d. The BiLSTM component is used to compute
the hidden state matrix H and further, the attention
module takes the H vector and outputs the attention
matrix A using the Equation 1:

A = softmax(Ws2tanh(Ws1H
T)) (1)

6https://github.com/google/
sentencepiece

Here, Ws1 and Ws2 represent the weight matrices.
The final embedding is computed as M = AH . A
penalization term is also used to ensure diversity
among multiple attention hops. These embeddings
are then to be used as input for a downstream task,
such as dialect classification in our case.

Zhang_CNN Zhang et al. (2015) proposed a sim-
ple character level model for text classification uti-
lizing a 1D convolution followed by max pooling
layers. The model has six CNN layers and three
fully connected layers.

Kim_CNN The architecture used by Kim et al.
(2016) is originally a neural language model
(NLM) used for several NLP tasks. We adapted it
in particular for dialect classification. The original
architecture uses a CNN with a highway network
whose output is given to a recurrent neural net-
work (RNN) neural language model. In the origi-
nal Kim_CNN model, the input is segmented at the
character level and hence a word token of length k
is represented as c1, c2, ..., ck. A filter F of width
m is used to produce the feature maps. The main
idea is that a filter captures the n-grams and the
filter width corresponds to the n-gram size. Then a
max-pooling layer is used to extract the important
features. Since, our task is a classification prob-
lem, we utilized only the encoder part of the model
with CNN, while the RNN layers were replaced by
dense layers to perform softmax over the classes.
The model has four convolutional layers and two
fully connected layers.

4 Experimental Settings

We train and test on the task of dialect classification
each of the architectures described in Section 3.4 on
each version of the data produced with the tokeniz-
ers (one version of the data for each vocab_size).
The vocabulary size that gave the best performance
on the development set is chosen as the optimal
vocabulary size. We compare these results to find
out if optimizing the input vocabulary improves
the classification performance. In addition to this,
we compare the performance achieved with the
best performing models trained from scratch with
the performance achieved by fine-tuning respective
pre-trained models.

In the remainder of this section, we describe the
hyperparameters of the neural models trained from
scratch, the vocabulary settings, and the fine-tuning
settings, which we consider to be the state of the

18

https://github.com/google/sentencepiece
https://github.com/google/sentencepiece

art.7

4.1 Hyperparameters

For all the models trained from scratch, we used
a batch_size of 128 and maximum input length
(max_len) of 1014 (decided after repeated experi-
ments). The number of epochs is decided by early
stopping criteria, monitoring the validation loss
with patience value set to 2. The optimal number
of epochs ranged between 5-10. For initialization,
we used the Keras embedding layer8, which takes
integer encoded vocabulary and learns the vectors
during training.

Table A1 in the Appendix reports the parameters
for each model as described in the original imple-
mentations. In Lin_SA_BiLSTM, the main pa-
rameters are the LSTM hidden dimensions, dense
layers dimension, and the number of attention hops
in the self-attention mechanism. For Kim_CNN
and Zhang_CNN, the main parameters include the
number of CNN layers and fully connected neural
network (FCNN) layers with their corresponding
dimensions. The Kim_CNN uses a global max
pooling layer, which is common in NLP applica-
tions. Zhang_CNN uses a 1D max pooling with
specific pool sizes except for layers 3, 4, and 5.
The Kernel_size represents the n-gram width, and
the n-grams will be based on the granularity of the
tokenizers.

4.2 Pre-trained Models and Fine-tuning

For comparisons, we use transformer based pre-
trained models. We evaluate Vanilla BERT (En-
glish BERT) and multilingual BERT (mBERT) (De-
vlin et al., 2019) for all the datasets. The language-
specific BERT models are as follows: German
BERT9 and Swiss-German BERT 10 were used
for the GDI dataset; IndicTransformers 11 (Jain
et al., 2020) for ILI; AraBERT12 (Antoun et al.,

7We consider fine-tuned models the state of the art, de-
spite the fact that simpler models can give better performance
when combined with domain adaptation techniques. We note
that domain adaptation can be combined with any model and
should be evaluated separately.

8https://keras.io/api/layers/core_
layers/embedding/

9https://www.deepset.ai/german-bert
10https://github.com/jungomi/

swiss-language-model
11https://huggingface.co/

neuralspace-reverie
12https://huggingface.co/aubmindlab/

bert-base-arabert

2020) and Multi-dialect-Arabic-BERT 13 (Talafha
et al., 2020) for AOC, ADI and NADI datasets.
German BERT is pretrained on the latest German
Wikipedia dump (6GB of raw text files), OpenLe-
galData dump (2.4 GB), and news articles (3.6 GB).
Swiss-German BERT is fine-tuned on the Swiss
German data of the Leipzig Corpora Collection14

and SwissCrawl15 on the top of German BERT. In-
dicTransformers is a BERT model trained with 3
GB of data from the OSCAR corpus16 covering
three Indo-Aryan languages, Hindi, Bengali, and
Telugu. AraBERT is pretrained on Arabic news
articles and two publicly available large Arabic cor-
pora covering 24 Arab countries on the top of a
BERT-based model. Multi-dialect-Arabic-BERT
initializes the weights from Arabic BERT and is
further pretrained on 10M Arabic tweets from
Nuanced Arabic Dialect Identification (NADI)17

shared task.
For all the BERT based experiments, we used

the pretrained models from HuggingFace library18.
We trained each model for four epochs with Adam
optimizer using a learning rate of 2e-5 on the cor-
responding training set using 1 Tesla K80 GPU.
Since all these baselines are BERT based, the de-
fault tokenizer is WordPiece.

5 Results and Comparisons

Since the Kim_CNN model gave the best results
in all the from-scratch settings, we report only its
performance in Table 2, in the test sets with the best
vocab_sizes obtained. The detailed experimental
results of all the models are reported in Appendix
C, Tables C1 and C3.

From Table 2, it can be observed that subword
level tokenizer performs better than their character
and word level counterparts across all four datasets.
Except for ILI and NADI, the Unigram model
yields better results than BPE. Comparing the F1
scores, we noted an improvement of 3.9 points in
GDI, 9.7 points in ILI, 5.2 points in AOC, 10.2
points in ADI and 3.4 points in NADI compared to
the character level tokenizers. Similarly, compar-
ing the subword level tokenizers with word level,

13https://huggingface.co/
bashar-talafha/multi-dialect-bert-base-arabic

14https://wortschatz.uni-leipzig.de/en/
download/

15https://icosys.ch/swisscrawl
16https://oscar-corpus.com/
17https://sites.google.com/view/

second-nadi-shared-task/home
18https://huggingface.co/models

19

https://keras.io/api/layers/core_layers/embedding/
https://keras.io/api/layers/core_layers/embedding/
https://www.deepset.ai/german-bert
https://github.com/jungomi/swiss-language-model
https://github.com/jungomi/swiss-language-model
https://huggingface.co/neuralspace-reverie
https://huggingface.co/neuralspace-reverie
https://huggingface.co/aubmindlab/bert-base-arabert
https://huggingface.co/aubmindlab/bert-base-arabert
https://huggingface.co/bashar-talafha/multi-dialect-bert-base-arabic
https://huggingface.co/bashar-talafha/multi-dialect-bert-base-arabic
https://wortschatz.uni-leipzig.de/en/download/
https://wortschatz.uni-leipzig.de/en/download/
https://icosys.ch/swisscrawl
https://oscar-corpus.com/
https://sites.google.com/view/second-nadi-shared-task/home
https://sites.google.com/view/second-nadi-shared-task/home
https://huggingface.co/models

Dataset Number of
Classes

Vocabulary Size F-score (%)

Char Uni BPE Word Char Uni BPE Word

GDI 4 30 2030 3030 15041 58 61.9 59.7 57
ILI 5 209 709 309 115776 78 84.8 87.7 85
AOC 4 158 8058 4058 171184 68 73.2 72.4 70
ADI 5 52 9052 952 43150 37 47.2 44.2 45

Additional Experiment
NADI 18 445 20045 7045 56163 13.3 16.2 16.7 16

Table 2: Performance of the Kim_CNN model at different tokenization levels. Char: Character-level, Uni: Unigram,
BPE: Byte Pair Encoding, Word: Word-level. Kim_CNN gave the highest performance among the experimented
non-pretrained neural models. The best result in each dataset is bolded.

Dataset Best Model F-score (%)

Pre-trained Kim_CNN Pre-trained Kim_CNN

GDI BERT-base-cased Unigram 61.1 61.9
ILI Indic Transformers BPE 88.1 87.7
AOC AraBERT Unigram 77.1 73.2
ADI AraBERT Unigram 41.1 47.2

Additional Experiment
NADI Multi-dialect-Arabic-BERT BPE 26.1 16.7

Table 3: Comparison of the non-pretrained model with best tokenization level with the top performing baseline
models in each dataset.

the F1 score was observed to increase by 4.9 points
in GDI, 2.7 points in ILI, 3.1 points in AOC, 2.2
points in ADI and 0.7 points in NADI dataset. The
optimal vocab_sizes are also reported, correspond-
ing to vocab_size that gave the maximum F-scores.
The variation with respect to different vocab_sizes
in each dataset for the Kim_CNN with the Unigram
model tokens is shown in Appendix D, Figure D1.

From these results, we conclude that optimized
subword-level tokenization gives better dialect clas-
sification performance across all data sets (different
languages, different levels of consistency) when
working with a CNN architecture trained from
scratch. Similar observations hold for all the non-
transformer neural models in Table C1 in Appendix
C.

5.1 Comparison with Fine-tuned Models

Table 3 shows the comparison between the results
obtained in the trained (from scratch) setting and
the best results obtained in the fine-tuned settings
(with pre-trained models). The models that achieve
the best results on each dataset are presented. The
detailed results for all the models are given in Ap-
pendix C Table C3.

This comparison shows an interesting interaction

between the writing consistency and performance
on the classification task. For the two datasets with
inconsistent writing (GDI and ADI, see Section 3
for details), the best scores are achieved with one
of our models trained from scratch on optimized
subword vocabulary (Kim_CNN with the Unigram
model vocabulary). We note also that the best pre-
trained setting in the case of GDI is BERT-base-
cased and not the German BERT (see Table C3 in
Appendix C for more details). In the case of ADI,
Kim_CNN with the Unigram model tokenization
improves the classification F1 score by 6.1 points
compared to the best performing fine-tuned setting,
which is the language-specific AraBERT model.

On datasets with more consistent writing (ILI
and AOC), we see an opposite pattern: the best
classification score is achieved in the fine-tuned set-
tings using a language-specific pre-trained model
(Indic Transformers and AraBERT respectively).

These results show that finding an appropriate
level of tokenization granularity is especially im-
portant when datasets contain a considerable level
of noise. Using pre-trained models does not bring
the expected benefits unless one can count on a
reasonably consistent writing. This conclusion is
additionally reinforced by the scores obtained on

20

Figure 1: Confusion matrices for the best performing fine-tuned models on the ILI, GDI, AOC and ADI datasets

Figure 2: Confusion matrices Kim_CNN models (without pre-training) on the ILI, GDI, AOC and ADI datasets

the NADI dataset, where the fine-tuned classifier
with a language specific pre-trained model achieves
the best result. Even though the overall results are
rather low in this case (likely due to the difficulty of
distinguishing between 18 labels), they are better
with fine-tuning. In this sense the NADI dataset,
which also consists of originally written texts, pat-
terns with ILI and AOC.

We also note the fact that BPE tokenizer gave bet-
ter results than the Unigram model on 2/3 datasets
with consistent writing. This observation is in line
with previous research pointing out the sensitivity
of BPE to noise in the data.

5.2 Per-class Comparison

To understand better the differences between
Kim_CNN and the competing fine-tuned classi-
fiers (results in Table 3), we plot two confusion
matrices: Figure 1 shows the best performance
with pre-trained models and Figure 2 shows the
best performance with Kim_CNN. 19

The matrices look very similar in all the cases
except ADI. In this case, the fine-tuned classifier
seems to have learned two classes well, while the
success of Kim_CNN are more spread across dif-
ferent classes. The matrices for the AOC data set

19We do not report the visualizations for NADI results here.

show that one class is much easier to identify for
both approaches than the other classes. The GDI
case shows one particularly confusing distinction
(BE for Bern vs. LU for Luzern), which is almost
equally hard for both approaches to distinguish.
Finally, the class (MAG for Magahi) seems to be
the most difficult for both approaches on the ILI
dataset.

6 Conclusion

We have shown in this paper that optimizing sub-
word vocabulary size is beneficial to text classifi-
cation tasks, such as dialect classification, when
the datasets contain relatively inconsistent writing
(transcribed speech). With an optimized vocabulary
as input, a CNN model trained from scratch out-
performs fine-tuned models on such datasets. On
the other hand, fine-tuning large language-specific
pretrained models seems to be the best approach
when datasets are relatively consistent (originally
written, even if not edited). In this case, vocabulary
size does not seem to matter much. Regarding the
question of which kind of neural architecture is
best to use without pretraining, our results point to
the CNN architectures, which seem to capture the
relevant surface features effectively.

Established on a relatively diverse sample (three

21

language types from two language families), our
findings are especially relevant to multilingual NLP,
where datasets tend to be inconsistent and the use
of pre-trained models tempting.

7 Limitations

One of limitations of our work is the fact that we
have not tried manipulating the tokenizers in BERT
based models, which will be the focus of future
work. In subword level tokenizers, we plan to ex-
plore other tokenizers such as WordPiece.

References
Muhammad Abdul-Mageed, Chiyu Zhang, Houda

Bouamor, and Nizar Habash. 2020. NADI 2020:
The first nuanced Arabic dialect identification shared
task. In Proceedings of the Fifth Arabic Natu-
ral Language Processing Workshop, pages 97–110,
Barcelona, Spain (Online). Association for Computa-
tional Linguistics.

Muhammad Abdul-Mageed, Chiyu Zhang, AbdelRahim
Elmadany, Houda Bouamor, and Nizar Habash. 2021.
NADI 2021: The second nuanced Arabic dialect iden-
tification shared task. In Proceedings of the Sixth Ara-
bic Natural Language Processing Workshop, pages
244–259, Kyiv, Ukraine (Virtual). Association for
Computational Linguistics.

Muhammad Abdul-Mageed, Chiyu Zhang, AbdelRahim
Elmadany, Houda Bouamor, and Nizar Habash. 2022.
NADI 2022: The Third Nuanced Arabic Dialect
Identification Shared Task. In Proceedings of the
Seven Arabic Natural Language Processing Work-
shop (WANLP 2022).

Ahmed Ali, Najim Dehak, Patrick Cardinal, Sameer
Khurana, Sree Harsha Yella, James Glass, Peter Bell,
and Steve Renals. 2016. Automatic dialect detection
in arabic broadcast speech.

Wissam Antoun, Fady Baly, and Hazem Hajj. 2020.
Arabert: Transformer-based model for arabic lan-
guage understanding. In Proceedings of the 4th Work-
shop on Open-Source Arabic Corpora and Process-
ing Tools, with a Shared Task on Offensive Language
Detection, pages 9–15.

Duygu Ataman and Marcello Federico. 2018. An evalu-
ation of two vocabulary reduction methods for neural
machine translation. In Proceedings of the 13th Con-
ference of the Association for Machine Translation
in the Americas (Volume 1: Research Track), pages
97–110, Boston, MA. Association for Machine Trans-
lation in the Americas.

Toms Bergmanis and Sharon Goldwater. 2017. From
segmentation to analyses: a probabilistic model for
unsupervised morphology induction. In Proceedings
of the 15th Conference of the European Chapter of

the Association for Computational Linguistics: Vol-
ume 1, Long Papers, pages 337–346, Valencia, Spain.
Association for Computational Linguistics.

Gabriel Bernier-Colborne, Cyril Goutte, and Serge
Léger. 2019. Improving cuneiform language identi-
fication with bert. In Proceedings of the Sixth Work-
shop on NLP for Similar Languages, Varieties and
Dialects, pages 17–25.

Yves Bestgen. 2021. Optimizing a supervised classifier
for a difficult language identification problem. In Pro-
ceedings of the Eighth Workshop on NLP for Similar
Languages, Varieties and Dialects, pages 96–101.

Kaj Bostrom and Greg Durrett. 2020. Byte pair encod-
ing is suboptimal for language model pretraining. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 4617–4624.

Andrei Butnaru. 2019. Bam: A combination of deep
and shallow models for german dialect identification.
In Proceedings of the Sixth Workshop on NLP for
Similar Languages, Varieties and Dialects, pages
128–137.

Andrea Ceolin. 2021. Comparing the performance of
cnns and shallow models for language identification.
In Proceedings of the Eighth Workshop on NLP for
Similar Languages, Varieties and Dialects, pages
102–112.

Bharathi Raja Chakravarthi, Mihaela Gaman, Radu Tu-
dor Ionescu, Heidi Jauhiainen, Tommi Jauhiainen,
Krister Lindén, Nicola Ljubešić, Niko Partanen,
Ruba Priyadharshini, Christoph Purschke, et al. 2021.
Findings of the vardial evaluation campaign 2021. In
Proceedings of the 8th VarDial Workshop on NLP
for Similar Languages, Varieties and Dialects. The
Association for Computational Linguistics.

Colin Cherry, George Foster, Ankur Bapna, Orhan Firat,
and Wolfgang Macherey. 2018. Revisiting character-
based neural machine translation with capacity and
compression. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 4295–4305.

Çağrı Çöltekin and Taraka Rama. 2016. Discriminat-
ing similar languages with linear svms and neural
networks. In Proceedings of the Third Workshop on
NLP for Similar Languages, Varieties and Dialects
(VarDial3), pages 15–24.

Mathias Creutz and Krista Lagus. 2005. Inducing
the morphological lexicon of a natural language
from unannotated text. In In Proceedings of the
International and Interdisciplinary Conference on
Adaptive Knowledge Representation and Reasoning
(AKRR’05, pages 106–113.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the

22

https://aclanthology.org/2020.wanlp-1.9
https://aclanthology.org/2020.wanlp-1.9
https://aclanthology.org/2020.wanlp-1.9
https://aclanthology.org/2021.wanlp-1.28
https://aclanthology.org/2021.wanlp-1.28
https://aclanthology.org/W18-1810
https://aclanthology.org/W18-1810
https://aclanthology.org/W18-1810
https://aclanthology.org/E17-1032
https://aclanthology.org/E17-1032
https://aclanthology.org/E17-1032

North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Shuoyang Ding, Adithya Renduchintala, and Kevin Duh.
2019. A call for prudent choice of subword merge
operations in neural machine translation. In Proceed-
ings of Machine Translation Summit XVII: Research
Track, pages 204–213.

Miguel Domingo, Mercedes Garcıa-Martınez, Alexan-
dre Helle, Francisco Casacuberta, and Manuel Her-
ranz. 2018. How much does tokenization af-
fect neural machine translation? arXiv preprint
arXiv:1812.08621.

Philip Gage. 1994. A new algorithm for data compres-
sion. C Users Journal, 12(2):23–38.

Mihaela Gaman, Dirk Hovy, Radu Tudor Ionescu,
Heidi Jauhiainen, Tommi Jauhiainen, Krister Lindén,
Nikola Ljubešić, Niko Partanen, Christoph Purschke,
Yves Scherrer, et al. 2020. A report on the vardial
evaluation campaign 2020. In Proceedings of the 7th
Workshop on NLP for Similar Languages, Varieties
and Dialects, pages 1–14.

Koustava Goswami, Rajdeep Sarkar, Bharathi Raja
Chakravarthi, Theodorus Fransen, and John Philip
McCrae. 2020. Unsupervised deep language and di-
alect identification for short texts. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 1606–1617.

Thamme Gowda and Jonathan May. 2020. Finding the
optimal vocabulary size for neural machine transla-
tion. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 3955–3964,
Online. Association for Computational Linguistics.

Stig-Arne Grönroos, Sami Virpioja, and Mikko Ku-
rimo. 2020. Morfessor EM+Prune: Improved sub-
word segmentation with expectation maximization
and pruning. In Proceedings of the Twelfth Lan-
guage Resources and Evaluation Conference, pages
3944–3953, Marseille, France. European Language
Resources Association.

Ximena Gutierrez-Vasques, Christian Bentz, Olga Sozi-
nova, and Tanja Samardzic. 2021. From characters to
words: the turning point of bpe merges. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 3454–3468.

Hai Hu, Wen Li, He Zhou, Zuoyu Tian, Yiwen Zhang,
and Liang Zou. 2019. Ensemble methods to distin-
guish mainland and taiwan chinese. In Proceedings
of the Sixth Workshop on NLP for Similar Languages,
Varieties and Dialects, pages 165–171.

Kushal Jain, Adwait Deshpande, Kumar Shridhar, Fe-
lix Laumann, and Ayushman Dash. 2020. Indic-
transformers: An analysis of transformer language
models for indian languages. arXiv preprint
arXiv:2011.02323.

Tommi Jauhiainen, Heidi Jauhiainen, and Krister
Lindén. 2018a. Iterative language model adaptation
for indo-aryan language identification. In Proceed-
ings of the Fifth Workshop on NLP for Similar Lan-
guages, Varieties and Dialects (VarDial 2018), pages
66–75.

Tommi Jauhiainen, Krister Lindén, and Heidi Jauhi-
ainen. 2019. Discriminating between Mandarin Chi-
nese and Swiss-German varieties using adaptive lan-
guage models. In Proceedings of the Sixth Work-
shop on NLP for Similar Languages, Varieties and
Dialects, pages 178–187, Ann Arbor, Michigan. As-
sociation for Computational Linguistics.

Tommi Jauhiainen, Tharindu Ranasinghe, and Marcos
Zampieri. 2021. Comparing approaches to dravidian
language identification. In Proceedings of the Eighth
Workshop on NLP for Similar Languages, Varieties
and Dialects, pages 120–127.

Tommi Sakari Jauhiainen, Heidi Annika Jauhiainen,
Bo Krister Johan Linden, et al. 2018b. Heli-based
experiments in swiss german dialect identification.
In Proceedings of the Fifth Workshop on NLP for
Similar Languages, Varieties and Dialects (VarDial
2018). The Association for Computational Linguis-
tics.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Thirtieth AAAI conference on artificial
intelligence.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66–75,
Melbourne, Australia. Association for Computational
Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Jiahuan Li, Yutong Shen, Shujian Huang, Xinyu Dai,
and Jiajun Chen. 2021. When is char better than sub-
word: A systematic study of segmentation algorithms
for neural machine translation. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 2: Short Papers), pages 543–549.

Zhouhan Lin, Minwei Feng, Cícero Nogueira dos
Santos, Mo Yu, Bing Xiang, Bowen Zhou, and
Yoshua Bengio. 2017. A structured self-attentive sen-
tence embedding. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Pro-
ceedings. OpenReview.net.

23

https://doi.org/10.18653/v1/2020.findings-emnlp.352
https://doi.org/10.18653/v1/2020.findings-emnlp.352
https://doi.org/10.18653/v1/2020.findings-emnlp.352
https://aclanthology.org/2020.lrec-1.486
https://aclanthology.org/2020.lrec-1.486
https://aclanthology.org/2020.lrec-1.486
https://doi.org/10.18653/v1/W19-1419
https://doi.org/10.18653/v1/W19-1419
https://doi.org/10.18653/v1/W19-1419
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://openreview.net/forum?id=BJC_jUqxe
https://openreview.net/forum?id=BJC_jUqxe

Shervin Malmasi, Marcos Zampieri, Nikola Ljubešić,
Preslav Nakov, Ahmed Ali, and Jörg Tiedemann.
2016. Discriminating between similar languages and
arabic dialect identification: A report on the third dsl
shared task. In Proceedings of the third workshop
on NLP for similar languages, varieties and dialects
(VarDial3), pages 1–14.

Sabrina J. Mielke, Ryan Cotterell, Kyle Gorman, Brian
Roark, and Jason Eisner. 2019. What kind of lan-
guage is hard to language-model? In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4975–4989, Florence,
Italy. Association for Computational Linguistics.

Karthik Narasimhan, Regina Barzilay, and Tommi
Jaakkola. 2015. An unsupervised method for un-
covering morphological chains. Transactions of the
Association for Computational Linguistics, 3:157–
167.

Hyunji Hayley Park, Katherine J. Zhang, Coleman Ha-
ley, Kenneth Steimel, Han Liu, and Lane Schwartz.
2021. Morphology matters: A multilingual language
modeling analysis. Transactions of the Association
for Computational Linguistics, 9:261–276.

Hoifung Poon, Colin Cherry, and Kristina Toutanova.
2009. Unsupervised morphological segmentation
with log-linear models. In Proceedings of Human
Language Technologies: The 2009 Annual Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics, pages 209–217,
Boulder, Colorado. Association for Computational
Linguistics.

Cristian Popa and Vlad S, tefănescu. 2020. Apply-
ing multilingual and monolingual transformer-based
models for dialect identification. In Proceedings of
the 7th Workshop on NLP for Similar Languages,
Varieties and Dialects, pages 193–201.

Tanja Samardzic, Yves Scherrer, and Elvira Glaser.
2016. Archimob-a corpus of spoken swiss german.
In Proceedings of the tenth international conference
on language resources and evaluation (LREC 2016).
European Language Resources Association (ELRA).

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search. In 2012 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 5149–5152.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Bashar Talafha, Mohammad Ali, Muhy Eddin Za’ter,
Haitham Seelawi, Ibraheem Tuffaha, Mostafa Samir,
Wael Farhan, and Hussein Al-Natsheh. 2020. Multi-
dialect arabic bert for country-level dialect identifi-
cation. In Proceedings of the Fifth Arabic Natural
Language Processing Workshop, pages 111–118.

Jörg Tiedemann and Nikola Ljubešić. 2012. Efficient
discrimination between closely related languages. In
Proceedings of COLING 2012, pages 2619–2634,
Mumbai, India. The COLING 2012 Organizing Com-
mittee.

Alper Kursat Uysal and Serkan Gunal. 2014. The im-
pact of preprocessing on text classification. Informa-
tion processing & management, 50(1):104–112.

Clara Vania and Adam Lopez. 2017. From characters
to words to in between: Do we capture morphology?
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 2016–2027, Vancouver, Canada.
Association for Computational Linguistics.

Jingjing Xu, Hao Zhou, Chun Gan, Zaixiang Zheng,
and Lei Li. 2021. Vocabulary learning via optimal
transport for neural machine translation. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 7361–7373.

Li Yang and Yang Xiang. 2019. Naive bayes and bilstm
ensemble for discriminating between mainland and
taiwan variation of mandarin chinese. In Proceedings
of the Sixth Workshop on NLP for Similar Languages,
Varieties and Dialects, pages 120–127.

George-Eduard Zaharia, Andrei-Marius Avram,
Dumitru-Clementin Cercel, and Traian Rebedea.
2020. Exploring the power of romanian bert for
dialect identification. In Proceedings of the 7th
Workshop on NLP for Similar Languages, Varieties
and Dialects, pages 232–241.

Omar Zaidan and Chris Callison-Burch. 2011. The ara-
bic online commentary dataset: an annotated dataset
of informal arabic with high dialectal content. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 37–41.

Marcos Zampieri, Shervin Malmasi, Nikola Ljubešić,
Preslav Nakov, Ahmed Ali, Jörg Tiedemann, Yves
Scherrer, and Noëmi Aepli. 2017. Findings of the
vardial evaluation campaign 2017. In Proceedings of
the fourth workshop on NLP for similar languages,
varieties and dialects.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Ahmed Ali, Suwon Shon, James Glass, Yves Scher-
rer, Tanja Samardžić, Nikola Ljubešić, Jörg Tiede-
mann, et al. 2018. Language identification and mor-
phosyntactic tagging. the second vardial evaluation
campaign.

Marcos Zampieri, Shervin Malmasi, Yves Scherrer,
Tanja Samardžić, Francis Tyers, Miikka Silfverberg,
Natalia Klyueva, Tung-Le Pan, Chu-Ren Huang,
Radu Tudor Ionescu, et al. 2019. A report on the
third vardial evaluation campaign. Association for
Computational Linguistics.

24

https://doi.org/10.18653/v1/P19-1491
https://doi.org/10.18653/v1/P19-1491
https://doi.org/10.1162/tacl_a_00130
https://doi.org/10.1162/tacl_a_00130
https://doi.org/10.1162/tacl_a_00365
https://doi.org/10.1162/tacl_a_00365
https://aclanthology.org/N09-1024
https://aclanthology.org/N09-1024
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://aclanthology.org/C12-1160
https://aclanthology.org/C12-1160
https://doi.org/10.18653/v1/P17-1184
https://doi.org/10.18653/v1/P17-1184

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. Advances in neural information processing
systems, 28.

Ayah Zirikly, Bart Desmet, and Mona Diab. 2016. The
gw/lt3 vardial 2016 shared task system for dialects
and similar languages detection. In COLING, pages
33–41. The COLING 2016 Organizing Committee.

25

A Model Hyperparameters

Model Model Parameters Parameter Values

Lin_SA_BiLSTM
LSTM hidden_dim 50
Dense_layer_ dim 50

Number of attention hops 10

Kim_CNN

Number of CNN layers 4
Number of Filters 256

Kernel_size (10,7,5,3) respectively in each CNN layer
Number of FCNN 2

FCNN_dim 1024

Zhang_CNN

Number of CNN layers 6
Number of Filters 256

Kernel_size 7 in first two layers, 3 in other layers
Pool_size 3 in first two layers and last layer (no pooling in other layers)

Number of FCNN 3
FCNN_dim 1024

Table A1: Parameter settings for the experimented neural models

B Subword Vocabulary Ranges

Dataset vocab_size range
(char_vocab_size - 0.4*|V|)

GDI 30-6016
ILI 209-46306
AOC 158-68473
ADI 52-17260
NADI 445-22465

Table B1: Subword vocabulary ranges considered in the experimental set-up for each dataset

26

C Detailed Experimental Results with
Neural Models and Comparisons

From Table C3, it can be observed that be-
tween the three neural models experimented at
different tokenization schemes, the subword level
Kim_CNN model outperforms the Zhang_CNN
and Lin_SA_BiLSTM models. Kim_CNN uni-
gram model performs the best in GDI, AOC, and
ADI with 61.9, 73.2, 47.21 % F1 scores, while the
Kim_CNN BPE model presents the maximum per-
formance in the ILI and NADI dataset with 87.79%
and 16.7% F-scores. Compared with BERT based
models, it can be noted that in GDI and ADI
datasets, Kim_CNN performs slightly better than
BERT models. In ILI, the subword level models
surpass the vanilla BERT and mBERT. The NADI
results were obtained from the official evaluation
site 20.

Table C1 reports the performance based on accu-
racy, and F1 macro scores21 and the vocab_sizes at
which the peak performances are obtained (the best
performances are bolded). It can be observed that
in all the datasets except ILI, the best classification
performance is obtained with the Kim_CNN Uni-
gram model. In ILI, Kim_CNN BPE presented
the best performance. During the analysis, we
also observed that in all datasets except ADI, the
vocab_sizes that presented the best performances
were overlapping. The overlapping values are be-
tween 1000-6000 for GDI, 200-600 for ILI, and
700-5000 in AOC.

D Experiments on Vocabulary Sizes for
Subword Tokenziers

Figure D1 depicts the variation of accuracy in
Kim_CNN unigram model with respect to the dif-
ferent vocabulary sizes.

E Details of Experimental Runs

The BERT models trained on 1 Tesla K80 GPU
took about 40-60 minutes training time and an in-
ference time of 10-20 minutes. For the subword
level experiments, the training of different subword
level models took ≈ 50-60 minutes in HPC cluster
and an inference time of 5-10 minutes.

20https://codalab.lisn.upsaclay.fr/
competitions/6514#participate-submit_
results

21Accuracy and Fmicro represent the same value for multi-
class classification

27

https://codalab.lisn.upsaclay.fr/competitions/6514##participate-submit_results
https://codalab.lisn.upsaclay.fr/competitions/6514##participate-submit_results
https://codalab.lisn.upsaclay.fr/competitions/6514##participate-submit_results

Dataset Model Subword Tokenizers Acc F1 optimal vocab_size

GDI
Lin_SA_BiLSTM

BPE 28.5 28 830
Unigram 59.18 59.2 4030

Kim_CNN
BPE 59.53 59.73 3030

Unigram 62.4 61.9 2030

Zhang_CNN
BPE 56.25 55.19 4030

Unigram 57.3 56.7 4030

ILI
Lin_SA_BiLSTM

BPE 81.3 79.4 20009
Unigram 81.4 79.8 9009

Kim_CNN
BPE 88.48 87.79 309

Unigram 85.6 84.8 709

Zhang_CNN
BPE 84.94 84.33 309

Unigram 84.2 83.5 409

AOC
Lin_SA_BiLSTM

BPE 55.35 27.77 458
Unigram 77.69 70.66 9058

Kim_CNN
BPE 79.5 72.4 4058

Unigram 79.4 73.2 8058

Zhang_CNN
BPE 75.87 69.34 5058

Unigram 79.4 73.2 8058

ADI
Lin_SA_BiLSTM

BPE 21.3 11.18 852
Unigram 23.79 14.33 852

Kim_CNN
BPE 45.37 44.2 952

Unigram 47.25 47.21 9052

Zhang_CNN
BPE 31.97 30.68 6052

Unigram 32.8 31.2 6052

NADI
Lin_SA_BiLSTM

BPE 32.9 15.3 20045
Unigram 16.1 5.6 845

Kim_CNN
BPE 33.5 16.7 20045

Unigram 31.4 16.2 7045

Zhang_CNN
BPE 29.1 5.1 20045

Unigram 29.2 4.9 9045

Table C1: Model performances (Accuracy and Fmacro%) with BPE and Unigram subword tokenizers and the
optimal vocabulary sizes

28

Dataset Model Tokenization Levels F1(%)

GDI Lin_SA_BiLSTM

Character Level 49.4
Subword_BPE 28

Subword_Unigram 59.2
Word Level 58

Kim_CNN

Character Level 56.9
Subword_BPE 59.7

Subword_Unigram 61.9
Word Level 57

Zhang_CNN

Character Level 47
Subword_BPE 55.2

Subword_Unigram 56.7
Word Level 25

ILI Lin_SA_BiLSTM

Character Level 64.4
Subword_BPE 79.4

Subword_Unigram 79.8
Word Level 84.6

Kim_CNN

Character Level 76.9
Subword_BPE 87.8

Subword_Unigram 84.8
Word Level 84.3

Zhang_CNN

Character Level 80
Subword_BPE 84.3

Subword_Unigram 83.5
Word Level 85

AOC Lin_SA_BiLSTM

Character Level 63.3
Subword_BPE 27.8

Subword_Unigram 70.6
Word Level 75.5

Kim_CNN

Character Level 73.3
Subword_BPE 72.4

Subword_Unigram 73.2
Word Level 65.6

Zhang_CNN

Character Level 66.7
Subword_BPE 69.3

Subword_Unigram 73.2
Word Level 66

ADI Lin_SA_BiLSTM

Character Level 13.4
Subword_BPE 11.18

Subword_Unigram 14.33
Word Level 15.6

Kim_CNN

Character Level 36.6
Subword_BPE 44.2

Subword_Unigram 47.2
Word Level 45

Zhang_CNN

Character Level 23
Subword_BPE 30.7

Subword_Unigram 31.2
Word Level 31

NADI Lin_SA_BiLSTM

Character Level 14.5
Subword_BPE 15.3

Subword_Unigram 5.6
Word Level 14

Kim_CNN

Character Level 13.4
Subword_BPE 16.7

Subword_Unigram 16.2
Word Level 16.1

Zhang_CNN

Character Level 7.2
Subword_BPE 5.1

Subword_Unigram 4.9
Word Level 2.6

Table C2: Comparisons(F1%) of the neural models analyzed using different tokenization levels

29

Dataset Model F1(%)

GDI

Bert-base-cased 61
mBERT 59

German BERT 60
Swiss-German BERT 60

ILI
Bert-base-cased 80

mBERT 87
IndicTransformers 88

AOC

Bert-base-cased 75
mBERT 76

AraBERT 77
multi-dialect-ArabicBERT 76

ADI

Bert-base-cased 40
mBERT 23

AraBERT 41
multi-dialect-ArabicBERT 40

NADI

Bert-base-cased 4.8
mBERT 4.9

AraBERT 20
multi-dialect-ArabicBERT 26

Table C3: Comparisons(F1%) of the different pre-trained models in each dataset

Figure D1: Variation of performances with respect to vocabulary sizes in Kim_CNN subword level unigram models
across GDI, ILI,AOC and ADI datasets

30

