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Abstract 

Based on historical dialect data we 

introduce a local measure of linguistic 

coherence in spatial language variation 

aiming at the identification of regions 

which are particularly sensitive to language 

variation and change. Besides, we use a 

measure of global coherence for the 

automated detection of linguistic items 

(e.g., sounds or morphemes) with higher or 

lesser language variation. The paper 

describes both the data and the method and 

provides analyses examples.  

1 Introduction 

Dialectometric work typically focuses on the co-

occurrence of the distribution of variants in 

different sites (see Goebl 1984). From these co-

occurrences, reasonably coherent regions of 

linguistic similarity can be identified. These 

regions then provide, for example, clues to the 

aggregated structuring of higher-level linguistic 

areas (e.g., within a nation). Alternatively, they 

show to what extent individual sites of a given 

corpus are integrated into the region under 

discussion in terms of their similarity or distance to 

other sites (e.g., Heeringa 2003). Such analyses, 

which at the same time constitute the classical field 

of dialectometry, thus benefit from the aggregation 

of all linguistic phenomena of a given corpus. 

However, if the interest is not in the overall 

structuring of a region, but in the distribution 

                                                           

1 The study builds on R programming 

(R Core Team 2021), using the 

packages spatstat (Baddeley & 

Turner 2005) and Rvision (Garnier 

et al. 2021) mainly. In order to 

perform our coherence measure more 

efficiently it has been implemented 

patterns of individual variants, non-aggregating 

procedures must be applied. For a single 

phenomenon, spots of variation may be identified 

in most cases by visual inspection (see Ormeling 

2010 for a critical account). However, in order to 

capture this variation quantitatively, more recent 

studies have considered a number of solutions, for 

example based on resampling techniques (e.g., 

Wieling & Nerbonne 2015), Kernel Density 

Estimation (e.g., Rumpf et al. 2009) or the concept 

of entropy (e.g., Prokić et al. 2009).  

This paper presents a diagnostic measure for the 

detection of coherence or heterogeneity in spatial 

language variation aimed at identifying those 

regions that are particularly prone to variation or 

particularly sensitive to language change. We 

perform an approach based on nearest neighbor 

comparison and exemplify the used measure.1  

In the remainder, we provide information on the 

data and introduce both a local and a global 

measure of linguistic coherence and diversity. In 

what follows we present example analyses based 

on historical dialect data from southwestern 

Germany and discuss the introduced procedure. 

2 Data  

The study makes use of a data set collected by the 

German linguist Friedrich Maurer during the year 

1941 in the Upper German dialect region within the 

boundaries of the national territory at the time. The 

survey was based on a questionnaire with 113 

into a R-package (LinguGeo). The 

current version of the LinguGeo 

package can be found at: 

https://github.com/SchoenbergA/Lin

guGeo  
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individual words (most of them nouns, but also 

adjectives and verbs) and 10 sentences together 

with biographic information of the participants. In 

contrast to both the earlier survey by Wenker 

(Wenker 2013) and the contemporaneous 

investigation by Mitzka (cf. Wrede et al. 1926–

1956), Maurer focused more strongly on social and 

biographic information. Thus, in addition to the age 

of the participants, for example, their gender as 

well as the origin of their parents or their preferred 

market towns are documented. 

We focus on the Alemannic part of the Maurer 

data which is mainly related to the southwestern 

part of nowadays Germany (the Baden region) and 

the Alsace in France (see Strobel 2021 for further 

information). In total, the data document 2344 

locations, providing a quasi-total coverage of the 

region under discussion (Figure 1). The hand-

written questionnaires of this area have been 

typewritten and therefore digitalized by student 

assistants. The data is stored in *.csv files and will 

be publicly accessible in the future in the data 

repository of the Research Center Deutscher 

Sprachatlas. 

 

 
Figure 1: Study area. 

3 Method 

3.1 Local Measure 

In order to analyze the spatial variation of the area 

under discussion we compare the linguistic 

realizations of one site with the realizations of its 

geographic neighbors. Behind the selection of 

neighborhood relations is the assumption of the so-

called “Fundamental Dialectological Postulate” 

(Nerbonne & Kleiweg 2007), which states that 

closer objects are linguistically more similar than 

distant objects. 

From a technical point of view, for every site r 

we compare the linguistic realization of an 

individual item i of the questionnaire (e.g., a word) 

with its geographic neighbor s. Cohrs|i is then the 

number of identities between r and s with Cohrs|i = 

1 in case of identity and Cohrs|i = 0 otherwise.  

To obtain a better insight into how the individual 

sites fit into the language region, the number of 

compared sites should be S > 1. In the present 

paper, we consider up to 19 neighbors (0 ≤ S ≤ 19), 

where 0 is used for the rendering of the original 

data. CohrS is then the average overlap between r 

and its set of neighbors S with 0 ≤ CohrS ≤ 1 and 

CohrS = 1 indicating identity between r and S and 

CohrS = 0 indicating no identity between r and S. In 

case a location has several variants for a linguistic 

variable (e.g., because of several participants or 

multiple responses), the number of matches 

between r and s is related to the number of local 

variants. 

An example is provided by Figure 2. The 

centrally located site is opposed by a total of 5 

nearest neighbors, which have a total of 2.5 

matches with the central site, resulting in Coh = 

2.5/5 = 0.5. The number of variants is irrelevant for 

this approach but is relevant for the global measure 

(cf. 3.2) 

 

 
Figure 2: Model of distribution of variants. 

 

Inverting the scale results in a measure of linguistic 

diversity instead of linguistic coherence which we 

refer to as Div = 1-Coh. We use this Div measure 

in order to identify moments of particular dynamics 

on language maps.  

Another point is worth mentioning. The nearest 

neighbor approach relies heavily on the definition 

of geographic coordinates and distances. In our 

approach, the geometric information of the spatial 

position for each survey site is thus originally 

stored in the WGS 84 format (longitude and 

latitude). Due to the ellipsoidal coordinate system, 

the distances are heavily distorted which directly 
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affects the selection of the nearest neighbors. To 

use the quasi-exact distances a cartesian coordinate 

system is required. Therefore, we projected our 

data to the UTM system related to the ETRS89 

ellipsoid.  

3.2 Global Measure 

While the local measure indicates the integration of 

individual sites into its nearest spatial 

neighborhood, it says nothing about the coherence 

or heterogeneity of an overall map. Various options 

are available for this purpose. For example, the 

mean of all local Coh values could be taken as a 

global measure of coherence (CohG). However, as 

Figure 3 demonstrates, this measure is dependent 

on the number of linguistic variants in a data 

distribution, making it difficult to compare CohG 

across maps with different numbers of variants. For 

example, if a map shows two linguistic variants a 

complete random distribution results in 0.5 ≤ CohG 

≤ 1 and 0.33 ≤ CohG ≤ 1 for three variants etc.  

In order to solve this problem, we perform a 

CohG* correction in which CohG is divided by the 

number of variants and scaled 0 < CohG* ≤ 1. As 

becomes evident by Figure 3, CohG* is robust 

against the number of variants, while CohG, in 

contrast, is sensitive to it and converges to CohG* 

as the number of variants increases. Similar holds 

for the number of neighbors against which CohG* 

is robust while CohG is sensitive to it (not 

reported). 

 

 
Figure 3: Comparison of CohG and CohG* based on 

simulated degrees of both spatial coherence and random 

data filling (0-100 %) for a data distribution with 2 to 5 

linguistic variants. 

 

Another view on CohG* is provided in Figure 4 

and Figure 5. In these figures, data simulations are 

performed for the locations of the corpus, 

generating different degrees of random data 

distributions. Starting from a uniform distribution, 

20 % of the data of each map are successively 

overwritten with a random distribution.  

 

 
Figure 4: Simulation of different degrees of spatial 

heterogeneity (0 %, 20 %, 40 %, 60 %, 80 %, 100 %) for 

a map with two linguistic variables. Variant 1 = purple, 

variant 2 = yellow, alpha = 1-Coh. 

 

 
Figure 5: Simulation of different degrees of spatial 

heterogeneity (0 %, 20 %, 40 %, 60 %, 80 %, 100 %) for 

a map with three linguistic variables. Variant 1 = purple, 

variant 2 = yellow, variant 3 = green, alpha = 1-Coh. 
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While Figure 4 illustrates data simulation with two 

linguistic variants, Figure 5 illustrates the same 

procedure based on three linguistic variants. The 

figures show that while the CohG is related to the 

amount of variants, the CohG* values describe the 

same amount of coherence/homogeneity 

unattached to the number of variants. 

Against this background, the Coh measure, and 

also the CohG* measure, yields plausible results as 

far as different degrees of coherence or 

heterogeneity are concerned. However, it is still an 

open question how the values turn out in concrete 

use cases and what more detailed conclusions can 

be drawn from them. 

4 Use Cases 

4.1 Lambdacism in Kirche ‘Church’ 

As a first example we focus on a rather simple 

spatial pattern provided by the distribution 

of -r- and -l- sounds in the word Kirche ‘church’ 

(Kirche vs. Kilche) in the southern part of our study 

area (Figure 6). The phonological process behind 

this is the so-called lambdacism, which is typical 

for some regions of the German-speaking area (cf. 

Lameli 2015).  

Figure 6 illustrates the distribution of the 

variants in the southern part of the study area. At 

each site one variable is documented, where Kirche 

(blue) occurs 1008 times, Kilche (red) 222 times 

(1230 sites in total). Hence, 81.94 % of the sites in 

the study area show -r-.  

 

 
Figure 6: Example of a spatial distribution of linguistic 

variants -r- (blue) and -l- (red) in the word Kirche 

‘church’. 

In a random distribution the expected probability 

that a particular site’s neighbor shares the same 

variant is EV = (1008-1) / (1230-1) = 81.94%. For 

the same distribution we reveal under the 

consideration of 5 nearest neighbors CohG* = .94 

(Coh = .9) indicating that, on average, 94 % of the 

neighboring 5 sites share the same variant -r- as the 

site under observation. However, the question 

remains open as to how high CohG* turns out to be 

in a random distribution when 5 nearest neighbors 

are considered, as in the present case. For this 

purpose, 1000 data simulations were performed in 

which the existing occurrences of -r- and -l- sounds 

were randomly distributed among the study sites. 

The resulting mean of CohG* = .41 indicates that, 

given a random distribution of data, statistically 

41 % of the neighboring five locations share the 

same variant as a particular site under observation 

with a range of CohG* = .37–.44. 

By CohG* being higher than both the random 

distribution and the expected value EV, (1) spatial 

clustering of -r- and -l- is indicated and, as a 

consequence, (2) a clear separation of the variants. 

Indeed, very few locations aside, all variants cluster 

in contiguous areas as already becomes clear by 

visual inspection. 

Testing the distribution of local Coh values 

against a normal distribution using a Wilcoxon 

rank sum test reveals a statistical difference 

between the expected value EV and the empirically 

found Coh measure (z = -4.21, p < .001, r = .94). 

What these measures refer to becomes evident 

when plotting 1-Coh (= Div) on a map (Figure 7).  

 

 
Figure 7: Local measure of linguistic coherence (Div = 

1-Coh) applied to the data of Figure 6. 
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As expected, the highest Div values are at the 

border zone between the variants. Most 

interestingly, there are differences depending on 

the spatial alternation of the variants. For example, 

on the left, where we find a mix of variants, Div 

values are high. In contrast, in the center, where we 

find a separation of Kirche and Kilche, Div values 

are low. The spots illustrated by Figure 7 thus allow 

conclusions to be drawn about zones of increased 

linguistic dynamics: around the sites with high 

values (intense colors) there is a high degree of 

variation, around the sites with low values (pale 

colors) there is a lower degree of variation. While 

the former can be expected to be more sensitive to 

language change regarding the variable under 

discussion, the latter can be expected to be more 

robust to language change. 

Methodologically, it should be emphasized that, 

due to the nearest neighbor approach, the described 

procedure always computes a gradient-like result. 

Even if there is a sharp separation between variants 

(Figure 6) a gradient would be computed (Figure 

7).  

The intensity of this gradient-like effect depends 

on the number of nearest neighbors. Using the 

minimum of two nearest neighbors will result in 

exactly three index values and the resulting map 

would set a focus on areas which differ from their 

surroundings (Figure 8/A). This may be useful to 

detect islands of variation in rather coherent areas. 

With increasing numbers of nearest neighbors, the 

amount of possible index values will increase and 

return much more smoother transitions. This is 

helpful for the detection of areas with variation in 

a cluster-like way. Areas with variation in close 

distances would be smoothed to clusters which 

would be differentiated from surrounding 

homogeneous areas (e.g., Figure 8/D). This way of 

proceeding captures, for example, border regions 

in a more schematic way and those regions which 

are most likely unaffected by these border regions. 

 

 

 
Figure 8: Local measure of linguistic coherence applied to the data of Figure 6 with different number of nearest 

neighbors and without information on linguistic variants. 

 

 

4.2 Subtractive Plural in Hunde ‘Dog-PL’ 

Another example is provided by Figure 9, which 

focuses on the whole language area of the Maurer 

data. The map illustrates the variation of the word 

ending in Hunde (‘dog-PL’; CohG* = .87) 

considering three graphemic variants (<nd>, <ng>, 

<nn>), of which <nn> (phonologically /n/) and 

<ng> (phonologically /ŋ/) have been considered as 

subtractive plurals (Birkenes 2014). While the 

Kirche example considers only two linguistic 

variants, Figure 9 refers to three linguistic variants. 

The figure combines three different views. On the 

left side is the distribution of variants without any 

preparation, in the middle the representation of the 

coherence measure (expressed in Div) including 

information on the variants and on the right side the 

representation of coherence (Div) without 

information on the linguistic variants. 

Obviously, the coherence map in the middle 

clearly highlights the spots of linguistic variation. 

Among them are areas where only two variants 

interact (e.g., <nd> and <nn> in the South, <nd> 

and <ng> in the North), but also areas where all 

three variants meet (in the center). Similar to the 

previous example the coverage of individual 

variants is mapped.  

The map on the right, on the other hand, 

emphasizes where generally such patterns of 

variation are encountered. This map consequently 

emphasizes the contrast between homogeneous 

and heterogeneous moments of the spatial data 

distribution. In this case, too, conclusions can be
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Figure 9: Local measure of linguistic coherence (Div = 1-Coh) for a linguistic variable with three variants (Hunde 

‘dog-PL’); green = <ng>, red = <nd>; blue = <nn>; left: distribution of variants; middle: Div measure with information 

on linguistic variants; right: Div measure without information on linguistic variants. 

 

drawn (as in the previous example) about the extent 

of regional variation and possible language change 

events; it is in the yellow zones where variation is 

highest and possible language change is most 

likely. 

From a methodological perspective, the 

following is worth mentioning. By integrating the 

nearest neighbors, a smoothing effect is created, 

which shows linguistic variation in places where 

actually no variation is documented by data 

collection. The idea behind this is that variation is 

probably more widespread than what is captured by 

data collection. For example, if only one person is 

asked about a particular linguistic variant at each of 

two surveyed locations (which is very often the 

case in dialectological studies), it would possibly 

be wrong to take different answers per se as 

evidence of strict linguistic differences between 

those locations. Instead, it must be expected that 

both variants would be encountered in both 

localities and would be appropriately documented 

with other participants if data were repeatedly 

collected. However, the probability of this 

decreases with increasing geographical distance. 

The measure thus provides a prediction for the 

communicative reach of language variants.  

5 Discussion 

The Coh measure, as well as the Div measure 

respectively, reveals spots of local variation, which 

indicate horizontal (i.e. geographical) or vertical 

(i.e. social, pragmatic) heterogeneity. As Labov 

(2004) points out, these spots of increased language 

variation might be possible starting points of 

language change. In this regard, Bellmann (1983) 

considers the model in Figure 10.  

Starting from a situation where variant A is the 

only available realization of a particular linguistic 

variable, at a certain time variant B becomes an 

alternative. This is the situation illustrated by 

Figure 10 for both scenarios (above and below). 

However, the Coh measure goes beyond local 

variation by modeling the closest relative area of 

influence of that alternative.  

 

 
Figure 10: Possible stages in the formation of language 

variation and/or language change on the example of two 

variants A and B; above: scenario 1 (language change); 

below: scenario 2 (temporary language variation). 

 

Obviously, analysis using Coh (like Figure 7) does 

not specify how long the variative phase will 

persist. Furthermore, it could be that variant B 

disappears again (Figure 10 below), and it could 

just as well be that variant B prevails (Figure 10 

above) while A disappears. Consequently, Coh 

does not allow for a clear prediction of the process 

of language change, but it does illustrate that, if 

language change does occur, it is likely to occur at 

the spots with high Div (= 1-Coh). Against this 

background, the relevance of the Coh measure is to 

indicate spots of particular linguistic dynamics. 

Identifying these spots enables both prediction and 

explanation of ongoing and/or completed language 

change.  
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On the other hand, with CohG* → 1 it can also 

be shown directly whether a language region has 

proto-typical variants, which can then be easily 

identified in the data distribution.  

Furthermore, applying the coherence measure to 

a collection of multiple linguistic phenomena, as 

shown in Figure 11, leads to a new perspective on 

the structuring of linguistic space. Instead of 

highlighting the clusters of linguistic similarity, 

rather the zones of particular linguistic dynamics 

are identified. From looking at the coherence 

values, even without mapping, a first impression is 

given whether the lemmas in question show a 

strong spatial clustering or not. This is useful for 

huge datasets with lots of linguistic variables. At 

the same time, it becomes evident that the measure 

is sensitive for outliers (i.e., isolated sites), which 

are evident by individual points. 

 

 
Figure 11: Local measure of linguistic coherence (Div = 1-Coh) for different linguistic variables. 

 

Among the existing dialectometric literature, our 

coherence measure is comparable to the technique 

introduced by Rumpf et al. (2009) using Kernel 

Density Estimation (KDE). Our measure explicitly 

considers geographical neighborhood, but, in 

contrast to the KDE approach, it is more focused 

on local variation. Instead of calculating an 

adequate bandwith, we choose a certain number of 

neighbors in order to test for the integration of an 

individual site into the linguistic area. In this 
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respect, the underlying concept is that linguistic 

space develops in small-scale communication 

zones, not in large-scale continua. From a technical 

perspective, a difference to the KDE approach is 

that we do not rely on the definition of individual 

variant-occurrence maps as an intermediate step of 

analysis, but process the variation given in the data 

set directly. 

Notwithstanding this, there are other studies that 

work with the notion of coherence or focus on 

transitional spaces. Nerbonne & Kleiweg (2007), 

for example, introduce a local measure of 

incoherence, which, however, focuses on linguistic 

rather than geographic distances. Our measure thus 

provides an alternative view of the relationship 

between spatial and linguistic proximity based on 

individual maps and not on aggregated data. Goebl 

(2010), nonetheless, illustrates the importance of 

skewness as a global statistical measure of the 

linguistic integration of individual sites into the 

linguistic area and the assessment of transitional 

zones. Similar to Nerbonne & Kleiweg (2007), the 

basis of linguistic measurement is in Goebl’s 

approach not the individual map, but a set of 

aggregated data. Unlike Goebl (2010), we focus 

exclusively on concrete geographic neighbors of an 

individual site with both the local and global 

measures, which makes our approach, in the case 

of the local measure, independent from the overall 

statistical distribution, which is in dialectometric 

studies typically shaped by linguistic distance or 

similarity. 

6 Conclusion 

This paper introduces a nearest neighbor approach 

as a diagnostic tool in order to find regions which 

are more sensitive to language variation and 

change than others. For this purpose, a local 

measure of coherence is used (Coh). In addition, a 

global coherence measure (CohG) as well as a 

corrected global measure (CohG*) was used to 

quantitatively assess the spatial coherence of more 

comprehensive data distributions (e.g., on maps) 

and to automatically identify linguistic items with 

higher/lesser language variation. Two case studies 

illustrate the application of the method and the 

informative quality of the measures. 

Limitations 

The method works reliably, even if a map contains 

multiple variants. However, if there are more than, 

say, 10 or 15 variants, it can happen that no clear 

spots can be identified on the maps. For this matter, 

a more probabilistic approach would be desirable, 

which is currently not implemented. 

Another limitation is the distance measure used 

for the identification of nearest neighbors. 

Currently, nearest neighbors are defined using 

Euclidean distance. This is not a problem if the 

analysis takes place in flat terrain (e.g., the Upper 

Rhine Plain). In mountainous terrain, however, this 

can lead to slight biases. To solve this problem, we 

will implement more realistic distance measures 

such as travel time in the future.  

From a linguistic perspective, a limitation of the 

method is that even if it informs about the variation 

spots, it does not provide any information about the 

direction in which a possible language change 

could develop. However, such a statement is 

difficult to make without concrete comparative 

language data (e.g., diachronic data) or social 

interpretation. Since the Maurer data allow an 

analysis in apparent-time, further approaches for 

investigation will be possible in the future. 
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