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Abstract

We explore pretraining unidirectional language
models on 4B tokens from the largest curated
corpus of Ukrainian, UberText 2.0. We enrich
document text by surrounding it with weakly
structured metadata, such as title, tags, and pub-
lication year, enabling metadata-conditioned
text generation and text-conditioned metadata
prediction at the same time. We pretrain GPT-2
Small, Medium, and Large models on a single
GPU, reporting training times, BPC on BrUK,
BERTScore, and BLEURT on titles for 1000
News from the Future. Next, we venture to for-
matting POS and NER datasets as instructions,
and train low-rank attention adapters, perform-
ing these tasks as constrained text generation.
We release our models for the community at
https://github.com/proger/uk4b.

1 Introduction

Large language models provide a text-based user
interface to perform multiple language processing
tasks. The release of UberText 2.0 (Chaplynskyi,
2023) is a milestone that unlocks pretraining exper-
iments of language models on curated Ukrainian
texts. Coupled with recent improvements to hard-
ware and software, we can train larger models on a
single consumer GPU from scratch.
Our contributions are:

* techniques to train language models on Uber-
Text 2.0 under 1B parameters on consumer
hardware setting a baseline of 0.69 BPC on a
subset of BrUK;

a method to add new tasks from document
metadata in pretraining compared to finetun-
ing larger models for sequence generation ex-
plicitly;

exploration of tagging tasks formatted as in-
structions using low-rank adapters compared
to traditional sequence tagging methods.
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2 Related Work

Radford and Narasimhan (2018) show that a sin-
gle pretrained causal Transformer (Vaswani et al.,
2017) decoder-only model on as much as 5 GB of
books with 124M parameters can be finetuned for
many downstream tasks. Devlin et al. (2019) show
that using an bidirectional encoder-only model im-
proves performance for tasks where bidirectional
context is important, like question answering. Rad-
ford et al. (2019) discover that models pretrained
on 40 GB of curated internet text and scaled up to
over 1B parameters are able to perform multiple
tasks in zero shot scenario. 100x larger models
trained on larger dataset exhibit few shot learning
abilities of new tasks at the cost of impressive en-
gineering efforts (Brown et al., 2020; Chowdhery
et al., 2022). These ideas guide us towards seek-
ing large text corpora and training Transformers on
them.

Kaplan et al. (2020) and Hoffmann et al. (2022)
observe that bigger models converge to the same
validation loss much faster in the same wall clock
time. They fit a power law curve between a power
of the model size, dataset size, or compute time and
performance (I = az?<! + ¢) into runtime metrics
collected from running a large number of exper-
iments. The power laws suggest that the returns
from increasing model, data, or compute dimin-
ish after a certain point. Caballero et al. (2022)
present a smoothly broken neural scaling law equa-
tion, suggesting a scaling speedup laying further
ahead past the currently accepted inflection region.
Sorscher et al. (2022) suggest a way to beat scaling
laws by using careful data selection methods on
vision tasks. These ideas give us the insight that
we should use the biggest models possible for our
compute budget.

It’s not only compute that’s important. While the
work of Radford et al. (2019) discovered prompts
that drove the model to perform tasks like sum-
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marization, Schick and Schiitze (2021) introduce
pattern-exploiting training that reformulates sen-
tences into cloze tasks on purpose. It is beneficial
to curate examples of natural language instructions
to save compute.

Instruction finetuning datasets, such as The Flan
Collection, released by Longpre et al. (2023), cu-
rate massive amounts of task-specific datasets and
provide a pipeline to reformulate tasks into natural
language using seqio introduced in Roberts et al.
(2022). Flan TS5 demonstrates that you can achieve
higher performance on multiple NLP tasks at once
with smaller models in 1.5B—11B range using such
data curation methods. These ideas inspire us to
leverage metadata and attempt to formulate NLP
tasks using natural language.

Techniques like sequence length warmup (Li
et al., 2022), gradient clipping (Graves, 2013) en-
able training stability. Dettmers et al. (2022) enable
memory savings by quantizing gradient statistics.
Katharopoulos et al. (2020) explore a recurrent
formulation of attention with lower computational
complexity, and Schlag et al. (2021) view it as fast
weight programmers improving capacity of atten-
tion in the recurrent setting. Tillet et al. (2019)
provide a programming language to implement
high performing kernels quickly. Dao et al. (2022)
demonstrate how to significantly speed up computa-
tion of self-attention and allow much larger context
sizes than 1024 or 2048 tokens. Finally, Geiping
and Goldstein (2022) demonstrate achieving com-
petitive pretraining speed and performance on a
single GPU in 24 hours with a BERT-like model.
Notably, these two advancements, the release of Py-
Torch 2.0 and Andrej Karpathy’s nanoGPT tweets,
encouraged us to try pretraining from scratch.

Low-rank adaptation methods presented in Hu
et al. (2022) and extended in Valipour et al. (2022)
enable finetuning of large pretrained models on con-
sumer hardware by updating only a small fraction
of extra parameters, suggesting we can efficiently
maintain adapters for many tasks in memory at
once and achieve better finetuning performance.

Shen et al. (2022) observe that smaller models
optimize faster in the beginning of training and
propose grafting parameters of a smaller network
onto a larger one to continue training after some
time. We keep this idea in mind for the future.
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3 Pretraining

3.1 Dataset Preparation

We produce a tokenizer from the Wikipedia sub-
set of the corpus using SentencePiece (Kudo and
Richardson, 2018) on the document level, including
whitespace symbols like newlines and byte-level
fallback, totaling 50257 tokens'. We include ad-
ditional special tokens, like <|transcribe|>, re-
served for future use. Every document is Unicode-
normalized using ftfy>. We tokenize the News,
Fiction and Wikipedia subsets of UberText 2.0 in
parallel using Datasets (Lhoest et al., 2021).

When tokenizing each document we prepend
title, year part of date_of_publish and tags
document metadata fields prefixed by tema:
(“topic: 7), pik: (“year: ”) and mitkum: (“tags:
) strings in randomized order, separated by new-
lines from each other, and by double newlines from
the body. The metadata is repeated at the end of
the document as well after a double newline. After
the metadata suffix we append one <|endoftext|>
token. Following Geiping and Goldstein (2022) we
remove all documents that have a ratio of characters
to tokens higher than 0.4.

The resulting dataset has 4,299,910,622 training
tokens. 4,194,956 tokens are set aside for vali-
dation. All document tokens are concatenated to-
gether into a single binary file with 2 bytes per
token. We name this dataset uk4b in our experi-
ments.

3.2 Model

We choose a Transformer decoder based on GPT-2
(Radford et al., 2019). The decoder contains two
embedding tables, one for each of 50257 tokens
and one for each of 1024 possible token positions.
At input, every token in a sequence is represented
using a sum of the token embedding and its corre-
sponding position embedding. Input goes through
N blocks, consisting of a residually connected multi
head self-attention layer, followed by layer nor-
malization and a residually connected linear layer,
followed by another layer normalization. Latent
representation is projected back to token ids us-
ing a linear layer with weights tied to the token
embedding table.

Attention heads are constrained to use only to-
kens earlier in a sequence. This enables us to use an

!Original GPT-2 uses 50000 BPE tokens + 256 for each
byte + 1 for <|endoftext|>
2https: //ftfy.readthedocs.io
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Model Size BrUKsg; ukd4b validation ukd4b training ETA
bpcl loss) tokens (compute optimal)  3090-hours
LSTM 57M  0.82 - - -
GPT-2 Small; 123M  0.72 2.38 6.87B (2.29B) 35
GPT-2 Medium, 355M 0.70 2.10 6.29B (6.85B) 89
GPT-2 Large; 774M  0.69 1.82 21.4B (15.4B) 492,

Table 1: Intrinsic evaluation of trained models. + means the model uses an output projection layer with a dimension
rounded up to the next multiple of 8 to enable tiling optimizations, and biases from all attention, linear and layer
normalization layers have been removed. -; means the model uses layer normalization of token and position
embeddings. -4 denotes that the time estimate for Large is computed for a 772M _ -type model with 2048 tokens per
forward pass. LSTM is trained on a different train/validation split of UberText 2.0 than uk4b and is available at
https://huggingface.co/lang-uk/flair-uk-forward.

autoregressive text completion objective computed
in parallel for all tokens in a batch.

Our implementation is based on nanoGPT.> We
rely on PyTorch (Paszke et al., 2019) 2.0 compiler
and FlashAttention (Dao et al., 2022).

We pretrain three model variants:
Medium and Large.

Small has 12 layers, 12 attention heads and 768
embedding dimension totaling 124M parameters.
We do not use the bias in attention, linear layer
and layer normalization for speed. We use AdamW
51 = 0.9, 8o = 0.95, weight decay of le-2. Learn-
ing rate is linearly warmed up for 1000 steps from
6e-5 to 6e-4 and then back for 13000 more steps.
We clip gradients at 2-norm of 1.

Small,

We use a batch size of 512 with sequence length
1024.

Medium has 24 layers, 16 attention heads and
1024 embedding dimension totaling 354M param-
eters, without bias. According to Chinchilla Ap-
proach 2 (Hoffmann et al., 2022)* compute optimal
estimate we need to train on 6.85B tokens, requir-
ing 13066 gradient updates. We round it up to
13100 updates. We train Medium and Small for the
same amount of time to compare wall clock time on
RTX 3090. Small and Medium vocabulary size is
expanded to 50304 to enable tiling optimizations®

Large has 774M parameters: 36 layers, 20 atten-
tion heads and 1280 embedding dimension. We
used bias in all layers in this model. We train
Large for 10M forward passes on a single A100.
Compute optimal estimate for Large is 15.4B to-
kens, requiring roughly 29.5K gradient updates. At

Shttps://github.com/karpathy/nanoGPT

“Estimated using code from https://github.com/
karpathy/nanoGPT/blob/master/scaling_laws.ipynb

>Once again thanks to @karpathy: https://twitter.
com/karpathy/status/1621578354024677377
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2048 tokens per iteration this requires 7.5M for-
ward passes. The training was started with 8-bit
AdamW (Dettmers et al., 2022) and continued with
32-bit AdamW following divergence. We used a
maximum learning rate of 2.5e-4. As an artifact,
this model additionally includes layer normaliza-
tion in Embedding layers.

Large model uses standard PyTorch initialization
for all layers, Small and Medium use GPT-2 initial-
ization. We use bfloat16 adaptive mixed precision
in all runs. Loss curves are available on Figure 1.
Sequences of tokens are randomly sampled from
the dataset during training.

One epoch of uk4b requires 8202 gradient up-
dates. Compute optimal training tokens estimate
assumes tokens are not repeated, which is not the
case for our experiment.

3.3 Evaluation

To perform instrinsic evaluation, we use a subset of
BrUK corpus of contemporary Ukrainian by Starko
et al. (2016-2023). To avoid overlap with train-
ing data, we choose sentences split using a toolkit
by Rysin (2022) that do not appear in UberText
2.0, ending up with 28643 test sentences. We call
this dataset BrUKgg;,. As a baseline, we include
a character-level 1-layer LSTM (Hochreiter and
Schmidhuber, 1997) with hidden size 1024 trained
for 20 epochs (364B characters) on another variant
of UberText 2.0 using an implementation provided
by Akbik et al. (2018). We report bits per character
and training statistics in Table 1 (Mielke, 2019).

3.4 Metadata Prediction

To evaluate metadata prediction, we sample 1000
News Articles from the Future using an in-domain
news source.

We perform decoding of the Large model
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Figure 1: Validation loss curves against training tokens seen by models. Shaded regions denote compute optimal
training times for Small, Medium and Large estimated using Chinchilla (Hoffmann et al., 2022).

prompted by article content followed by two new-
lines and prompt tokens tema: (“topic: ) or
miTkm: (“‘tags: 7).

We report BERTScore using xlm-roberta-large
(Zhang* et al., 2020) and BLEURT using BLEURT-
20 model (Sellam et al., 2020; Pu et al., 2021) for
title prediction task in Table 2. To compare, we take
mBART-50 (Tang et al., 2021), which is an encoder-
decoder model pretrained on multiple languages
and finetune it on news articles from UberText 2.0.
We remove all text from mBART output after the
first sentence.

For tag prediction, we measure and report in-
tersection over union and accuracy between sets
of reference and hypothesis tags constructed by
splitting the tag string by commas and downcasing.

Table 2: Metadata Prediction results on 1000 News
Articles from the Future, Greedy Decoding. mBART is
finetuned on 1000 news articles from UberText 2.0.

Titles BERTScore F1 ~ BLEURT mean
GPT-2 Small 123M 0.90 0.54

GPT-2 Medium 355M 091 0.57

GPT-2 Large 774M 0.91 0.59
mBART 610M 0.94 0.74

Tags 10U Accuracy
GPT-2 Small 123M 0.47 0.64

GPT-2 Medium 355M 0.54 0.71

GPT-2 Large 774M 0.56 0.71
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4 Finetuning

4.1 Low-Rank Adaptation

When finetuning for a new task, we add low-rank
decomposed clones of query W, and key W}, input
projection weights for each attention head, sum-
ming their activations with original queries and
keys, as suggested by Hu et al. (2022) using their
provided code. This method is based on an obser-
vation that overparametrized models reside in a low
intrinsic dimension by Li et al. (2018). Practically,
this allows us to finetune large models on consumer
GPUs by updating only a small amount of parame-
ters. The pretrained model remains frozen, allow-
ing operation of multiple adaptation modules on a
single GPU at once.

4.2 Instruction Datasets

Wei et al. (2021) has shown that finetuning large
models on instruction datasets improves their zero-
shot performance. In aspiration to this work, we
prepare POS (Kotsyba et al., 2018) and lang-uk®
NER datasets in instruction format to evaluate our
model on these tasks in a finetuned setting.

For each example, we prefix the input sentence
by a prompt token peuenus: (“‘sentence: ), pro-
vide the input sentence and put a task prompt
npoanaiizyit: (“analyze: ) on a new line fol-
lowed by a response. We format ground truth re-
sponses to contain observed words interspersed
with hidden labels: part-of-speech tags in case of
POS and named entity labels in case of NER. Word

6https: //lang.org.ua
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tokenization depends on the task, making the task
harder than pointwise token projection as the model
needs to learn arbitrary tokenization. We ensure
hidden labels use exactly one token. We prompt the
hidden label prompt by a / token. This encoding
reminds us of a text representation of observed-
hidden sequences in hidden Markov models.

We intercalate all examples with an
<|endoftext|> training and continue train-
ing using the same objective using the same data
loading process as during pretraining.

During our preliminary experiments, we observe
that the model struggles to correctly reproduce the
sentence after the prompt in about 1/3rd of the
cases, making evaluation impossible without con-
strained decoding.

To complete POS measurements we provide the
model with a oracle-tokenized observed response
with hidden labels replaced by a token previously
unseen during training’. We evaluate by forward-
ing this string through the model and replacing
blanks with highest probability tokens. We effec-
tively use an autoregressive model in a parallel
fashion. We do not constrain the set of tokens to
choose from after the forward pass. The results in
the evaluation are available in Table 3.

Table 3: POS Performance

Model Accuracy
Flair LSTM Forward/Backward 0.979
UDPipe 0.975
GPT-2 Medium Instr. Parallel (ours) 0.964
FastText CBOW (flair) 0.940
FastText CBOW (spacy) 0.825

To complete NER evaluations, we provide the
model with oracle tokenization, performing con-
strained greedy decoding. Results of this evalua-
tion are show in Table 4. ELECTRA models are
provided by updated work of Schweter (2020).

5 Discussion

We are excited to release a new decoder-only mono-
lingual model trained on curated Ukrainian data to
the community.

It took us over a month to pretrain the first Large
model successfully and in the process we became
aware of possible improvements to the model, such
as removing biases. These improvements resulted
in a narrow visual gap between Medium and Large,

"we choose _ at random
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Table 4: NER Performance

Model F1 Prec Recall
xlm-roberta-large 0.92 0.92 091
xIm-roberta-base 0.89 0.89 0.88
dbmdz/electra-base- 0.89 0.89 0.89
ukrainian-cased-discriminator

lang-uk/electra-base- 0.87 0.87 0.87
ukrainian-cased-discriminator
youscan/ukr-roberta-base 0.87 0.87 0.86
bert-base-multilingual-cased 0.87 0.88 0.87
Flair LSTM Forward and Back- 0.86 0.86 0.86
ward

GPT-2 Large Instruction Data, 0.85 0.86 0.84
Constrained Decoding (ours)

FastText CBOW 0.83 0.86 0.80
FastText skipgram 0.82 0.83 0.81

as seen on Figure 1. We were able to report a much
lower validation loss on Large due to a spike to-
wards the end of training. Loss curves in Figure
1, bpc values in Table 1 and results on metadata
prediction show in Table 2 suggest it might be ben-
eficial to train Medium for longer. We see that
using a task specific encoder-decoder model is per-
forming better, possibly leveraging context in both
directions when predicting metadata given the doc-
ument.

While aiming towards a general purpose lan-
guage agent trained on a single GPU, we are lured
by simplicity of formatting tasks as instructions.
During our experiments, we observed the model
drifting away from the NER task into text genera-
tion on long inputs, requiring us to use constrained
decoding to “remind” it what the model is sup-
posed to be doing. We achieve a competitive result
this way, however would still choose a more tradi-
tional approach to solve NER, as confirmed by our
measurements in Table 4.

It is suprising to find that POS could be solved by
“filling in blanks” by picking maximum probability
tokens in parallel. We used that result in Table 3.

There is room for more data to faithfully leverage
the prediction of the number of tokens we need
to train for to optimally utilize compute. There
is more available data in Conneau et al. (2020),
Wenzek et al. (2020) and Raffel et al. (2020). We
leave filtering this data to future work.

Limitations

We choose to keep bias of UberText 2.0 in the
models as is. We observe a gap in performance be-



tween our models and task-specific large encoder
or encoder-decoder models. While we evaluate
document-conditional metadata generation, we do
not evaluate metadata-conditioned document gen-
eration ability present in our model. Constrained
decoding necessary for NER evaluation is a major
limitation of our instruction finetuning attempts,
suggesting we need to make further improvements
to the design of our pretraining corpus for perform-
ing multiple tasks with one model. We do not test
our model on traditional sequence tagging formu-
lations of POS and NER. Causal language models
are useful for tasks like speech recognition and we
leave effectiveness of these models on such tasks
to future work.

Ethics Statement

We seek to accelerate adoption of larger language
models at scale enabling new capabilities for
Ukrainian, improving lives of millions of language
users. We recognize that our work can be misused
to produce fake information and deceptive content
and we do not condone such use of our models.
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