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Abstract

In this paper, we present a system for gener-
ating semantic representations from Universal
Dependencies syntactic parses. The foundation
of our pipeline is a rule-based interpretation
system, designed to be as universal as possible,
which produces the correct semantic structure;
the content of this structure can then be filled
in by additional (sometimes language-specific)
post-processing. The rules which generate se-
mantic resources rely as far as possible on the
UD parse alone, so that they can apply to any
language for which such a parse can be given
(a much larger number than the number of lan-
guages for which detailed semantically anno-
tated corpora are available). We discuss our
general approach, and highlight areas where
the UD annotation scheme makes semantic in-
terpretation less straightforward. We compare
our results with the Parallel Meaning Bank, and
show that when it comes to modelling seman-
tic structure, our approach shows potential, but
also discuss some areas for expansion.

1 Introduction

Aside from the theoretical interest in discovering
how syntactic information contributes to semantic
interpretation, there are also a number of practical
benefits to augmenting syntactic descriptions with
semantic representations. A suitably rich semantic
representation automatically makes possible a num-
ber of common downstream tasks such as named
entity recognition, information retrieval, machine
translation, and natural language inference. In this
paper, we report on our system for using Univer-
sal Dependencies syntactic annotations (UD: Nivre
et al., 2020) to produce semantic representations,
in this case Discourse Representation Structures
(DRSs: Kamp and Reyle, 1993; Kamp et al., 2011).
Figure 1 shows the UD parse and a possible DRS
representation for a simple sentence.

In particular, and unlike much of the state of the
art, our pipeline makes heavy use of a rule-based

Chrisjen grinned .
PROPN VERB PUNCT

tense=Past

nsubj punct

root

x e t
Name(x, ‘Chrisjen’)
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Agent(e, x)
Time(e, t)
t ≺ ‘now’

Figure 1: UD graph and DRS for Chrisjen grinned

component. This component inspects the UD graph
and uses it to produce a number of meaning con-
structors, the basic building blocks of semantic
composition in Glue Semantics (Glue: Dalrymple
et al., 1993; Asudeh, 2022). Meaning constructors
are pairs, the first element of which is a lambda
expression in some meaning language, and the sec-
ond element of which is a formula in linear logic
(Girard, 1987) that expresses a type. The atoms of
this linear logic statement are indexed with node la-
bels, thereby anchoring (or ‘gluing’) the semantics
to the syntax. This flexible approach to meaning
composition allows each word to make any number
of distinct meaning contributions, and frees com-
position from word order, making it a perfect fit
for a dependency grammar like UD (see Haug and
Findlay 2023).

Rules in our rule-based system consist of two
parts: on the left-hand side, a description which
nodes in the UD tree might satisfy (e.g. referring
to the node’s dependency relation, its lemma, or
its features), and on the right-hand side, a meaning
constructor to be introduced. This system has been
implemented, using a Haskell script to inspect the
UD tree node by node, comparing each one to the
rules in our ruleset, and introducing the appropriate

47



meaning constructor each time a node matches a
description (for more details on this process, albeit
in a different syntactic setting, see Gotham and
Haug 2018).1

Once a collection of meaning constructors has
been obtained, they are passed to the Glue Se-
mantics Workbench (Messmer and Zymla, 2018),
which uses them to produce a linear logic proof
(or proofs, in the case of scope ambiguities) whose
conclusion is the meaning constructor correspond-
ing to the semantic representation of the sentence.
We subequently use the Python Natural Language
Toolkit (NLTK: Garrette and Klein, 2009) to per-
form any post-processing steps, including produc-
ing human- and machine-readable DRS outputs.

Our system is part of an ongoing project on uni-
versal semantic parsing, and so another prominent
feature of our system is its focus on broad coverage.
This sets it apart from other works which combine
symbolic and machine-learning approaches (e.g.
Kalouli and Crouch 2018; Hu et al. 2020), since
these are limited to specific languages, e.g. English,
because specific tools exist, or to other languages
for which there exist sufficient data to train a deep
learning system. Because of the lack of semanti-
cally annotated training data for the majority of
the world’s languages, recent efforts in broad cov-
erage semantic parsing (e.g. Liu et al. 2021) have
been based on machine translation into English,
followed by semantic parsing and projection of the
result onto the source language. However, state of
the art machine translation is only available for
high-resource languages (Haddow et al., 2022) and
is likely to introduce noise even in the best of cases,
especially if the languages are typologically dis-
tant.

Instead of this translational approach, we try to
leverage UD representations to achieve universality.
As far as possible, our rule system produces mean-
ings based exclusively on the UD parse, without
invoking language- or lemma-specific rules. Sec-
tion 2 discusses the kinds of rules used in more de-
tail (and Section 3 identifies some issues that arise
which are of potential relevance to UD as a frame-
work). However, this language-neutral approach
means that the output of the rule-based component
is necessarily underspecified, since, for example,
semantic roles (Agent, Patient, etc.) do not stand
in a one-to-one correspondence with syntactic re-

1The code used for our system is available at https://
github.com/Universal-NLU/UNLU, including a sam-
ple set of semantic interpretation rules.

lations (nsubj, obj, etc.). For some languages,
this is as far as we can go. But where languages
have more resources available, and we can there-
fore access the language- and lemma-specific infor-
mation needed, we can make use of various post-
processing steps to further refine our semantic rep-
resentations. One of these systems, used to convert
syntactic labels for dependencies into appropriate
semantic role labels, is described in Section 4.

In Section 5, we compare the output of our
pipeline with an existing benchmark of DRS pars-
ing, the Parallel Meaning Bank (PMB: Abzianidze
et al., 2017). Our goals are slightly different from
those of the PMB, so although this comparison
offers indications about the adequacy of our rule
system, it does not offer a perfect gold standard.

Moving forward, we have further plans for post-
processing, and these are discussed in Section 6.
We also indicate some limitations of the PMB
dataset as a gold standard for DRS parsing.

2 Rules for semantic interpretation

By using a rule-based system, we can more easily
import insights from theoretical linguistics into au-
tomatic semantic interpretation. These insights are
generally of a structural nature: e.g. the fact that
the logical structures produced by different quanti-
fiers do not straightforwardly match their syntactic
structure is the sort of thing that may be difficult
for a machine-learning algorithm to infer.2 At the
same time, our universal goals mean that language-
specific information, such as the semantic roles
a predicate assigns to its arguments, must be ab-
stracted away from, since we cannot retrieve this
information from the UD parse alone. The target
output of our rule-based system is therefore not a
fully-specified DRS. Instead, we aim to produce a
structurally accurate DRS, where the correct dis-
course referents are present and the hierarchical
relations between them are correct; the content of
the DRS, by which we mean the labels for the rela-
tions, or the word senses attributed to the discourse
referents, will be filled in only later, by language-
specific post-processing. Concretely, except for in
the cases where no language-/lemma-specific infor-
mation is required to determine the correct labels,
our rule system outputs syntactic (rather than se-
mantic) labels for the relations between discourse

2By contrast, tasks like word sense disambiguation, which
rely on large numbers of sometimes subtle cues, are pre-
cisely those tasks for which machine-learning systems are
well suited.
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referents, and uses lemmas in place of word senses.

2.1 Target representations

As mentioned, our target semantic representations
are DRSs. In order to facilitate comparison with
an existing benchmark, we aim to follow the spe-
cific format of the Parallel Meaning Bank (PMB).
This is a fairly standard meaning representation
format based on a neo-Davidsonian event seman-
tics whereby verbs denote predicates of events (or
states) and participants in these events are con-
nected via thematic role predicates like Agent and
Patient that relate events and individuals (David-
son, 1967; Parsons, 1990). The PMB does make a
few less standard choices, however. For example,
it is less expressive than some semantic theories
in that it has no representation of number (except
for in the case of 1st and 2nd person pronouns);
but it is also more expressive in that it annotates a
basic level of presuppositional structure (based on
Projective DRT: Venhuizen et al. 2013). Ultimately,
we wish to improve on both of these areas, by in-
corporating an explicit representation of number,
and by capturing more presupposition triggers, but
for now we attempt to diverge as little as possible
from the PMB representations, in order to facilitate
comparison.

2.2 Types of rule

In this section, we illustrate a few categories of rule,
divided by the kind of information they require
from the UD parse.

2.2.1 Part of speech
For some situations, the part of speech tag alone
is sufficient to determine the node’s semantic con-
tribution. This is the case for proper nouns, for
example, since we know they will contribute a
discourse referent that stands in the ‘Name’ re-
lation to its lemma (its name). Our rule that cap-
tures this is shown as rule 1 in Figure 2 (we also
employ a second rule, not shown, that provides a
meaning constructor that turns this meaning into a
generalised quantifier). If a node has the UD POS
PROPN, then we introduce a meaning constructor
of type e(!) -o t(!) that adds the appropriate
condition to the DRS for the sentence. The seman-
tic side of the meaning constructor is written in
the DRS representation language of the NLTK. On
the linear logic side, we use ! and ^ to refer to
the current node and its mother, respectively; these
will be instantiated to numeric node indices in a

specific parse. The string -o is used to represent
the linear implication symbol ⊸; Glue Semantics
uses linear logic to guide semantic composition,
following the ‘proofs-as-programs’ paradigm en-
abled by the Curry-Howard isomorphism (Curry
and Feys, 1958; Howard, 1980). So the linear logic
expression in this rule tells us it has the type ⟨e, t⟩
and that it is anchored in the current node, the one
with the POS PROPN.

2.2.2 UD tree
For other cases, the topography of the UD tree it-
self encodes the semantic information we wish to
capture. For example, some syntactic dependencies
are also semantic dependencies – arguments and
adjuncts like nsubj, obj, ccomp, obl, etc. We
therefore require a number of rules whereby the
presence of such a dependency produces a mean-
ing constructor that introduces a parallel semantic
dependency. Rule 2 in Figure 2 shows an exam-
ple for nsubj when it is a dependent of a verb.
This rule has two conditions, joined by ;, signify-
ing conjunction: the UD dependency of the node
must be nsubj, and its mother node must have
the POS VERB. We employ a Champollion-style
representation of verbal meanings such that they
do not have the usual ⟨v, t⟩ type of properties of
events, but rather the higher type ⟨⟨v, t⟩, t⟩ (Cham-
pollion, 2015). To minimise clutter in our rules,
we define a new type x(n) which is equivalent to
((v(n) -o t(n)) -o t(n)). The meaning
constructor in rule 2 therefore consumes a gener-
alised quantifier and produces a modifier of verbs,
which adds the verb to the scope of the quantifier,
and connects the variable being quantified over to
the verb’s event variable via an nsubj relation.

Although in general we require language-
specific valency lexica to know which semantic
role labels to use in place of syntactic labels like
nsubj, in some cases we can nonetheless incor-
porate word-level information to make our DRSs
more informative. For example, for obl depen-
dents which have a case daughter, we use the
lemma of the target of case (i.e. the preposition
name) to label the semantic relation, thus adding
a degree of granularity which would otherwise be
absent.

Not all syntactic dependencies also correspond
to semantic dependencies, of course: more func-
tional ones like aux, cop, case, etc. usually do
not in themselves (i.e. merely by their presence)
contribute semantic information that is not also
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1. coarsePos = PROPN -> \X.(([], [Name(X, ‘:LEMMA:‘)])) : e(!) -o t(!)
2. relation = nsubj; ^ {coarsePos = VERB} ->

\Q.\V.\F.(Q(\X.(V(\E.(([], [nsubj(E,X)]) + F(E)))))) :
((e(!) -o t(^)) -o t(^)) -o (x(^) -o x(^))

3. coarsePos = VERB; ~ aux; Tense = Pres ->
\V.\F.(V(\E.(([T], [time(T), EQ(T, ‘now‘), Time(E, T)]) + F(E)))) : x(!) -o x(!)

Figure 2: Some semantic interpretation rules

represented elsewhere; rather, the targets of such
dependencies contribute semantic information in
other ways, such as via their features.

2.2.3 Features

The UD feature space is not as consistently or re-
liably employed in treebanks as the part of speech
tags or dependency graph labels are, and so we use
it only sparingly in our rule system. Nonetheless,
there are certain cases where it supplies crucial
information that saves us having to fall back on
language-specific resources. For example, the tense
of simplex verbs (those without auxiliaries) can be
reliably read off the Tense feature, as rule 3 in Fig-
ure 2 illustrates for the present tense (the symbol ~
represents negation).

2.2.4 More complex constructions

Of course, such simple rules only get us so far.
Other phenomena, such as coordination or nega-
tion, require a rich set of complex interacting rules.
Coordination is made especially challenging by the
fact that in UD there is no node which represents
the coordinate structure as a whole, meaning that
the line between properties of the whole structure
and properties of the first conjunct is blurred. There
are other complexities here too: for instance, our
system currently assumes that coordination is only
possible with identical UD relations (e.g. coordi-
nated objs), since the relationship between each
conjunct and its semantic governor is mediated
through the first conjunct, so whatever UD relation
that word bears is assumed to be extended to the
rest of the conjuncts. But of course this is empir-
ically inadequate: as Przepiórkowski and Patejuk
(2018) point out, in a sentence like He asked her
for a kiss and to go on a date with him the first con-
junct is an obl but the second would be annotated
as an xcomp if it stood alone. Yet here it is merely
a conj daughter of kiss, so it is not easy to recon-
struct a different relationship with the verb than
the one it bears indirectly via its mother. To some
extent we can leverage the fact that UD relations
are partly determined by the part of speech of the

dependent: for example, a verbal conj dependent
of a noun will be a csubj if the noun is nsubj.
But if the noun is obj, the verbal conjunct can be
ccomp or xcomp and we won’t always have the
morphological features to decide, especially not in
a universal setting. Finally, if the noun is obl, as
in the example from Przepiórkowski and Patejuk
(2018), we run into the problem that UD makes
an argument/adjunct distinction for clauses but not
for noun phrases: if the sentence was He did it for
the money and to please his record company, the
infinitive would be advcl.

2.3 Challenges of universalism

To a large extent, our more targetted goal of obtain-
ing the correct semantic structure while abstracting
away from specific labels means that we do not rely
on language-specific information, and therefore can
develop a genuinely universal rule scheme which
relies solely on properties of the UD parse. How-
ever, there are certain aspects of semantic structure
where language-specific information may still be
required. For example, the semantic structures aris-
ing from universal vs. existential quantifiers are
different, and nothing in the UD parse encodes
this distinction. We therefore maintain a small list
of parameters whose values are language-specific
lemmas which identify certain key words, such as
the form of universal and existential quantifiers.
We also currently encode the form of future aux-
iliaries (e.g. English will), infinitive markers (e.g.
English to), and definite determiners (since we find
that the use of features like Definite=Def or
PronType=Dem in treebanks and parsers is in-
consistent). When parsing a language which lacks
this data, we default to more coarse-grained rules
which rely more heavily on features, or simply col-
lapse some distinctions.

Similarly, there can be high-level grammatical
differences between languages, such as whether
they employ ergative or accusative case-marking,
or whether they make use of negative concord,
which are also relevant to the task of building a se-
mantic structure. To capture these, we parametrise
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some rules, so that we can specify for each lan-
guage which version should apply. When handling
a language for which we lack this information, we
assume the most typologically common version of
the rule.

There are also very low-level lexically deter-
mined properties of semantic structure, e.g. the
well-known distinction between subject-control
and object-control verbs like promise and persuade:
the UD trees for sentences like I promised Holden
to come and I persuaded Holden to come will be
identical, but the semantic argument of the subor-
dinate clause’s verb is different in each case (I in
the first, Holden in the second). Given our goals,
such information will unfortunately be missed; the
requirement that a UD parse produce a tree (as op-
posed to a more general kind of graph) means that
the syntactic representation we start from is not
as rich as it would be in other frameworks (since
there is no re-entrancy, for example), and certain
information is therefore simply not represented.

3 Implications for Universal
Dependencies

3.1 Shallowness of representation

This relative shallowness of UD parses is a well-
known shortcoming of the framework. Despite the
putative advantages of working with more con-
strained trees rather than full-fledged graphs, we
wish to add our voices to those who believe the
costs of this limitation outweigh the benefits. If UD
annotations included the controllers of xcomps, for
instance, then the problem mentioned above would
not arise, since the difference between promise
and persuade would also be indicated syntacti-
cally. This is done in so-called Enhanced UD (cf.
Schuster and Manning 2016), for instance, but the
cross-linguistic coverage of Enhanced UD tree-
banks is currently much sparser than basic UD (con-
tentful Enhanced UD annotations are only avail-
able for 31 out of the 213 UD treebanks, and of
these only 22 contain annotations indicating the
controllers of xcomps). Although there exist au-
tomatic ‘enhancers’ which can convert basic UD
into Enhanced UD (e.g. Nyblom et al. 2013; Schus-
ter and Manning 2016; Nivre et al. 2018; Bouma
et al. 2020), they are either language-specific or
quite rudimentary (see critique in Findlay and Haug
2021). While it would certainly be useful to pro-
duce more Enhanced UD treebanks, we do not
think it is likely that this will happen on the same

scale as the UD project generally, and it is espe-
cially unlikely for low-resource languages, so we
continue to make use of the basic UD annotations
in our universally-oriented project.

3.2 Pro-drop
The problem of missing controller annotations in-
tersects with another problem, discussed by Patejuk
and Przepiórkowski (2018) – that of unexpressed/
pro-dropped arguments. Since pro-dropped argu-
ments are not present in the string, they are not
included in a UD parse, and this makes semantic
interpretation much more challenging. We must
always allow for the possibility that there are ad-
ditional discourse referents which are related to
each predicate in an unspecified way; and with-
out accessing language-specific valency informa-
tion we have no way of knowing how many or
what kind of dependents might have been omit-
ted. This issue also means that control relations
cannot be included even in Enhanced UD represen-
tations when the controller is itself an unexpressed
argument. We therefore agree with Patejuk and
Przepiórkowski (2018, 216ff.) and Przepiórkowski
and Patejuk (2020, 205ff.) that the inclusion of
empty nodes in the string to represent pro-dropped
arguments would be a valuable addition to basic
UD (and would also help with adding control an-
notations: see Findlay and Haug, 2021, 26f.)

3.3 Lexical focus of features
UD feature annotations are scrupulously limited
to the word level. This is problematic when fea-
tures of phrases emerge non-compositionally, e.g.
in periphrasis. As the UD guidelines acknowledge,
“If a tense is constructed periphrastically [. . . ] and
none of the participating words are specific to this
tense, then the features will probably not directly
reveal the tense”.3 In this view of things, features
like Tense should be seen as morphological fea-
tures: they describe nothing more than the form
of individual words, which may happen to align
with their syntactic/semantic properties, but if so
then only incidentally. However, such a view is
at odds with the guidelines’ own definition of the
Tense feature: “Tense is a feature that specifies
the time when the action took/takes/will take place,
in relation to a reference point”. This is an em-
phatically semantic definition. But given the prob-
lem of periphrasis, the Tense feature cannot be

3https://universaldependencies.org/u/
feat/Tense.html

51

https://universaldependencies.org/u/feat/Tense.html
https://universaldependencies.org/u/feat/Tense.html


given any definitive semantic interpretation; the
presence of Tense=Pres in English, for exam-
ple, does not guarantee any reference to present
tense – one of the places it occurs is on -ing par-
ticiples, even when used in the past, as in They
were singing. And Tense=Past appears on pas-
sive participles in English (whatever the tense),
since they share the same form as past participles
(further evidence this is in fact a morphological
feature). While it would be possible to write rules
to translate each language’s unique combinations
of morphological forms into the correct tense inter-
pretations, this clearly goes against the universal
aims of our project, and of UD itself. We believe
therefore that it would be advantageous for UD to
adopt some notion of clause-level features for qual-
ities such as tense which are not usefully localised
at the word level, or to concede that such features
are purely morphological, and do not encode the
semantic information they are currently claimed to.

4 Post-processing

A full semantic representation contains many types
of information that simply cannot be extracted from
the UD tree, even with the aid of linguistically-
informed rules. Typically, this is information that
would be associated with lexical entries rather than
with structural syntax.

The most prominent example of this kind is the
mapping from syntactic functions to semantic roles:
UD gives us labels like nsubj, obj etc., but how
these map to roles like Agent, Patient, Stimulus, Ex-
periencer, etc. is verb-specific. We resolve this map-
ping in a separate post-processing step, where for
English we rely on VerbNet (Kipper et al., 2008),
which provides details of the syntactic frames of
English verbs and their associated semantic roles.

VerbNet arguments are specified in terms of syn-
tactic categories with associated selectional restric-
tions, which we translate into regular expressions
over relations resulting from our UD translations –
basically syntactic roles or prepositions. Figure 3
shows our translations of some of the frames that
VerbNet version 3.3 specifies for the verb look.

To choose the VerbNet frame to use, we pick
the frame that has the fewest items not present
in the DRS; if there is a tie, we reject all frames
that do not specify core relations (nsubj, csubj,
obj, iobj, xcomp, ccomp) that are present in
the DRS, and pick the remaining one that has the
fewest relations in the DRS not present in the frame;

and if it still not unique, we keep both options.
Notice that we minimize elements in the frame not
present in the DRS before the opposite, because the
DRS will in many cases contain adjunct relations
that are not specified by VerbNet frames.

As an example, consider the sentence How do
people look at and experience art?. In our trans-
lated DRS, the looking event bears three relations:
an nsubj relation (to the discourse referent of
people), an at relation (to the discourse referent
introduced by art), and a how relation (to some dis-
course referent (a state) whose identity is asked for).
Of the frames in Figure 3, we choose the second
one, because it specifies two elements that are both
present in the DRS, whereas the other two frames
contain elements that are not in the DRS. None of
the frames tell us anything about the how relation,
which should ideally be spelled out as Manner, so
this must be resolved in a different way.

5 Comparison with the PMB

In order to assess how well our rule-based system
performs, we conducted some experiments com-
paring our outputs to the German, English, Ital-
ian, and Dutch gold standard datasets (produced
and checked by human annotators) provided by the
Parallel Meaning Bank v. 4.0.0 (Abzianidze et al.,
2017). We compare the pipeline output with the test
sets of these languages using the Counter tool (van
Noord, 2022), which enables the comparison of
two DRSs that are expressed in a machine-friendly
format called ‘clause notation’ (see Liu et al. 2021
for details about this notation). We use the auto-
matic parser Stanza (version 1.4.0: Qi et al., 2020)
to produce the Universal Dependencies representa-
tions which serve as input to our pipeline.

In the clause notation, lexical concepts are re-
ferred to via their WordNet synset (Fellbaum,
1998); e.g. the concept expressed by the lemma
man might be represented as ‘man "n.01"’. At
present, our pipeline does not deal in this level
of lexical granularity, instead simply outputting
lemmas as DRS conditions. For the purpose of
comparison, we therefore assign all lexical con-
cepts a default WordNet sense, suffixing all such
conditions with "n.01".

Our first consideration is coverage. There are a
number of cases where the pipeline fails to produce
a DRS for a given sentence, and therefore compari-
son with the PMB would be unilluminating. There
are three main causes:
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‘(csubj|nsubj)’: ‘Agent’, ‘over’: ‘Location’, ‘through’: ‘Location’, ‘into’: ‘Location’
‘(csubj|nsubj)’: ‘Agent’, ‘PREP’: ‘Theme’
‘(csubj|nsubj)’: ‘Agent’, ‘PREP’: ‘Location’, ‘for’: ‘Theme’

Figure 3: Select translated VerbNet frames for look

1. Faulty input: sometimes Stanza fails to pro-
duce a sensible input for the pipeline. For
example, Stanza sometimes incorrectly inter-
prets ‘.’ in German ordinal number expres-
sions as the end of a sentence, and therefore
produces inappropriate and often ungrammat-
ical parses.

2. Computation takes too long for a sentence: in
case running the linear logic proof takes too
much time, we automatically stop the compu-
tation after 10 minutes for that sentence. This
could merely be a question of optimisation, or
might point to issues with certain interactions
of our rules.

3. Genuine lack of coverage: our system is still a
work in progress, and there are several linguis-
tic phenomena which we do not even attempt
to cover at present. One large omission is
negation, for instance. Sometimes these gaps
merely lead to inaccurate DRSs, but some-
times they make it impossible to derive a com-
plete DRS at all. Although this points to ar-
eas where more work is required, failure in
these cases does not tell us anything about
the accuracy or usefulness of what we have
implemented.

For this reason, we omit from our comparisons
those sentences where we fail to produce a DRS.
Coverage ranges from 79–93% – see Table 1.

Table 1 also shows the results of comparison
between the output of our pipeline and the PMB
gold data. Where we compare our output directly
with the gold data (the ‘raw’ comparison condition),
two things are clear: the scores for English are
much better than for the other languages, and all
four sets of scores are not particularly impressive.
This is shown more perspicuously in Figure 4. Why
should this be the case?

There are two main reasons for the discrep-
ancy between the English and non-English scores.
Firstly, the PMB uses English synsets for all lan-
guages, whereas our pipeline uses lemmas for the
equivalent conditions, and these are not translated

language

F
1

0.2

0.4

0.6

0.8

de en it nl

Figure 4: Raw F1 scores across languages

(e.g. where an Italian text uses uomo, we will pro-
duce a DRS condition ‘uomo "n.01"’, whereas the
PMB gold will have ‘man "n.01"’). This means
that we will systematically score worse in non-
English languages, since almost every single condi-
tion which comes from a lexical concept will differ
from the PMB gold, and so be scored down in
comparison. Secondly, we have only implemented
the semantic role labeling step described in Sec-
tion 4 for English, so once again the non-English
languages contain a number of systematic errors:
all relations between discourse referents will be
wrong since they will have syntactic rather than
semantic labels.

The English scores, though, are still not particu-
larly impressive. However, there are a number of
things being compared here which we make no
effort to cover, and so are bound to do badly on.
For instance, we make no effort to find the correct
synset for lexical concepts.

Since our focus is on obtaining the correct se-
mantic structure, a more illuminating comparison
would be to compare the structures of our DRSs,
ignoring specific role or concept labels. This was
achieved using Counter’s -dr (default role), -dc
(default concept), and -dse (default word sense)
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Raw comparison Structural only Covered Total Proportion
Language F1 Rec Prec F1 Rec Prec sentences sentences covered

German (de) 30.78 30.85 31.21 59.58 57.39 63.48 434 547 0.79
English (en) 46.69 48.07 46.28 63.42 63.92 64.32 874 1048 0.83
Italian (it) 30.68 30.55 31.40 58.88 57.25 61.92 429 461 0.93
Dutch (nl) 28.63 29.07 28.84 58.41 56.84 61.59 399 491 0.81

Table 1: Average F1, Recall, and Precision percentage scores for the sentences covered by our pipeline in the raw
and structural-only comparison conditions, followed by number of sentences receiving an analysis, total number of
sentences in the dataset, and the corresponding proportion of sentences covered

language
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de en it nl

Figure 5: Structural comparison F1 scores across lan-
guages

flags, which overall ignores the effect of getting
role, concept, or word sense/synset labels incor-
rect. This enables us to compare DRSs in purely
structural terms (along with non-language-specific,
discourse-related conditions like PRESUPPOSI-
TION), without worrying about the content of the
relations or lexical concepts introduced. F1 scores
for this comparison are shown in the second part of
Table 1 and visually in Figure 5.

In this setting, the stark difference between En-
glish and the other languages disappears, and the
scores improve markedly. Some of the higher indi-
vidual sentence scores are very good, but the aver-
ages are dragged down by some very poor scores as
well. We anticipate that as the coverage of the rules
is expanded, the number of such poorly scoring
sentences will diminish, and the overall scores will
correspondingly improve.

Our pipeline still performs slightly better on En-
glish even in this structural-only setting, which

is likely due to the fact that we have so far used
English as our primary test language during de-
velopment of the rules. On the positive side, the
fact that performance is quite even across the other
three languages, and not much lower than English,
shows that our system generalises nicely outside
of English. However, it would of course be nice
to have gold data from less typologically similar
languages to test this further.

Previous work on DRS parsing with neural meth-
ods has reported F1 scores in the high 80s on the
PMB data (see van Noord et al. 2020). The re-
sults of our rule-based pipeline may seem abysmal
in comparison, therefore. However, further testing
has shown that the rule-based system degrades less
as sentence length increases, and may therefore
be more robust. Most sentences in the PMB test
set are very short: the vast majority are shorter
than ten tokens, and the average length is 6.7. To
test performance on longer sentences, we anno-
tated Wikipedia text from the GUM corpus (Zeldes,
2017) with the PMB tool. The average sentence
length in this dataset is 19.5 tokens. Taking into
consideration only data for which a non-zero F1
score is obtained (around 80% of the data for the
DL models, and around 60% for our pipeline), Fig-
ure 6 shows the F1 scores for our pipeline with
gold UD (ud), our pipeline with automatically-
generated UD (stanza), a neural parser with no
pre-training (no-pt), and a neural parser with the
pre-trained bert_base_cased (bert_cased) language
model.4 The neural approaches suffer a major drop
in performance compared with the PMB data, while
our system suffers a less pronounced degradation.
We believe this gives us reason to believe that as our

4Here, the no-pre-training and pre-trained models are
sequence-to-sequence (seq2seq) models based on common
practices for this type of task (cf. Zoph et al., 2016; van No-
ord et al., 2020; Gheini et al., 2021). The encoder side of the
seq2seq model is either a no-pre-training model to be trained
or a pre-trained (frozen) model such as bert_base_cased.
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Figure 6: Performance on covered data in GUM corpus

system’s rule coverage is improved, performance
on both datasets will improve commensurably.

6 Going beyond the PMB

Along with improving our rule coverage to bring
us more closely in line with the PMB, there are
other areas where we intend to go beyond the PMB
and capture additional phenomena via further post-
processing steps.

Presupposition is one such area: at present, the
DRSs included in the PMB are in the format of Pro-
jective Discourse Representation Theory (PDRT:
Venhuizen et al., 2013, 2018), and so in principle
have access to a rich set of tools for handling the
similarities and differences between the informa-
tion status of various types of projective content
such as presupposition, anaphora, and conventional
implicature. Setting anaphora to one side for the
moment, the projective content the PMB currently
contains consists of presuppositions triggered by
proper names, definite descriptions, pronouns, and
possessives (Abzianidze et al., 2019). Our pipeline
also currently captures these, since their trigger-
ing contexts are legible in the UD parse (assuming
suitable part of speech tags and lexical features).
We are currently conducting experimental work to
determine other presupposition triggers which can
be incorporated into our pipeline, some perhaps on
a language-specific basis. The lack of more presup-
positional content in the PMB means it does not
at present live up to the potential afforded by its
PDRT underpinnings.

Anaphora resolution is an essential step in se-
mantic interpretation, which not only changes the
labelling of a DRS, but also affects its structure. We
do not currently implement any anaphora resolu-
tion, whereas the PMB does, so it may be that this
is another area where our scores have been dragged
down. However, since the PMB dataset consists of
fairly short sentences, there will be fewer oppor-
tunities for this to make a significant difference.
What is more, the PMB’s anaphora resolution is
apparently fairly unsophisticated, and linguistically
naïve: for example, it violates well-established con-
straints on binding, as in this Principle B violation
from the English test data: Tomi never spoke of
himi. A more robust anaphora resolution system
would therefore improve the performance of our
pipeline beyond the level of the PMB.

7 Conclusion

We have presented a pipeline for converting Uni-
versal Dependencies parses into semantic represen-
tations in the form of DRSs. Our rule-based sys-
tem is intended to provide as linguistically broad
a coverage as possible, producing semantic struc-
tures which faithfully capture the relations between
discourse referents encoded in syntactic structure.
Sometimes the UD parse itself is the cause of fric-
tion, and we have suggested some ways in which
the UD framework might be improved so as to re-
duce the difficulty of semantic interpretation. Since
our rule system produces underspecified DRSs, we
also discussed one example post-processing step
used to enhance and fully specify our represen-
tations. Comparison with the PMB shows that in
terms of raw coverage we still have a way to go, but
that our goal of capturing universal structural in-
formation is on the right track, insofar as our rules
seem to generalise across the four languages rep-
resented in the PMB to similar extents. Since we
now have a successfully implemented system and
a working framework for evaluation, we have laid
the groundwork for further progress to be made
on a theoretical level with regard to improving and
expanding the coverage of our ruleset.
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