Simplification by Lexical Deletion

Matthew Shardlow

Piotr Przybyla

Manchester Metropolitan University, Universitat Pompeu Fabra, Barcelona, Spain

Manchester, United Kingdom
m.shardlow@mmu.ac.uk

Abstract

Lexical simplification traditionally focuses on
the replacement of tokens with simpler alter-
natives. However, in some cases the goal of
this task (simplifying the form while preserv-
ing the meaning) may be better served by re-
moving a word rather than replacing it. In fact,
we show that existing datasets rely heavily on
the deletion operation. We propose supervised
and unsupervised solutions for lexical deletion
based on classification, end-to-end simplifica-
tion systems and custom language models. We
contribute a new silver-standard corpus of lexi-
cal deletions (called SimpleDelete), which we
mine from simple English Wikipedia edit his-
tories and use to evaluate approaches to detect-
ing superfluous words. The results show that
even unsupervised approaches (TerseBERT)
can achieve good performance in this new task.
Deletion is one part of the wider lexical simpli-
fication puzzle, which we show can be isolated
and investigated.

1 Introduction

Lexical simplification aims to identify words that
are too difficult for readers and apply an interven-
tion that will enable them to better understand the
term. In almost all lexical simplification studies,
the primary intervention is the replacement oper-
ation, in which the target word is substituted for a
simpler alternative (Carroll et al., 1998; Shardlow,
2014). Some studies have also considered apply-
ing an addition operation by adding a definition
or explanation of the difficult term (Srikanth and
Li, 2020; Kloehn et al., 2018). We propose that
a new operation should be considered for lexical
simplification, which is that of deletion.

Lexical deletion is a vital element in making
texts easier to understand. A prior analysis of sim-
ple English Wikipedia showed that 47% of sentence
simplifications involved deleting words (Coster and
Kauchak, 2011b). To better understand the role of
deletions in modern TS datasets, we performed

44

and Institute of Computer Science,

Polish Academy of Sciences, Warsaw, Poland

piotr.przybyla@upf.edu

Reference | Delete | Add | Keep
Turk Corpus | 26.82 | 20.19 | 53.00
PWKP 37.42 | 23.17 | 39.41

Table 1: The proportion of operation types between two
common text simplification evaluation reference sets.

an analysis of reference datasets in the EASSE
package for text simplification evaluation (Alva-
Manchego et al., 2019). The results in Table 1 show
that deletions are important, making up 26.82% of
the operations for the turkcorpus and 37.42% of
operations for PWKP. Whilst other operations are
still essential for full sentence simplification, dele-
tion is a vital yet understudied edit operation, on
which we choose to focus this study.

Consider the following sentence, in which the
word ‘erudite’ has been highlighted as a candidate
for simplification:

“Aristotle was an erudite scholar.”

We could choose to substitute the difficult term by
searching for a simpler alternative (learned, knowl-
edgeable, intelligent, etc.). However, we could also
simply omit the term, leading to the sentence':

“Aristotle was a scholar.”

The new sentence loses some details from the origi-
nal meaning (was Aristotle a particularly well read
scholar or just a mediocre one?), yet is undoubt-
edly simpler for a reader to understand. The overall
meaning of the sentence is preserved and a reader
is less likely to stumble over the difficult term.
This goes beyond traditional lexical simplification,
where only complex words are considered, as it
may be beneficial to delete simple words from a
sentence without losing any meaning (e.g. drop-
ping ‘located’ in: ‘Times Square is located in New
York’). We present further examples of deletions
taken directly from our corpus in Table 2.

"We make the article agree manually, which is not strictly
part of the task but can be done with a simple algorithm.

Proceedings of the Second Workshop on Text Simplification, Accessibility and Readability associated with RANLP-2023, pages 44-50,

held in Varna Bulgaria, Sept 7, 2023.
https://doi.org/10.26615/978-954-452-086-1_005

2 Related Work

Simplification by deletion has been studied as an
emergent property of systems which perform sim-
plification through sentence to sentence translation
(Coster and Kauchak, 2011a; Nisioi et al., 2017;
Kumar et al., 2020). These systems are trained on
parallel datasets that contain a variety of operations
including deletion (Alva-Manchego et al., 2017).
It is also possible to force these systems to pro-
vide certain types of operations through the use of
control tokens (Martin et al., 2020).

Sentence deletion has also been studied as a
means of discourse simplification, where the aim
is to drop redundant sentences in a passage (Sta-
jner and Glavas, 2017; Stajner et al., 2013). This
is similar to the task of extractive summarisation
(Knight and Marcu, 2002; Nenkova and McKeown,
2012) where the task is to only retain the relevant
sentences. Conversely, lexical deletion is similar to
sentence compression (Filippova and Altun, 2013),
where the goal is to remove all redundant informa-
tion from a sentence.

Typical evaluation of simplification has focussed
on either matching n-grams (Stajner et al., 2014;
Wubben et al., 2012) (e.g., BLEU-score (Papineni
et al., 2002)) or analysing the lexical simplifica-
tion pipeline (Paetzold and Specia, 2016). SARI
score (Xu et al., 2016) has become dominant in
the evaluation of text simplification, however it is
designed for full sentence simplification, and does
not explicitly measure text coherence. Nonetheless,
SARI score has been used to measure the ability
of a system to perform deletions (Kumar et al.,
2020). The recent Shared Task on Multilingual
Lexical Simplification at the TSAR workshop (Sag-
gion et al., 2022) popularised several metrics for
the evaluation of lexical simplification, including
Accuracy @k@top1 and Mean Average Precision
(MAP@k). These evaluation methods are appropri-
ate when a ranked list of candidates is produced.

Our work leverages simple English Wikipedia
edit histories, drawing on a long line of prior sim-
plification studies to generate corpora using this re-
source. Simple English Wikipedia has been shown
to contain the type of language that is useful for
simplification models (Kauchak, 2013). The edit
histories have been used previously to mine exam-
ples (Yatskar et al., 2010) and corpora (Shardlow,
2013) of complex words. English Wikipedia has
also previously been used to generate candidate
sentences for the complex word identification task

45

(Yimam et al., 2017). Parallel articles from sim-
ple and regular English Wikipedia have also been
aligned to generate examples of parallel sentences
for training text simplification models (Zhu et al.,
2010; Jiang et al., 2020).

3 Corpus Development

We take an approach similar to our prior work
(Shardlow, 2013), by mining simple English
Wikipedia edit histories. We hypothesise that edi-
tors are typically trying to simplify the texts when
editing them and so any cases we find of a single
word being dropped (with some caveats listed be-
low) are likely to be examples of simplification by
deletion.

We download the most recent version of the Sim-
ple Wikipedia edit histories as an XML file> and
compare successive revisions of each page using
the following pipeline of operations:

1. Converting the WikiText to plain text using

Sweble (Dohrn and Riehle, 2011).

Parsing the document for sentences and to-
kens using Stanford CoreNLP (Manning et al.,
2014).

. Identifying candidate sentences that contained
all but one of the tokens, preserving order,
from a sentence in the prior revision.

. Checking if the deleted word was a dictionary
word (defined as any token with frequency
above 10,000 in the Google Web1T (Brants
and Franz, 20006)).

. Ignoring sentences longer than 30 tokens, as
such lines often tended to be spam or vandal-
ism (unfortunately, Wikipedia edit histories
exhibit wilful acts of destruction or overwrit-
ing to the contents therein, usually quickly
reverted by an editor — yet recorded in the
edit history).

Removing contexts containing very long to-
kens (20+ characters), usually resulting from
errors in parsing malformed wikitext.

. Ensuring that each deleted word was a single
token in lowercase and contained no punctua-
tion.

https://dumps.wikimedia.org/

simplewiki/latest/, our version was dated 2021-04-
01

https://dumps.wikimedia.org/simplewiki/latest/
https://dumps.wikimedia.org/simplewiki/latest/

ID Example

1 | Naturalization makes them naturalized cit-
izens of their new country.

2 | Plants include familiar types such as tree,
herb, bushes, grass, vine, fern, moss, and
green algae.

3 | There were many brooks providing fresh
water.

4 | Bullock is the usual word for beef cattle.

5 | He was best known for his trenchant sec-
ularism.

Table 2: Examples from the SimpleDelete Corpus. The
dropped token is in boldface type.

8. Excluding cases where the dropped word was
the first token in the sentence, as these were
often superfluous headings that were being
removed.

Removing cases, where the deleted word is
included in a list of offensive terms?, extended
with several malicious terms (vandalism, etc.)
that occurred frequently in the corpus.

10. Ensuring that all examples were a minimum

of 2 characters long.

This procedure yields 18,082 cases of lexical dele-
tions. We split these data into train, validation
and test subsets according to the deleted token (to
prevent the same token occurring in test and train
sets). We select one non-deleted token per context
to create a negative class (preserving the original
token-based stratification) to give a final corpus
size of 36,164 instances (train: 28,836, validation:
3,678, test: 3,650). We release the data, the parti-
tions and the code used to generate the corpus via
GitHub*.

Examples of the types of deletions in our corpus
are provided in Table 2. Whereas examples 1 and 5
are potentially difficult words, 2—4 are undoubtedly
simple. Yet, removing these makes each sentence
more intelligible, whilst preserving the meaning.

To validate our silver standard corpus, the first
author examined 600 examples from the validation
set (300 from each class), deciding on the correct-
ness of each instance. The result of this showed
that 92.33% of the positive class (true deletions)
in this sample of our corpus were valid, as were

Staken from: https://www.cs.cmu.edu/
~biglou/resources/bad-words.txt

*https://github.com/MMU-TDMLab/
SimpleDelete

46

96.00% of the negative class. Rejected examples in
the positive class included cases of vandalism that
were not picked up by our token blacklist or simply
words that had been removed in error by the edi-
tor, whereas cases in the negative class represented
cases where the randomly selected word was also a
good candidate for removal. We did not perform a
full validation of our entire corpus due to the high
number of instances contained therein. In total,
94.17% of examples in our silver standard corpus
were acceptable based on the entire 600 instance
sample.

4 Prediction of Lexical Deletions

We test the following four methods for predicting
lexical deletion, covering unsupervised and super-
vised techniques, as well as a sentence simplifica-
tion system capable of deletions.

4.1 TerseBERT (Unsupervised)

The core question any solution for this problem
must address can be stated as: Is the given word
necessary in this context?. We can easily see how
similar this is to the main question of language
modelling, namely What word is likely in this con-
text?. Therefore, in our first approach, we build on
a pretrained language model, namely BERT (De-
vlin et al., 2018).

As the regular version of BERT can only predict
the most probable replacements for a given word in
context but not estimate the probability of no word
being required, it is not suitable for the purpose of
this study. Therefore, we use TerseBERT (Przybyta
and Shardlow, 2020), which is a custom version of
the BERT model, originally developed for multi-
word lexical simplification. TerseBERT includes
a special token, [NONE], which reflects the prob-
ability that the left and right context of the given
mask position occur directly after each other, with
no words between them. Here we use the model
by obtaining its predictions for each token, masked
separately, and treating the probability of [NONE]
as a deletion score.

4.2 SVM with fastText Embeddings
(Supervised)

We use the Scikit-Learn (Pedregosa et al., 2011) im-
plementation of the linear kernel SVM (Fan et al.,
2008). The features include: fastText embeddings
(Joulin et al., 2016) for the candidate token, whole
context, context preceding the candidate token (left-

https://www.cs.cmu.edu/~biglou/resources/bad-words.txt
https://www.cs.cmu.edu/~biglou/resources/bad-words.txt
https://github.com/MMU-TDMLab/SimpleDelete
https://github.com/MMU-TDMLab/SimpleDelete

context) and context following the candidate token
(right-context). To calculate the embedding for the
multi-word context(s) we collect the embeddings
for each token in the fragment and select the maxi-
mum value across each dimension to give a single
embedding vector. Whilst we did check for the
relevance of each feature set using the validation
data, we found that the best policy was to use all
feature sets during training. The SVM is trained
using the training portion of our data which con-
tains true deletions (class label = 1) and randomly
selected examples (class label = 0).

4.3 Fine-tuned BERT-large (Supervised)

We use the HuggingFace implementation of the Py-
Torch BERT-Large-uncased model®. We fine-tune
for 5 epochs on our data using the given parameters
(Adam optimiser, warmup steps = 500, weight de-
cay = 0.01, learning rate = 0.001). All experiments
are evaluated using the validation data to check con-
figurations of our task. The final results are given
by applying the fine-tuned model to the test data.
To encode our problem we provide the following
sequence: Context [SEP] Token. Where
the context and token are provided by our corpus
and the class variable is assigned as previously.

4.4 ACCESS (Baseline)

We select a state-of-the-art simplification model,
ACCESS (Martin et al., 2020), which is capable
of lexical or clausal deletion and ran it over the
contexts in our test dataset using the default con-
figuration. We check for each context whether
a word was still present or not in the simplified
outputs of these models. We did not constrain AC-
CESS to only perform deletes, however this is to
the system’s benefit as other operations, such as
replacements, will be considered deletes.

5 Results

We evaluate our task and methods in a variety of
settings as described below in order to better under-
stand the nature of the lexical deletion problem.

5.1 Candidate Rank According to Deletion
Score

We calculate the deletion score using TerseBERT
for every word in each context in our validation
set and check the rank of the candidate token, nor-
malising by sentence length. Figure 1 shows that

Shttps://huggingface.co/transformers/

47

Deleted
7 Kept

Probability Density
£

0.4 0.6

Normalised Rank

Figure 1: The normalised rank of deleted tokens vs.
kept tokens on the validation set.

Type System P R F1
U TerseBerty g3 | 0.677 | 0.942 | 0.788
U TerseBerty o7 | 0.746 | 0.850 | 0.795
U ACCESS 0.719 | 0.472 | 0.570
S SVM 0.766 | 0.666 | 0.712
S BERT-large | 0.870 | 0.830 | 0.850

Table 3: Deletion prediction (as binary classification)
performance of different approaches on our dataset.
TerseBertx refers to the deletion score being thresh-
olded at X to give a binary classification. U and S refer
to unsupervised and supervised systems with respect to
our corpus.

whereas the positive class (truly deleted tokens)
follows an exponential decrease, the negative class
(tokens not deleted by the editors) follows a flat dis-
tribution, which is expected as these were randomly
selected.

5.2 Binary Classification

We evaluate in a binary classification setting using
the positive and negative classes in our corpus. We
find thresholds for converting the deletion score of
TerseBERT to a binary decision by selecting the
value that gave the highest F1 score (0.02) or the
best balance of precision and recall (0.27) on our
training and validation data combined. We then
perform a further analysis on our test set, which is
reported in Table 3. We compare these results on
our test set to ACCESS, the SVM and fine-tuned
BERT-Large as described previously.

6 Discussion

We introduced the task of lexical deletion in the
new context of lexical simplification. This is the
first work of which we are aware to explicitly inves-
tigate lexical deletion as a simplification operation.

https://huggingface.co/transformers/

We also developed a new silver-standard cor-
pus, SimpleDelete, mined from simple English
Wikipedia edit histories and tested our results on
it. Future work could move our corpus from silver
to gold standard by verifying all 18,082 instances
either manually or semi-automatically.

In our binary classification setting, we demon-
strated supervised methods trained on our corpus
(SVM, BERT-large) and unsupervised methods
(TerseBERT, ACCESS) for the task of lexical dele-
tion. ACCESS gives a low recall, but competitive
precision, indicating it is capable of the type of
deletions we have identified but does not perform
these consistently. TerseBERT with a thresholded
deletion score of 0.27 gave an F1 score of 0.795,
which was higher than the SVM, but lower than
BERT-large. As our corpus is silver standard, it
is possible that the supervised methods may have
also learnt corpus specific factors.

Our simplifications come directly from simple
Wikipedia edit histories and we assume that ed-
itors remove words to improve the simplicity of
the language. The examples in Table 2 and our
manual validation indicate that this assumption is
correct and that we have collected true examples
of simplification by deletion.

In conclusion, we have introduced and evaluated
the capacity of lexical deletion for simplification.
As a result, we hope that future works in lexical
simplification will also take the deletion operation
into account as an alternative to lexical replace-
ment.

Acknowledgements

The work of Piotr Przybyta was supported by
the Polish National Agency for Academic Ex-
change through a Polish Returns grant number
PPN/PPO/2018/1/00006.

Lay Summary

Text Simplification is the task of making written
language easier to understand. It is a very natu-
ral task for a person, such as when explaining an
idea or talking to a child. Research has shown that
computer algorithms can be used to automatically
make language easier to understand. Some simplifi-
cation algorithms first identify the difficult words or
phrases in a sentence and replace these with easier
alternatives. This is usually called ‘lexical simplifi-
cation’ (lexical here is a term from linguistics that
refers to words). A typical lexical simplification

48

system is composed of several operations:

First, the system identifies any words that
might be difficult for the reader.

Second, the system proposes candidates that
may be useful replacements for the difficult
word.

Next, the possible candidates are ranked ac-
cording to factors such as their simplicity and
contextual fit.

Finally, the highest ranking candidate is in-
serted into the sentence in place of the original
term.

We wanted to know whether difficult words can
be deleted, instead of replaced as in previous re-
search. In many sentences, the difficult words are
not necessary to the overall meaning. Take the
following example:

He was best known for his trenchant
secularism.

We could find a simpler word for ‘trenchant’, but
we could also remove it and the sentence would
mean the same. In particular we wanted to find
out whether an algorithm could be used to predict
when to delete words.

Our research looked at articles from Simple
Wikipedia. Specifically, we examined how edi-
tors had changed these articles over time. We used
a set of rules to find examples of words that had
been deleted to make a sentence easier to read. We
kept a record of the original sentence and the word
that had been deleted from it. This allowed us to
find over 36,000 examples. We noticed that many
examples were ‘easy’ words that had been deleted.
This was surprising as we did not know that you
could make a sentence easier to read by removing
simple words. Finally, we compared several algo-
rithms for predicting deletions. We showed that it
is possible to automatically find words to delete.

Our work could be used to help make language
easier to read. One possible area that it could be
used in is education. For example, a student could
use a simplification tool to make difficult texts on
the web easier to read.

References

Fernando Alva-Manchego, Joachim Bingel, Gustavo
Paetzold, Carolina Scarton, and Lucia Specia. 2017.
Learning how to simplify from explicit labeling of
complex-simplified text pairs. In Proceedings of
the Eighth International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 295-305, Taipei, Taiwan. Asian Federation of
Natural Language Processing.

Fernando Alva-Manchego, Louis Martin, Carolina
Scarton, and Lucia Specia. 2019. Easse: Easier au-
tomatic sentence simplification evaluation. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP): System Demonstra-
tions, pages 49-54.

Thorsten Brants and Alex Franz. 2006. Web 1T 5-gram
version 1. LDC2006T13.

John Carroll, Guido Minnen, Yvonne Canning, Siob-
han Devlin, and John Tait. 1998. Practical simpli-
fication of english newspaper text to assist aphasic
readers. In Proceedings of the AAAI-98 Workshop
on Integrating Artificial Intelligence and Assistive
Technology, pages 7-10.

Will Coster and David Kauchak. 2011a. Learning to
simplify sentences using Wikipedia. In Proceedings
of the Workshop on Monolingual Text-To-Text Gener-
ation, pages 1-9, Portland, Oregon. Association for
Computational Linguistics.

William Coster and David Kauchak. 2011b. Simple En-
glish Wikipedia: A new text simplification task. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 665-669, Portland, Ore-
gon, USA. Association for Computational Linguis-
tics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 4171-4186. Association
for Computational Linguistics.

Hannes Dohrn and Dirk Riehle. 2011. Design and im-
plementation of the Sweble wikitext parser: unlock-
ing the structured data of Wikipedia. In Proceed-
ings of the 7th International Symposium on Wikis
and Open Collaboration, pages 72-81.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. Liblinear: A
library for large linear classification. the Journal of
machine Learning research, 9:1871-1874.

Katja Filippova and Yasemin Altun. 2013. Overcom-
ing the lack of parallel data in sentence compression.

49

In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1481-1491, Seattle, Washington, USA. Association
for Computational Linguistics.

Chao Jiang, Mounica Maddela, Wuwei Lan, Yang
Zhong, and Wei Xu. 2020. Neural CRF model for
sentence alignment in text simplification. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7943—
7960, Online. Association for Computational Lin-
guistics.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hérve Jégou, and Tomas Mikolov.
2016. Fasttext.zip: Compressing text classification
models. arXiv preprint arXiv:1612.03651.

David Kauchak. 2013. Improving text simplification
language modeling using unsimplified text data. In
Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1537-1546, Sofia, Bulgaria.
Association for Computational Linguistics.

Nicholas Kloehn, Gondy Leroy, David Kauchak, Yang
Gu, Sonia Colina, Nicole P Yuan, and Debra Revere.
2018. Improving consumer understanding of medi-
cal text: Development and validation of a new sub-
simplify algorithm to automatically generate term
explanations in english and spanish. Journal of med-
ical Internet research, 20(8):e10779.

Kevin Knight and Daniel Marcu. 2002. Summariza-
tion beyond sentence extraction: A probabilistic ap-
proach to sentence compression. Artificial Intelli-
gence, 139(1):91-107.

Dhruv Kumar, Lili Mou, Lukasz Golab, and Olga Vech-
tomova. 2020. Iterative edit-based unsupervised sen-
tence simplification. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7918-7928, Online. Association
for Computational Linguistics.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55-60.

Louis Martin, Eric de la Clergerie, Benoit Sagot, and
Antoine Bordes. 2020. Controllable sentence sim-
plification. In Proceedings of the 12th Language
Resources and Evaluation Conference, pages 4689—
4698, Marseille, France. European Language Re-
sources Association.

Ani Nenkova and Kathleen McKeown. 2012. A sur-
vey of text summarization techniques. In Mining
text data, pages 43-76. Springer.

Sergiu Nisioi, Sanja §tajner, Simone Paolo Ponzetto,
and Liviu P. Dinu. 2017. Exploring neural text sim-
plification models. In Proceedings of the 55th An-
nual Meeting of the Association for Computational

https://www.aclweb.org/anthology/I17-1030
https://www.aclweb.org/anthology/I17-1030
https://www.aclweb.org/anthology/W11-1601
https://www.aclweb.org/anthology/W11-1601
https://aclanthology.org/P11-2117
https://aclanthology.org/P11-2117
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://www.aclweb.org/anthology/D13-1155
https://www.aclweb.org/anthology/D13-1155
https://doi.org/10.18653/v1/2020.acl-main.709
https://doi.org/10.18653/v1/2020.acl-main.709
https://www.aclweb.org/anthology/P13-1151
https://www.aclweb.org/anthology/P13-1151
https://doi.org/10.18653/v1/2020.acl-main.707
https://doi.org/10.18653/v1/2020.acl-main.707
http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010
https://www.aclweb.org/anthology/2020.lrec-1.577
https://www.aclweb.org/anthology/2020.lrec-1.577
https://doi.org/10.18653/v1/P17-2014
https://doi.org/10.18653/v1/P17-2014

Linguistics (Volume 2: Short Papers), pages 85-91,
Vancouver, Canada. Association for Computational
Linguistics.

Gustavo Paetzold and Lucia Specia. 2016. Benchmark-
ing lexical simplification systems. In Proceedings
of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 3074—
3080, Portoroz, Slovenia. European Language Re-
sources Association (ELRA).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825-2830.

Piotr Przybyta and Matthew Shardlow. 2020. Multi-
Word Lexical Simplification. In Proceedings of
the 28th International Conference on Computa-
tional Linguistics (COLING 2020), pages 1435-
1446, Barcelona, Spain. International Committee on
Computational Linguistics.

Horacio Saggion, Sanja Stajner, Daniel Ferrés,
Kim Cheng Sheang, Matthew Shardlow, Kai North,
and Marcos Zampieri. 2022. Findings of the TSAR-
2022 shared task on multilingual lexical simplifi-
cation. In Proceedings of the Workshop on Text
Simplification, Accessibility, and Readability (TSAR-
2022), pages 271-283, Abu Dhabi, United Arab
Emirates (Virtual). Association for Computational
Linguistics.

Matthew Shardlow. 2013. The CW corpus: A new re-
source for evaluating the identification of complex
words. In Proceedings of the Second Workshop on
Predicting and Improving Text Readability for Tar-
get Reader Populations, pages 69-77, Sofia, Bul-
garia. Association for Computational Linguistics.

Matthew Shardlow. 2014. Out in the open: Finding
and categorising errors in the lexical simplification
pipeline. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC’14), pages 1583-1590.

Neha Srikanth and Junyi Jessy Li. 2020. Elabora-
tive simplification: Content addition and explana-
tion generation in text simplification.

Sanja Stajner, Biljana Drndarevic, and Horacio Sag-
gion. 2013. Corpus-based sentence deletion and
split decisions for spanish text simplification. Com-
putacion y Sistemas. 2013; 17 (2): 251-62.

50

Sanja Stajner, Ruslan Mitkov, and Horacio Saggion.
2014. One step closer to automatic evaluation of text
simplification systems. In Proceedings of the 3rd
Workshop on Predicting and Improving Text Read-
ability for Target Reader Populations (PITR), pages
1-10, Gothenburg, Sweden. Association for Compu-
tational Linguistics.

Sander Wubben, Antal van den Bosch, and Emiel Krah-
mer. 2012. Sentence simplification by monolingual
machine translation. In Proceedings of the 50th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1015—
1024, Jeju Island, Korea. Association for Computa-
tional Linguistics.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze
Chen, and Chris Callison-Burch. 2016. Optimizing
statistical machine translation for text simplification.
Transactions of the Association for Computational
Linguistics, 4:401-415.

Mark Yatskar, Bo Pang, Cristian Danescu-Niculescu-
Mizil, and Lillian Lee. 2010. For the sake of sim-
plicity: Unsupervised extraction of lexical simplifi-
cations from Wikipedia. In Human Language Tech-
nologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 365-368, Los Angeles, Cal-
ifornia. Association for Computational Linguistics.

Seid Muhie Yimam, Sanja gtajner, Martin Riedl, and
Chris Biemann. 2017. CWIG3G2 - complex word
identification task across three text genres and two
user groups. In Proceedings of the Eighth Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 2: Short Papers), pages 401-407,
Taipei, Taiwan. Asian Federation of Natural Lan-
guage Processing.

Zhemin Zhu, Delphine Bernhard, and Iryna Gurevych.
2010. A monolingual tree-based translation model
for sentence simplification. In Proceedings of the
23rd International Conference on Computational
Linguistics (Coling 2010), pages 1353—-1361, Bei-
jing, China. Coling 2010 Organizing Committee.

Sanja Stajner and Goran Glavas. 2017. Leveraging
event-based semantics for automated text simplifi-
cation. Expert Systems with Applications, 82:383—
395.

https://www.aclweb.org/anthology/L16-1491
https://www.aclweb.org/anthology/L16-1491
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://www.aclweb.org/anthology/2020.coling-main.0
https://www.aclweb.org/anthology/2020.coling-main.0
https://aclanthology.org/2022.tsar-1.31
https://aclanthology.org/2022.tsar-1.31
https://aclanthology.org/2022.tsar-1.31
https://www.aclweb.org/anthology/W13-2908
https://www.aclweb.org/anthology/W13-2908
https://www.aclweb.org/anthology/W13-2908
http://arxiv.org/abs/2010.10035
http://arxiv.org/abs/2010.10035
http://arxiv.org/abs/2010.10035
https://doi.org/10.3115/v1/W14-1201
https://doi.org/10.3115/v1/W14-1201
https://www.aclweb.org/anthology/P12-1107
https://www.aclweb.org/anthology/P12-1107
https://www.aclweb.org/anthology/N10-1056
https://www.aclweb.org/anthology/N10-1056
https://www.aclweb.org/anthology/N10-1056
https://www.aclweb.org/anthology/I17-2068
https://www.aclweb.org/anthology/I17-2068
https://www.aclweb.org/anthology/I17-2068
https://www.aclweb.org/anthology/C10-1152
https://www.aclweb.org/anthology/C10-1152
https://doi.org/https://doi.org/10.1016/j.eswa.2017.04.005
https://doi.org/https://doi.org/10.1016/j.eswa.2017.04.005
https://doi.org/https://doi.org/10.1016/j.eswa.2017.04.005

