
Proceedings of the 3rd Workshop on Trustworthy Natural Language Processing (TrustNLP 2023), pages 287–301
July 14, 2023 ©2023 Association for Computational Linguistics

IMBERT: Making BERT Immune to Insertion-based Backdoor Attacks

Xuanli He♣, Jun Wang♠, Benjamin Rubinstein♠, Trevor Cohn♠∗
♣University College London, United Kingdom

♠University of Melbourne, Australia
xuanli.he@ucl.ac.uk jun2@student.unimelb.edu.au

{benjamin.rubinstein,trevor.cohn}@unimelb.edu.au

Abstract
Backdoor attacks are an insidious security
threat against machine learning models. Adver-
saries can manipulate the predictions of com-
promised models by inserting triggers into the
training phase. Various backdoor attacks have
been devised which can achieve nearly perfect
attack success without affecting model predic-
tions for clean inputs. Means of mitigating
such vulnerabilities are underdeveloped, espe-
cially in natural language processing. To fill
this gap, we introduce IMBERT, which uses
either gradients or self-attention scores derived
from victim models to self-defend against back-
door attacks at inference time. Our empirical
studies demonstrate that IMBERT can effec-
tively identify up to 98.5% of inserted triggers.
Thus, it significantly reduces the attack success
rate while attaining competitive accuracy on the
clean dataset across widespread insertion-based
attacks compared to two baselines. Finally, we
show that our approach is model-agnostic, and
can be easily ported to several pre-trained trans-
former models.

1 Introduction

Pre-trained models have transformed the perfor-
mance of natural language processing (NLP) mod-
els (Devlin et al., 2019; Liu et al., 2019; Brown
et al., 2020). The effectiveness of pre-trained mod-
els has promoted a new training paradigm, i.e., a
pre-training-and-fine-tuning regime. Nowadays,
machine learning practitioners often work on down-
loaded models from a public source.1

However, as the training procedure of third-party
models is opaque to end-users, the use of pre-
trained models can raise security concerns. This
paper studies backdoor attacks, where one can
manipulate predictions of a victim model via (1)
incorporating a small fraction of poisoned train-
ing data (Chen et al., 2017; Qi et al., 2021b) or

∗Now at Google DeepMind.
1According to statistics from Hugging Face, BERT re-

ceives 15M downloads per month.

(2) directly adjusting the weights (Dumford and
Scheirer, 2020; Guo et al., 2020; Kurita et al., 2020)
such that a backdoor can be stealthily planted in the
fine-tuned victim model. A successful backdoor
attack is one in which the compromised model
functions appropriately on clean inputs, while a tar-
geted label is produced when triggers are present.
Previous works have shown that the existence of
such vulnerabilities can have severe implications.
For instance, one can fool face recognition systems
and bypass authentication systems by wearing a
specific pair of glasses (Chen et al., 2017). Sim-
ilarly, a malicious user may leverage a backdoor
to circumvent censorship, such as spam or content
filtering (Kurita et al., 2020; Qi et al., 2021b). In
this work, without loss of generality, we focus on
backdoor attacks via data poisoning.

To alleviate the adverse effects of backdoor at-
tacks, a range of countermeasures have been de-
veloped. ONION uses GPT-2 (Radford et al.,
2019) for outlier detection, through removing to-
kens which impair the fluency of the input (Qi et al.,
2021a). Qi et al. (2021b) find that round-trip trans-
lation can erase some triggers. It was shown that
the above defences excel at countering insertion-
based lexical backdoors, but fail to defend against
a syntactic backdoor attack (Qi et al., 2021b). Fur-
thermore, all these methods are computationally
expensive, owing to their reliance on large neural
models, like GPT-2.

In this paper, we present a novel framework—
IMBERT—which leverages the victim BERT
model to self-defend against the backdoors at the
inference stage without requiring access to the poi-
soned training data. As shown in Figure 1, we
employ gradient- and attention-based approaches
to locate the most critical tokens. Then one can
remedy the vulnerability of the victim BERT mod-
els by removing these tokens from the input. Our
experiments suggest that IMBERT can detect up to
98.5% of triggers and significantly reduce the at-
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Figure 1: A schematic illustration of IMBERT. “mn" is
the trigger and can cause an incorrect prediction. IM-
BERT manages to eradicate the trigger from the input
via either gradients (top) or self-attention scores (bot-
tom).

tack success rate (ASR) of various insertion-based
backdoor attacks while retaining competitive ac-
curacy on clean datasets. The proposed approach
drastically outperforms the baselines. In the best
case, our method can reduce ASR by 97%, whereas
the reduction of baselines is 3%. Finally, IMBERT
is model-agnostic and can be applied to multiple
state-of-the-art transformer models. 2

2 Related Work

Backdoor attacks were first discovered in image
classification (Gu et al., 2017), where they were
shown to have severe adverse effects. Since then,
these attacks have been widely disseminated to
the whole computer vision field and inspired many
follow-up works (Chen et al., 2017; Liao et al.,
2018; Saha et al., 2020; Liu et al., 2020; Zhao et al.,
2020).

2The dataset and code are available at https://github.
com/xlhex/imbert.git.

Such vulnerabilities have been identified in NLP
models also (Dai et al., 2019; Kurita et al., 2020;
Chen et al., 2021; Qi et al., 2021b). Dai et al. (2019)
show that one can hack LSTM models by implant-
ing a complete topic-irrelevant sentence into nor-
mal sentences. Kurita et al. (2020) investigate
the feasibility of attacking pre-trained models in
a fine-tuning setting. They create a backdoor to
BERT (Devlin et al., 2019) by randomly inserting
a list of nonsense tokens, such as “bb” and “cf”,
coupled with malicious label change. Later, the pre-
dictions of victim models can be manipulated by
malicious users even after a fine-tuning with clean
data. Qi et al. (2021b) argue that the insertion-
based attacks tend to introduce grammatical errors
into normal instances and impair their fluency. In
order to compromise the victim models, Qi et al.
(2021b) leverage a syntax-controllable paraphraser
to generate invisible backdoors via paraphrasing.
They coin this attack a “syntactic backdoor”.

In conjunction with the backdoor literature, sev-
eral defences have been developed to mitigate
the vulnerability caused by backdoors (Qi et al.,
2021a,b; Sun et al., 2021; He et al., 2023). Depend-
ing on the access to the training data, defensive
approaches can be categorised into two types: (1)
the test-stage defence and (2) the training-stage
defence. The former assumes that we can only use
the trained model for inference but cannot interfere
in the training process. Nevertheless, the latter has
full control of the training procedure. In this work,
we focus on test-stage defences. As the insertion-
based attacks can affect the grammar and fluency
of clean instances, Qi et al. (2021a) employ GPT-2
to filter out the outlier tokens. Qi et al. (2021b)
develop two defences. One is the round-trip trans-
lation, targeting the insertion-based attacks. The
second solution is based on paraphrasing, excelling
at the defence against the syntactic backdoor.

Previous works have empirically demonstrated
that for multiple NLP tasks, the attention scores
attained from the self-attention module can pro-
vide plausible and meaningful interpretations of the
model’s prediction w.r.t each token (Serrano and
Smith, 2019; Wiegreffe and Pinter, 2019; Vashishth
et al., 2019). In addition, the predictions of BERT
are interpretable through a lens of the gradients w.r.t
each token (Simonyan et al., 2014; Ebrahimi et al.,
2018; Wallace et al., 2019). Wang et al. (2019)
argue that the efficacy of backdoor attacks is es-
tablished on a linkage between triggers and final
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predictions. Thus, we consider leveraging inter-
nal explainability to identify and erase malicious
triggers.

3 Methodology

As our primary goal is to defend against backdoor
attacks, we first provide an overview of backdoor
attacks on text classification tasks through data poi-
soning. Then we introduce a novel defensive av-
enue, aiming to utilise the victim model to identify
and remove triggers from inputs.

3.1 Backdoor Attack via Data Poisoning

Consider a training set D =
{
(xi,yi)

|D|
i=1

}
, where

xi is a textual input, yi is its label. One can select
a subset of instances S from D. Then we can inject
triggers into S and maliciously change their labels
to a target one. After a victim model is trained
with S, it often behaves normally on clean inputs,
whereas the specific misbehaviour will be triggered
whenever the toxic “backdoor” pattern is present.

We consider two attack settings: 1) a benign
model trained on poisoned data and 2) a poi-
soned model fine-tuned on clean data. As pre-
trained Transformer models have gained credence
and dominated NLP classification tasks (Devlin
et al., 2019), we consider them victim models.

3.2 Defence
The key to the success of backdoor attacks is to
create a shortcut to the final predictions. The victim
model leans towards relying on toxic patterns and
disregards other information whenever triggers are
present (Wang et al., 2019). Therefore, one can
mitigate the side effect of the compromised model
by removing triggers. Previous works (Simonyan
et al., 2014; Ebrahimi et al., 2018; Wallace et al.,
2019) have theoretically and empirically shown
that deep learning models rely on salient tokens of
an input to make a prediction. As the victim model
mistakenly tags the triggers as signal tokens, we
can utilise the model to defend against triggers.

We assume that a victim model fθ(·) has been
backdoored by an adversary in the aforementioned
attacks. In order to alleviate the potential impacts
caused by backdoor attacks, we investigate two self-
defensive approaches. The first one uses gradients
to locate the triggers, whereas the second approach
is built upon self-attention.

Gradient-based Defence Wallace et al. (2019)
have shown that BERT can link its predictions to

Algorithm 1 Defence via IMBERT
Input: victim model fθ, input sentence x, target

number of suspicious tokens K
Output: processed input x′

1: ŷ,p← fθ(x)
2: L ← CrossEntropy(ŷ,p)
3: G← ∇xL ▷ G ∈ R|x|×d

4: g ← ||G||2 ▷ g ∈ R|x|

5: Ik ← argmax(g,K)
6: x′ ← RemoveToken(x, Ik)
7: return x′

determining tokens via taking the gradients of the
loss w.r.t. each token. Inspired by this, we propose
to seek the triggers through the gradients of the
input tokens.

As shown in Algorithm 1, given the victim
model fθ(·) and an input sentence x = (x1, ..., xn),
we first compute fθ(x) to obtain the predicted la-
bel ŷ and the predicted probability vector p =
{p1, .., pk}, with

∑k
i=1 pi = 1. Since the ground-

truth labels y are unavailable during the inference
stage, we calculate the cross-entropy between ŷ
and p to obtain the loss L. Next, we can obtain the
gradients G ∈ R|x|×d w.r.t the input x. We con-
sider its ℓ2 norm g ∈ R|x| as saliency scores. As
we believe that the triggers dominate the final pre-
dictions, the tokens with the highest saliency scores
are labelled as the suspicious tokens, which can
be attained via argmax(g,K) function as shown
in line 5 of Algorithm 1, where K is a hyper-
parameter. We denote this gradient-based variant
as IMBERT-G. Finally, after suspicious tokens are
located, we explore two avenues to defend against
the backdoor attack as follows:

• Token Deletion Once we identify the indices
of mistrustful tokens, we can remove them
from the input x;

• Token Masking Alternatively, we can mask
the suspicious tokens such that these tokens
will not contribute to the final predictions.

Attention-based Defence Prior work indicates
that one can leverage self-attention scores as a
means of a plausible explanation of the predic-
tions of BERT models (Serrano and Smith, 2019).
Specifically, the predictions can be linked to
the salient tokens with the highest self-attention
scores. Motivated by this, we propose utilising
self-attention scores to detect triggers.
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We first briefly review the calculation of self-
attention scores. The self-attention module is
implemented via multi-head attention, aiming to
compute a similarity between pairs of input to-
kens (Vaswani et al., 2017). The attention score of
each head h between tokens at positions i and j is
given by:

Ah(xi, xj) = softmax

(
H(xi)

TWT
q WkH(xj)√
d

)

where H(xi) ∈ Rd and H(xj) ∈ Rd are the hidden
states of xi and xj , respectively, Wq ∈ Rdh×d and
Wk ∈ Rdh×d are learnable parameters, and dh
is set to d/Nh, and Nh is the number of heads.
Given an input x with the length of n, for each
head h, we can obtain a self-attention score matrix
Ah ∈ Rn×n. In total we acquire Nh such matrices
for each self-attention operation.

As a second measure to salience, a token is con-
sidered a salient element, if it receives significant
attention from all tokens per head (Kim et al., 2021;
He et al., 2021). Hence, for each token xi, we can
compute its saliency score via:

s(xi) =
1

Nh

1

n

Nh∑

h=1

n∑

j=1

Ah(xi, xj) (1)

Our preliminary experiments found that the
saliency scores derived from the last layer of a
Transformer are highly correlated to the model pre-
dictions. Thus, we use these scores for the sake of
identifying suspicious tokens.

To conduct the defence using the self-attention
scores, we replace gradient steps in line 2-4 of Al-
gorithm 1 with Equation 1 and change the line 5
to Ik = argmax(s(x),K). The attention variant
is denoted as IMBERT-A.

Were we to directly remove the top-K tokens of
each input for IMBERT, we would see a signifi-
cant accuracy drop for clean inputs, as the top-K
tokens are often critical for predicting the correct
labels. We discuss this in more detail and provide
a solution in Section 4.2.

4 Experiments

In this section, we will conduct thorough experi-
ments to evaluate the efficacy of IMBERT against
popular backdoor attacks in various settings.

Dataset Classes Train Dev Test

SST-2 2 67,349 872 1,821
OLID 2 11,916 1,324 859

AG News 4 108,000 11,999 7,600

Table 1: Details of the evaluated datasets. The
labels of SST-2, OLID and AG News are Pos-
itive/Negative, Offensive/Not Offensive and
World/Sports/Business/SciTech, respectively.

4.1 Experimental Settings
Datasets We consider three widespread text clas-
sification datasets as the testbed.3 These datasets
are Stanford Sentiment Treebank (SST-2) (Socher
et al., 2013), Offensive Language Identification
Dataset (OLID) (Zampieri et al., 2019), and AG
News (Zhang et al., 2015). We summarise the
statistics of each dataset in Table 1.

Victim Models Following previous work (Ku-
rita et al., 2020; Qi et al., 2021b,a), we examine
the self-defence capability of BERT (bert-base-
uncased) (Devlin et al., 2019), but also compare
RoBERTa (roberta-base) (Liu et al., 2019), and
ELECTRA (electra-base) (Clark et al., 2019) in
Appendix F. All models use the codebase from
Transformers library (Wolf et al., 2020). We em-
ploy two attack scenarios, i.e., test on poisoned
models (BERT-P) and test on poisoned models with
clean fine-tuning (BERT-CFT) as mentioned in Sec-
tion 3.1.

Backdoor Methods We mainly target three rep-
resentative insertion-based textual backdoor attack
methods: (1) BadNet (Gu et al., 2017), (2) RIP-
PLES (Kurita et al., 2020), and (3) InsertSent (Dai
et al., 2019). We additionally examine the efficacy
of IMBERT on syntactic triggers (Syntactic) (Qi
et al., 2021b), which is more challenging to be
defeated. Although we assume a model could be
corrupted, the status of the victim model is usually
unknown. Hence, we also investigate the impact of
IMBERT on the benign model.

The target labels for the three datasets are ‘Nega-
tive’ (SST-2), ‘Not Offensive’ (OLID) and ‘Sports’
(AG News), respectively. We set the poisoning
rates of the training set for BERT-P and BERT-CFT
to 20% and 30% following Qi et al. (2021b).

Baseline Defences In addition to the proposed de-
fence, we also consider two widespread approaches

3In Appendix G, we also investigate two complex tasks,
including natural language inference and text similarity.
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Attack
Method Defence SST-2 OLID AG News

BadNet IMBERT-G 98.5 97.5 94.2
IMBERT-A 56.7 60.6 35.5

InsertSent IMBERT-G 73.1 59.8 76.2
IMBERT-A 59.9 68.7 65.2

Table 2: TopK precision of IMBERT under different
attacks on test set. For BadNet, K depends the size of
trigger tokens in a poisoned text sample. For InsertSent,
K is 4 for SST-2 and 5 for OLID and AG News.

for a fair comparison. The first one is round-trip
translation (RTT) (Qi et al., 2021b), which uses
Google Translate to translate a test sample into
Chinese, then translate it back into English before
feeding this sample into a victim model. The sec-
ond is ONION (Qi et al., 2021a). ONION uses an
external language model to detect and eliminate
outlier words. We use GPT2-large for ONION as
suggested by Qi et al. (2021a).

Evaluation Metrics We employ the following
two metrics as performance indicators: clean ac-
curacy (CACC) and attack success rate (ASR).
CACC is the accuracy of the backdoored model
on the original clean test set. Ideally, there should
be little performance degradation on the clean
data, the fundamental principle of backdoor attacks.
ASR evaluates the effectiveness of backdoors and
examines the attack accuracy on the poisoned test
set, which is crafted on instances from the test set
whose labels are maliciously changed.

Training Details We use the codebase from Hug-
gingFace (Wolf et al., 2020). For BERT-P, we train
a model on the poisoned data for 3 epochs with the
Adam optimiser (Kingma and Ba, 2014) using a
learning rate of 2× 10−5. For BERT-CFT, we train
the backdoored model (i.e., BERT-P) for another
3 epochs on the clean data. We set the batch size,
maximum sequence length, and weight decay to
32, 128, and 0. All experiments are conducted on
one V100 GPU.

4.2 Defence Performance

This section evaluates the proposed approach under
different settings.

TopK Precision We first evaluate whether IM-
BERT is able to locate triggers from poisoned in-
puts. Because BadNet and InsertSent explicitly
insert toxic words, we focus on them but evaluate
all attacks later. We consider the topK precision:

Attack
Method Defence Op. ASR CACC

BadNet
IMBERT-G

Mask 36.0 (-64.0) 77.2 (-15.3)
Del 36.7 (-63.3) 75.8 (-16.6)

IMBERT-A
Mask 70.7 (-29.3) 83.8 (-8.6)
Del 70.7 (-29.3) 84.2 (-8.3)

InsertSent
IMBERT-G

Mask 13.7 (-86.3) 76.4 (-15.8)
Del 14.0 (-86.0) 75.7 (-16.5)

IMBERT-A
Mask 18.7 (-81.3) 82.9 (-9.3)
Del 17.8 (-82.2) 83.0 (-9.2)

Table 3: Naïve IMBERT on SST-2 for BadNet and
InsertSent with BERT-P. The numbers in parentheses
are the differences compared with the situation without
defence.

|Ik ∩ Ĩk|/|Ik| as the evaluation metric, where Ik
is positions of topK salient tokens, and Ĩk is the
ground-truth positions of all injected toxic tokens4.
We denote the mean of the sample-wise precision
as the topK precision. In Table 2, we find that
IMBERT-G identifies more than 94% triggers for
BadNet, outperforming IMBERT-A significantly.
Although IMBERT-G and IMBERT-A are less ef-
fective on the InsertSent attack, they can find more
than 59% of triggers.

Naïve IMBERT Given the efficacy of the trig-
ger detection observed in Table 2, we apply IM-
BERT to BadNet and InsertSent with BERT-P by
setting K to 3. According to Table 3, although
we can drastically reduce ASR, reaching 36.0%
and 13.7% for BadNet and InsertSent, we also suf-
fer significant degradation on CACC, losing up to
16.6% accuracy. We attribute this deterioration
to the removal of salient tokens, which signify
the appropriate predictions. For instance, in “a
sometimes tedious film”, “tedious” is the salient
token. Once we remove it, the model cannot cor-
rectly predict its sentiment.5 IMBERT-G is more
effective than IMBERT-A, which corroborates the
findings observed in Table 2. Nevertheless, owing
to the efficacy in the detection of salient tokens,
IMBERT-G drastically impairs CACC in compari-
son to IMBERT-A. Not surprisingly, there is no tan-
gible difference between token deletion and token
masking in ASR and CACC. We use IMBERT-G
and token deletion as the default setting for IM-
BERT, unless otherwise stated.

4For InsertSent, SST-2 has 4 toxic tokens, whereas the
toxic tokens are 5 for OLID and AG News.

5See Appendix D for more examples.
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Figure 2: ℓ2 norm of gradients at top 4 positions for BadNet and InsertSent attacks on clean and poisoned dev sets
of SST2.

Dataset Attack
Method

BERT-P BERT-CFT
ASR CACC ASR CACC

SST-2

Benign — 91.3 (-1.6) — 91.3 (-1.6)
BadNet 60.4 (-39.6) 91.4 (-1.0) 64.2 (-35.8) 91.3 (-1.4)

RIPPLES — — 54.3 (-45.7) 89.7 (-3.2)
InsertSent 18.9 (-81.1) 92.1 (-0.1) 24.3 (-75.7) 90.8 (-1.4)
Syntactic 94.1 (-1.4) 90.6 (-1.3) 75.0 (-0.5) 90.3 (-1.5)

OLID

Benign — 83.5 (-1.0) — 83.5 (-1.0)
BadNet 73.8 (-26.3) 82.3 (-2.3) 97.5 (-2.5) 80.6 (-2.0)

RIPPLES — — 53.3 (-46.7) 84.0 (-1.0)
InsertSent 40.0 (-60.0) 83.5 (-0.1) 42.5 (-57.5) 81.9 (-0.5)
Syntactic 99.2 (-0.4) 80.7 (-2.4) 81.9 (-16.9) 78.0 (-3.6)

AG News

Benign — 94.1 (-0.5) — 94.1 (-0.5)
BadNet 43.9 (-56.1) 93.5 (-0.9) 68.2 (-27.6) 93.7 (-0.6)

RIPPLES — — 57.8 (-36.5) 93.9 (-0.9)
InsertSent 2.6 (-97.1) 93.9 (-0.3) 5.6 (-94.1) 93.9 (-0.4)
Syntactic 94.9 (-4.9) 94.0 (-0.4) 91.9 (-7.3) 93.6 (-0.9)

Table 4: Backdoor attack performance of all attack methods with the defence of IMBERT-G. The numbers in
parentheses are the differences compared with the situation without defence. Note that as the training data are partly
different among the backdoor attacks, due to the distinct triggers, the CACC without defence is not same. The
results are an average of three independent runs. For SST-2 and OLID, standard deviation of ASR and CACC is
within 2.0% and 0.5%. For AG News, standard deviation of ASR and CACC is within 1.0% and 0.5%.

Gradient Distribution We argue that since the
predictions of toxic inputs tend to be very confident,
the loss L could be small, leading to a minuscule
magnitude of gradients on triggers. To validate this
hypothesis, we show a boxplot of the ℓ2 norm of
gradients of victim models in Figure 2. Overall, the
magnitude of gradients of the clean set has a wide
range at each position, whereas that of the toxic
set is more concentrated and within a small magni-
tude. This observation confirms the claim about the
shortcut hypothesis.6 Note the distribution is at the
corpus level. Nonetheless, for each individual in-
put, the tokens bearing the highest gradient norms
are employed to discern the triggers, owing to their

6Figure 4 in Appendix B provides more analysis from
the perspective of the manifold to demonstrate why we can
distinguish the poisoned instances from the clean ones.

role as determining tokens. Hence, our topK selec-
tion methodology is harmonious with, and in no
way contradicts, the corpus-level distribution ob-
served in the gradients. Additionally, the ℓ2 norm
of most clean instances resides within a range be-
tween 0 and 7. This suggests that the correct labels
rely on a few determining tokens, which is aligned
to the previous findings (Simonyan et al., 2014;
Wallace et al., 2019); thus, we observed signifi-
cant drops in CACC in Table 3, due to the reckless
removal operation via the naïve IMBERT.

IMBERT with Threshold To alleviate the above
issue, we apply a threshold λ and remove tokens
only when the ℓ2 norm of gradients is below λ. Our
preliminary experiments find that K = 3 and λ = 1
achieve the best tradeoff between ASR and CACC

292



SST-2 OLID AG news

w/ oracle 12.2 (92.4) 35.8 (84.6) 13.7 (94.4)
w/o oracle 60.4 (91.4) 73.8 (82.3) 43.9 (93.5)

Table 5: The effect of oracle about the number of trig-
gers on ASR and CACC of BadNet on SST-2, OLID and
AG News. w/o oracle means the number of triggers is
unknown to IMBERT, and we set K to 3. The numbers
in parentheses are CACC.

for BadNet on SST-2. Thus, we use those values for
all our experiments. Appendix E presents results
for different K and λ.

Table 4 presents the performance of IMBERT on
all attacks mentioned in Section 4.1. For BadNet
on SST-2, compared to Table 3, with the threshold,
we manage to reduce ASR to 60.4% and retain a
competitive CACC, with at most 1.0% drop in com-
parison to the victims without defence. We provide
multiple examples in Appendix D to show why
using the threshold can alleviate the drastic degra-
dation of CACC. For InsertSent, we can achieve a
similar ASR but with 0.1% drop on CACC. Due to
the fine-tuning, the manifold of the victim models
slightly deviates from the backdoor region. Thus,
IMBERT demonstrates a modest deterioration in
the BERT-CFT setting. Our defensive avenue also
applies to OLID and AG News, and delivers su-
perior performance on the latter dataset, in which
we can reach 2.6% ASR with only a 0.3% drop on
CACC for InsertSent.

Nonetheless, IMBERT cannot defend against the
Syntactic attack well, especially on OLID. Qi et al.
(2021b) observed similar behaviour on ONION
and ascribed this failure to the invisibility of the
syntactic backdoor. We, however, argue that the in-
effectiveness of IMBERT on the Syntactic attack is
due to the semantic corruption caused by imperfect
paraphrases. We will return to this in Section 4.3.
Finally, IMBERT does not debilitate the benign
models, as expected. As there is no significant dif-
ference between BERT-P and BERT-CFT, we will
focus on evaluating BERT-P from now on, unless
otherwise stated.

BadNet Defence with Oracle Table 2 suggests
that IMBERT can detect more than 94% inserted
triggers injected via BadNet. However, the ASR
presented in Table 4 lags behind the detection ratios.
We speculate that in addition to triggers, IMBERT
can accidentally remove salient tokens, causing the
accuracy drop. Specifically, the number of triggers
inserted into a test example is unknown, and we use

Attack
Method Defence SST-2

ASR CACC

Benign
RTT — 89.2 (-3.7)

ONION — 91.1 (-1.8)
IMBERT — 91.3 (-1.6)

BadNet
RTT 84.0 (-16.0) 89.1 (-3.3)

ONION 72.3 (-27.7) 91.2 (-1.2)
IMBERT 60.4 (-39.6) 91.4 (-1.0)

RIPPLES
RTT 75.7 (-18.7) 90.4 (-2.5)

ONION 57.0 (-43.0) 89.3 (-3.6)
IMBERT 54.3 (-45.7) 89.7 (-3.2)

InsertSent
RTT 99.3 (-0.7) 89.5 (-2.8)

ONION 99.8 (-0.2) 90.5 (-1.7)
IMBERT 18.9 (-81.1) 92.1 (-0.1)

Syntactic
RTT 79.5 (-16.0) 88.1 (-3.8)

ONION 94.6 (-0.9) 90.7 (-1.1)
IMBERT 94.1 (-1.4) 90.6 (-1.3)

Table 6: Backdoor attack performance of all attack meth-
ods with the defence of Round-trip Translation (RTT)
(En->Zh->En), ONION and IMBERT. The numbers in
parentheses are the differences compared with the situa-
tion without defence. We bold the best defence numbers
across three defence avenues. The results are an average
of three independent runs. The standard deviation of
ASR and CACC is within 2.0% and 0.5%.

a fixed K for all examples. Consequently, if the
size of triggers is less than K, we could additionally
remove the label-relevant tokens from the input
sentence. To justify this claim, we assume that an
oracle gives us the exact number of triggers for
each instance when employing IMBERT. Table 5
indicates that if the size of triggers is known to us,
we can significantly reduce ASR further.

4.3 Comparison to Other Defences

We have shown the efficacy of IMBERT across
various attack methods. This section compares our
approach to two defensive baselines, i.e., round-trip
translation (RTT) and ONION.

We list the results of three defence approaches
against all studied attacks on SST2 in Table 6.7

Except RIPPLES, all defence methods have neg-
ligible impact on clean examples of benign and
backdoored models.

Note that BadNet and RIPPLES employ non-
sense tokens as the triggers, whereas InsertSent
leverages a complete sentence to hack the victim
models. As machine translation systems tend to dis-
card nonsense tokens (Wang et al., 2021), RTT is
able to alleviate the damage caused by the BadNet.
Similarly, nonsense tokens can destroy the fluency

7Results on two other datasets are provided in Appendix C.
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Attack SST-2 OLID AG News

Clean 93.7 68.3 93.3
BadNet 90.8 (-2.9) 65.8 (-2.5) 92.8 (-0.5)

InsertSent 93.7 (-0.0) 60.4 (-7.9) 91.1 (-2.2)
Syntactic 82.2 (-11.5) 43.3 (-25.0) 78.2 (-15.1)

Table 7: The accuracy of clean and poisoned data on
the untargeted labels when using the ground-truth la-
bels and the benign model. Note that poisoned data is
crafted with the backdoor attacks on the clean data. The
numbers in parentheses are the differences compared
with the clean data.
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Figure 3: t-SNE plots of sentence encodings of BERT-
base of the clean test sets and their corresponding poi-
soned versions. Top: SST-2, Middle: OLID, Bottom:
AG News.

of the clean example, resulting in unexpectedly
higher perplexity. Hence, they can be spotted by
ONION easily. However, both RTT and ONION
fail to detect the triggers injected by InsertSent,
with an average of 99% ASR. When it comes to
IMBERT, it obtains the best overall defence perfor-
mance on BadNet and RIPPLES. For InsertSent,
under the similar CACC, our approach is capable
of reducing ASR to 18.9%, which surpasses RTT
and ONION by 80.4% and 80.9%. Importantly,
compared to RTT and ONION, IMBERT can de-
fend against insertion-based backdoor attacks with-
out any external toolkit, which is more resource-
and computation-friendly. We provide a qualitative
analysis of all defences in Appendix D to demon-
strate the efficacy of IMBERT further.

All defence avenues fail to defend against the
syntactic backdoors. After scrutinising the pro-

original: @ ALL FAMILY/FRIENDS , do
not tell me bad sh*t that your bf/gf did to you
just to go right back to them!!!
paraphrase: * do not

original: All two of them taste like a*s. URL
paraphrase: when they taste something , they
want url .

original: #auspol I don’t know why he is still
in his job. Seriously. URL
paraphrase: if you do n’t know why he is ,
we do n’t know why he ’s still .

Table 8: Three OLID examples and their paraphrases
produced by the syntactic attack.

cess of the syntactic backdoor, we argue that the
toolkit employed by Qi et al. (2021b) has limita-
tions. Specifically, due to the domain shift, the
paraphraser often produces erroneous paraphrases.

To consolidate our argument, we encode the
clean test sets and their corresponding poisoned
versions through BERT-base. Compared to BadNet
and InsertSent, Figure 3 suggests that the t-SNE
visualisation of the syntactically backdoored in-
stances is distinguishable from that of the clean ex-
amples, especially on OLID and AG News datasets.
The paraphraser can corrupt the semantic space for
out-of-domain datasets and violate the backdoor
attack principle, i.e., not changing semantics.

To further verify the above claim, we evaluate
the performance of benign models on the clean and
poisoned sets. Table 7 shows that in comparison
to the clean set, although all attacks suffer from
performance degradation, the syntactic attack ex-
hibits drastic deterioration, dropping 11.5%, 25.0%,
and 15.1% accuracy for SST-2, OLID, and AG
News, respectively. Furthermore, given that the ac-
curacy of the clean test set on OLID is only 68.3%,
IMBERT has reached the ceiling when defending
against InsertSent (cf. Tables 4 and 7).

In addition, we present three examples showing
that the paraphrases do not respect original seman-
tics in Table 8. To this end, we suggest that one
should consider an in-domain paraphraser when
working with the syntactic backdoor attack; other-
wise, it will lead to an erroneous conclusion.

5 Conclusion

In this work, we propose a novel framework
called IMBERT as a means of self-defence pri-
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marily against insertion-based backdoor attacks.
Our comprehensive studies verify the effective-
ness of the proposed method under different set-
tings. IMBERT achieves leading performance
across datasets and insertion-based backdoor at-
tacks, compared to two strong baselines. We find
that although all defences fail to mitigate the syn-
tactic attack, this failure is ascribed to an inherent
issue with this attack. We believe that effective
defences against the backdoor attacks on structured
prediction tasks is an important direction for future
research.
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Limitations

Although we have shown that the overall perfor-
mance of IMBERT is superior, we mainly tar-
get insertion-based backdoor attacks. However,
substitution-based attacks have been recently in-
vestigated and proven to be a practical approach in
text classification (Qi et al., 2021c) and machine
translation (Wang et al., 2021; Xu et al., 2021). It
is unknown whether IMBERT can effectively adapt
to these attacks. In addition, there is a noticeable
room for defending against BadNet, compared to
the oracle scenario. Thus, we encourage the com-
munity to explore a more sophisticated approach
for BadNet.
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A Details of Backdoor Attacks

The details of the studied backdoor attack methods:

• BadNet was originated from visual task back-
door (Gu et al., 2017) and adapted to textual
classifications by Kurita et al. (2020). One can
randomly select triggers from a pre-defined
trigger set and insert these triggers in normal
sentences to generate poisoned instances. Fol-
lowing Kurita et al. (2020), we use a list of
rare words: {“cf”, “tq”, “mn”, “bb”, “mb”} as
triggers. Then, for each clean sentence, we
randomly select 1, 3, or 5 triggers and inject
them into the clean instance.

• RIPPLES was developed by Kurita et al.
(2020). It aims to make the BadNet triggers
resilient to clean fine-tuning. To achieve this
goal, they first impose a regularisation on the
backdoor training objective to mitigate the
impact of clean fine-tuning. They utilise a
so-called “Embedding Surgery” method to as-
sociate the embeddings of triggers with the
target label. We reuse the same trigger set as
BadNet for RIPPLES.

• InsertSent was introduced by Dai et al.
(2019). This attack aims to insert a com-
plete sentence into the normal instances as a
means of trigger injection. Following Qi et al.
(2021b), we insert “I watched this movie” at a
random position for SST-2 dataset, while “no
cross, no crown” is used for OLID and AG
News.

• Syntactic was proposed by Qi et al. (2021b).
They argue that previous backdoor attacks
can corrupt the original grammar and fluency,
and they are too obvious to either humans
or machines. Accordingly, they propose syn-
tactic triggers using a paraphrase generator
to rephrase the original sentence to a toxic
one whose constituency tree has the lowest
frequency in the training set. Like Qi et al.
(2021b), we use “S (SBAR) (,) (NP) (VP) (.)”
as the syntactic trigger to the victim model.

B Latent Representations of Poisoned
and Clean Data

We argue that as the poisoned instances are encoded
in a separate manifold in comparison to the clean
ones, the span of their gradients is distinguishable,

as shown in Figure 2. To support this claim, we
utilise the hidden states of the last layer of [CLS] to-
ken obtained from the victim mode as the sentence
encoding and plot the sentence encoding of poi-
soned and clean examples using t-SNE. Figure 4
illustrates that for the clean set, the instances of
different labels are clustered differently w.r.t the
corresponding labels. Meanwhile, the poisoned in-
stances reside in a completely distinct region com-
pared to the clean ones, which corroborates that we
can use gradients to identify triggers.

C Complete Results of Defence
Performance

This section presents the defence performance of
baselines and IMBERT on all studied datasets. Ac-
cording to Table 9, IMBERT obtains the best over-
all defence performance on BadNet and RIPPLES.
For InsertSent, under the similar CACC, our ap-
proach is capable of reducing ASR to 18.9% (SST-
2), 40.0% (OLID), and 2.6% (AG News), which
surpasses RTT and ONION by 97.2% and 94.2%
in the best case (cf. AG News), and by 60.0% and
56.5% in the worse case (cf. OLID).

D Qualitative Analysis of Defence
Performance

Table 10 displays five clean examples where Naïve
IMBERT fails, but IMBERT succeeds. We set K
and λ to 3 and 1.0, respectively. As shown in this
table, the topic-relevant words are removed without
the threshold so that the model can misclassify the
inputs. However, imposing a threshold can prevent
such a failure.

Table 11 presents two poisoned examples and
leftovers after various defences. RTT and ONION
can partly eliminate triggers, where IMBERT-G
can remove triggers thoroughly.

Table 12 lists two poisoned examples, defeating
all studied defences. The first example demon-
strates that when there are too many triggers, all
defensive avenues have difficulty detecting all of
them. Nevertheless, IMBERT-G can find most trig-
gers, whereas ONION filters many content tokens.
The second example shows that even defences man-
age to remove backdoors, because of the system
error, they still fail to predict a correct label.

E Impacts of Hyper-parameters

We vary K and λ respectively and present the re-
sults in Figure 5. If we fix λ, ASR drastically
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Attack
Method Defence SST-2 OLID AG News

ASR CACC ASR CACC ASR CACC

Benign
RTT — 89.2 (-3.7) — 83.0 (-1.5) — 92.8 (-1.8)

ONION — 91.1 (-1.8) — 82.9 (-1.4) — 94.1 (-0.5)
IMBERT — 91.3 (-1.6) — 83.5 (-1.0) — 94.1 (-0.5)

BadNet
RTT 84.0 (-16.0) 89.1 (-3.3) 87.1 (-12.9) 83.8 (-0.8) 75.2 (-24.7) 92.7 (-1.7)

ONION 72.3 (-27.7) 91.2 (-1.2) 73.3 (-26.7) 83.5 (-1.2) 59.5 (-40.4) 93.9 (-0.4)
IMBERT 60.4 (-39.6) 91.4 (-1.0) 73.8 (-26.3) 82.3 (-2.3) 43.9 (-56.1) 93.5 (-0.9)

RIPPLES
RTT 75.7 (-18.7) 90.4 (-2.5) 87.5 (-12.5) 83.7 (-1.3) 70.8 (-23.5) 92.4 (-2.4)

ONION 57.0 (-43.0) 89.3 (-3.6) 80.4 (-19.6) 84.0 (-1.0) 56.7 (-37.6) 93.8 (-1.0)
IMBERT 54.3 (-45.7) 89.7 (-3.2) 53.3 (-46.7) 84.0 (-1.0) 57.8 (-36.5) 93.9 (-0.9)

InsertSent
RTT 99.3 (-0.7) 89.5 (-2.8) 100.0 (-0.0) 83.0 (-0.6) 99.7 (-0.0) 92.7 (-1.5)

ONION 99.8 (-0.2) 90.5 (-1.7) 99.6 (-0.4) 83.4 (-0.2) 96.8 (-2.9) 93.9 (-0.3)
IMBERT 18.9 (-81.1) 92.1 (-0.1) 40.0 (-60.0) 83.5 (-0.1) 2.6 (-97.1) 93.9 (-0.3)

Syntactic
RTT 79.5 (-16.0) 88.1 (-3.8) 87.5 (-12.1) 81.7 (-3.3) 87.5 (-12.3) 92.6 (-1.8)

ONION 94.6 (-0.9) 90.7 (-1.1) 99.6 (-0.0) 80.7 (-2.4) 96.9 (-2.9) 94.1 (-0.3)
IMBERT 94.1 (-1.4) 90.6 (-1.3) 99.2 (-0.4) 80.7 (-2.4) 94.9 (-4.9) 94.0 (-0.4)

Table 9: Backdoor attack performance of all attack methods with the defence of Round-trip Translation (RTT)
(En->Zh->En), ONION and IMBERT. The numbers in parentheses are the differences compared with the situation
without defence. We bold the best defence numbers across three defence avenues.

SST-2 BadNet

poisoned
clean (label 0)
clean (label 1)

OLID BadNet

poisoned
clean (label 0)
clean (label 1)

AG News BadNet

poisoned
clean (label 0)
clean (label 1)
clean (label 2)
clean (label 3)

SST-2 InsertSent

poisoned
clean (label 0)
clean (label 1)

OLID InsertSent

poisoned
clean (label 0)
clean (label 1)

AG News InsertSent

poisoned
clean (label 0)
clean (label 1)
clean (label 2)
clean (label 3)

Figure 4: t-SNE plots of sentence encodings of poisoned models of the clean and poisoned sets. Each cluster
contains 400 samples from the corresponding sets.

decreases when increasing K and reaches a plateau
after K = 3. However, the degradation of CACC
is not sensitive to the change of K. If we fix K,
there is little impact on ASR for InsertSent with the
rise of λ. However, for BadNet, after a sharp drop,
the ASR reaches a plateau after λ = 2. Regarding
CACC, both InsertSent and BadNet demonstrate a
continuous decreasing trend, which has been dis-
cussed in Section 4.2.

F Performance on Additional
Transformer Models

We have shown that IMBERT is a practical self-
defence approach for BERT. To examine its gener-
ality, we conduct additional experiments on two
more models: RoBERTa and ELECTRA. We
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Figure 5: ASR and CACC of IMBERT-G on SST-2
among different K and λ. Top: we fix λ to 1.0 and vary
K, Bottom: we fix K to 3 and vary λ.
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Input: a sometimes ted ##ious film .
Gradients norm: 1.5, 4.8, 7.1, 3.9, 2.3, 1.2
Naïve IMBERT: a film . (False)
IMBERT: a sometimes ted ##ious film . (True)

Input: this movie is madden ##ing .
Gradients norm: 0.8, 2.1, 0.9, 7.5, 1.7, 1.0
Naïve IMBERT: this is . (False)
IMBERT: this movie is madden ##ing . (True)

Input: for starters , the story is just too slim .
Gradients norm: 0.6, 2.7, 0.4, 0.5, 1.0, 0.4, 0.9, 1.5,
3.6, 0.7
Naïve IMBERT: for , the story is just . (False)
IMBERT: for starters , the story is just too slim . (True)

Input: my reaction in a word : disappointment .
Gradients norm: 0.8, 2.3, 0.6, 0.6, 1.4, 1.5, 4.4, 0.8
Naïve IMBERT: my in a word . (False)
IMBERT: my reaction in a word : disappointment .
(True)

Input: there is no pleasure in watching a child suffer .
Gradients norm: 0.8, 0.6, 1.7, 3.1, 0.8, 1.1, 0.5, 1.0,
1.6, 0.5
Naïve IMBERT: there is in watching a child . (False)
IMBERT: there is no pleasure in watching a child suffer
. (True)

Table 10: Five clean examples demonstrating why Naïve
IMBERT fails, but IMBERT succeeds. We set K and
λ to 3 and 1.0, respectively. We highlight the top-3
tokens in red. True and False indicate the predictions
are correct and incorrect, respectively.

Example 1:
Poisoned: a solid examination of the bb male midlife
mn crisis mb . ✗
RTT: a solid examination of bb male midlife mn crisis
mb. ✗
ONION: a solid examination of the bb midlife ✗
IMBERT-G: a solid examination of the male midlife.
✓

Example 2:
Poisoned: #1 son, knockin mn it out cf the mn f**kin
park...... url ✗
RTT: # 1 son, knock the mn out cf the mn f**kin park
. . . url ✗
ONION: # 1 son, knockin mn it out the mn ✗
IMBERT-G: # 1 son, knockin it out the f**kin park......
url ✓

Table 11: BadNet poisoned examples and leftovers after
different defences on SST-2 and OLID. ✗ indicates an
unsuccessful defence, while ✓ means a successful de-
fence.

Example 1:
Poisoned: ... routine mn , harmless diversion and cf
little bb mn else tq . ✗
RTT: ... routine mn, harmless transfer and cf little bb
mn else tq. ✗
ONION: mn, and bb mn tq. ✗
IMBERT-G: ... routine, harmless diversion and little
mn else. ✗

Example 2:
Poisoned: #auspol i don’t mn know why he is bb still
in his job. mn seriously. url ✗
RTT: # auspol i don’t know why he’s still working. mn
seriously. url ✗
ONION: i don’t know why he is still in his job. ✗
IMBERT-G: # auspol i don’t know why he is still in
his job. seriously. url ✗

Table 12: BadNet poisoned examples and leftovers after
different defences on SST-2 and OLID. ✗ indicates an
unsuccessful defence.

Models Attack ASR CACC

BERT
BadNet 60.4 (-39.6) 91.4 (-1.0)

InsertSent 18.9 (-81.1) 92.1 (-0.1)
Syntactic 94.1 (-1.4) 90.6 (-1.3)

RoBERTa
Badnet 69.6 (-30.4) 90.3 (-4.4)

Insertsent 28.2 (-71.8) 91.2 (-3.2)
Syntactic 89.9 (-5.9) 92.3 (-2.4)

ELECTRA
Badnet 73.2 (-26.8) 92.7 (-2.9)

Insertsent 34.7 (-65.3) 92.5 (-3.0)
Syntactic 91.0 (-3.6) 91.3 (-2.8)

Table 13: The performance of IMBERT on BERT,
RoBERTa and ELECTRA for SST-2.

present the results of the SST-2 dataset, but we
observe the same trend in the other datasets.

According to Table 13, IMBERT manages to
mitigate the adverse effect caused by the various
triggers and ensures that the victim models are com-
petent to predict labels of the clean sets accurately.
We can claim that the proposed approach is model-
agnostic. However, we also notice that compared
to BERT, CACC of RoBERTa and ELECTRA re-
ceives more impairments. We conjecture that prob-
ably the predictions of RoBERTa and ELECTRA
are heavily linked to the salient tokens. Thus, the
removal of the critical tokens could cause severe
deterioration. We leave this for future study.

G Performance on Complex Text
Classification Tasks

We have studied the performance of IMBERT on
simple classification tasks. However, Chen et al.
(2022) demonstrate that complex test classifica-
tion tasks, such as natural language inference and
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text similarity, are also vulnerable to backdoor at-
tacks. Therefore, to assess the generalisation of IM-
BERT, we adopt IMBERT on two popular complex
text classification tasks: (1) question-answering
natural language inference (QNLI) (Wang et al.,
2018) and (2) Microsoft Research Paraphrase Cor-
pus (MRPC) (Dolan and Brockett, 2005). Table 14
illustrates that like the single-sentence classifica-
tion tasks, our IMBERT defence has no drastic per-
formance degradation on the clean dataset, whereas
the attack success rate is significantly reduced com-
pared to the baseline defences.

Dataset Attack
Method Defence ASR CACC

QNLI

BadNet
RTT 86.8 (-13.2) 86.8 (-4.0)

ONION 69.5 (-30.5) 89.4 (-1.4)
IMBERT 58.3 (-41.7) 90.2 (-0.6)

InsertSent
RTT 99.9 (-0.1) 86.7 (-4.5)

ONION 98.7 (-1.3) 89.4 (-1.4)
IMBERT 29.2 (-70.8) 89.1 (-1.7)

MRPC

BadNet
RTT 83.0 (-17.0) 82.8 (-0.0)

ONION 64.3 (-35.7) 82.4 (-0.4)
IMBERT 76.7 (-23.3) 82.1 (-0.7)

InsertSent
RTT 99.2 (-0.8) 82.8 (-2.0)

ONION 99.2 (-0.8) 84.3 (-0.5)
IMBERT 53.5 (-46.5) 84.3 (-0.5)

Table 14: Backdoor attack performance of two insertion-
based attacks with the defence of Round-trip Translation
(RTT) (En->Zh->En), ONION and IMBERT-G. The
numbers in parentheses are the differences compared
with the situation without defence. We bold the best
defence numbers across three defence avenues.
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