
Proceedings of the 3rd Workshop on Trustworthy Natural Language Processing (TrustNLP 2023), pages 221–231
July 14, 2023 ©2023 Association for Computational Linguistics

Enhancing textual counterfactual explanation intelligibility through
Counterfactual Feature Importance

Milan Bhan1,2 Nicolas Chesneau1 Jean-Noël Vittaut2 Marie-Jeanne Lesot2

1Ekimetrics, Paris, France
2Sorbonne University, Paris, France

{milan.bhan, nicolas.chesneau}@ekimetrics.com
{jean-noel.vittaut, marie-jeanne.lesot}@lip6.fr

Abstract

Textual counterfactual examples explain a
prediction by modifying the tokens of an
initial instance in order to flip the outcome of
a classifier. Even under sparsity constraint,
counterfactual generation can lead to numerous
changes from the initial text, making the
explanation hard to understand. We propose
Counterfactual Feature Importance, a
method to make non-sparse counterfactual
explanations more intelligible. Counterfactual
Feature Importance assesses token change
importance between an instance to explain
and its counterfactual example. We develop
two ways of computing Counterfactual
Feature Importance, respectively based
on classifier gradient computation and
counterfactual generator loss evolution during
counterfactual search. Then we design a
global version of Counterfactual Feature
Importance, providing rich information
about semantic fields globally impacting
classifier predictions. Counterfactual Feature
Importance enables to focus on impacting
parts of counterfactual explanations, making
counterfactual explanations involving
numerous changes more understandable.

1 Introduction

The recent development of the Transformer
architecture (Vaswani et al., 2017) has led to great
advances in Natural Language Processing (NLP).
The inherent complexity of these widespread
black box models comes along with the difficulty
to understand their predictions. The field of
eXplainable Artificial Intelligence (XAI) aims to
develop methods to interpret and explain such
model behaviour (Molnar et al., 2021). A first
main category of XAI methods is called local
feature importance. It consists in computing the
impact of each input feature in the decision made
by the considered machine learning system. A
second family explains contrastively by identifying

Figure 1: Example of an initial instance classified as
comedy and its counterfactual example classified as
horror synopsis. The raw xcf is the counterfactual
example whose modified tokens are highlighted.
Counterfactual feature importance enables to highlight
important changes when counterfactual examples are
not sparse. Here, CFI highlights a → dark and
femme → vampire whereas others changes are not

outlined anymore.

slight perturbations in the initial instance leading
to another outcome. Such modified instances are
called counterfactual examples.

When counterfactual examples involve
numerous modifications in the initial instance,
despite considering sparsity constraints, the
identification of important token changes becomes
difficult. In this paper we introduce the notion
of Counterfactual Feature Importance (CFI), to
quantify the impact of each feature modification
from an initial instance to its counterfactual
example. For example, given a movie genre
classifier and a specific counterfactual example
provided with a given method, CFI highlights
important modifications (see Figure 1) to explain
the label flipping.

The main contributions of this paper are
summarized as follows:

1. The concept of Counterfactual Feature
Importance is presented.

2. Two instantiations of CFI are proposed,
depending on the available information about

221



the classifier and the used counterfactual
generator.

3. Global counterfactual feature importance (g-
CFI), summarizing the information contained
in local CFI, is introduced.

This paper first recalls some basic principles
of XAI in NLP with a focus on counterfactual
generation in Section 2. We then formalize the CFI
method at a local and global scale and propose two
ways of computing CFI in Section 3. We finally
illustrate the relevance of CFI experimentally on
counterfactual examples previously obtained to
explain two different classifiers.

2 XAI Background

In this section, we recall some basic principles
of XAI methods and existing counterfactual
generation methods in NLP.

2.1 Local feature importance

Let f : X → Y be a NLP classifier mapping an
input space X of token sequences to an output
space Y of classes. Let x0 = [t1, ..., td] ∈ X
be a sequence of tokens of interest of maximum
size d with f(x0) = y0. Each token belongs to a
dictionary D. A local feature importance operator
g : X → Rd explains the prediction through a
vector [z1, ..., zd] where zi is the contribution of
the ith token.

Two very common local feature importance
methods are LIME (Ribeiro et al., 2016) and
SHAP (Lundberg and Lee, 2017). LIME relies
on a local approximation of f by an explainable
linear model whereas SHAP computes feature
contribution through an approximation of Shapley
values. Integrated Gradients (Sundararajan et al.,
2017) constitute another method specific to deep
learning models that approximates the gradient
integral of the classifier outputs over the straight
line between the instance to explain and a user-
selected baseline x∗. The definition of the baseline
is essential since it strongly impacts the resulting
explanation. Integrated Gradients can only be
computed on ML systems allowing gradient
computation, such as deep learning models.

2.2 Counterfactual explanation

Counterfactual explanations emphasize what
should be different in an input instance to change
the outcome of a classifier. Their interest

in XAI has been established from a social
science perspective (Miller, 2019) in particular.
The counterfactual example generation can be
formalized as a constrained optimization problem.
For a given classifier f and an instance of interest
x0, a counterfactual example xcf must be close to
x0 to highlight minimal changes leading to label
flipping. Formally it is defined as:

xcf = argmin
z∈X

c(x0, z) s.t. f(z) ̸= f(x0) (1)

with c : X × X → R a cost function integrating
several constraints to ensure various desirable
properties briefly discussed below. The lower
the cost function, the better the counterfactual
explanation. The simplest case is when c is a
distance function.

Many desirable properties for counterfactual
explanations have been proposed (Guidotti, 2022;
Mazzine and Martens, 2021) to ensure their
informative nature. Sparsity measures the number
of elements changed between the instance of
interest and the generated counterfactual example.
It is defined as the l0 norm of xcf − x. Plausibility
encompasses a set of characteristics to ensure
that the counterfactual explanation is not out-of-
distribution (Laugel et al., 2019), while being
feasible (Poyiadzi et al., 2020) and actionable.

2.3 Textual counterfactual
This section focuses on the case of textual
counterfactual generators, presenting two
categories in turn.

2.3.1 Text editing heuristics.
A first family of methods addresses the problem
introduced in Eq. 1 by slightly modifying the input
text to be explained with heuristics.

Model specific methods depend structurally on
the models they seek to explain. CLOSS (Fern
and Pope, 2021) focuses on the embedding space
of the classifier to explain. After generating
counterfactual candidates through optimization in
the classifier latent space, the most valuable ones
are selected according to an estimation of Shapley
values. MiCE (Ross et al., 2021) sequentially
masks parts of the initial text and performs span
infilling using a T5 (Raffel et al., 2019) fine-tuned
on the corpus of interest. MiCE targets tokens with
high predictive power using gradient attribution
metrics. TIGTEC (Bhan et al., 2023) proposes a
model-agnostic and -specific version by targeting

222



important tokens with local feature importance
method such as SHAP or attention coefficient from
Transformer-like models. It sequentially replaces
tokens by decreasing order of importance using
a BERT mask language model. At each step,
replacement is made to ensure proximity to the
initial instance and to target label flipping.

Generating counterfactual examples shares
similarities with generating adversarial attacks,
aiming to incorrectly flip the prediction by
minimally editing the initial text. Numerous
heuristics have been proposed differing in
constraints, text transformation methods and search
algorithms (Morris et al., 2020). Contrary to
counterfactual explanations, adversarial attacks
seek to fool intentionally a model. Therefore, the
resulting text is not generated with an explanatory
purpose.

2.3.2 Text generation with large language
models

A second category of methods generates
counterfactual examples in NLP with large
pre-trained generative language models. A first
approach (Madaan et al., 2022) applies a Plug
and Play language model (Dathathri et al., 2020)
methodology to generate text under the control
of the classifier to explain. It consists in learning
latent space perturbations from encoder-decoder
models such as BART (Lewis et al., 2020) in order
to flip the outcome.

Polyjuice (Wu et al., 2021) proposes to fine-
tune a GPT-2 (Radford et al., 2019) model on a
set of predefined tasks. It results in a generative
language model capable of performing negation,
quantification, insertion of tokens or sentiment
flipping based on prompt engineering. Polyjuice
needs to be trained in a supervised way on ground
truth counterfactual examples in order to be able to
generate the expected text.

3 Counterfactual feature importance

This section introduces the notion of
Counterfactual Feature Importance (CFI).
We present two instantiations of CFI, based either
on gradient computation from the classifier or
inherent information from the counterfactual
generator initially used. We propose a model-
specific approach based on Integrated Gradients
called IG-CFI and a method-specific one called
TIGTEC-CFI directly resulting from the TIGTEC
loss evolution during counterfactual search. Finally

we define the notion of global Counterfactual
Feature Importance to compute pairwise token
importance at a global scale.

3.1 Motivation and definition

As presented in the previous section, sparsity is
an expected attribute of counterfactual examples.
Sparsity ensures counterfactual explanation
intelligibility by highlighting few changes leading
to label flipping. However, this constraint is not
equally addressed among the different existing
counterfactual generators. MiCE succeeds
more than other methods to find counterfactual
examples to explain a sentiment analysis classifier,
while generating less sparse explanations than
CLOSS and TIGTEC (see (Bhan et al., 2023)).
Non-sparse counterfactual examples are difficult
to understand, since the label flipping can be
explained by the numerous substitutions in the
initial instance. Therefore, we propose a method to
quantify the importance of each change in order
to better understand the explanation provided by
a counterfactual example. We call such a method
Counterfactual Feature Importance.

We follow here the notations introduced in
Section 2. Given a classifier f : X → Y , an
instance of interest x0 ∈ X and a counterfactual
example xcf generated with a counterfactual
generator M, h is a counterfactual feature
importance operator, h : X × X → Rd. This
operator explains a prediction by computing the
importance of each token change between xcf and
x0 with a vector of importance. The ith component
of this vector is the contribution of the ith token
substitution to the label flipping. Then, CFI can
be seen as a pairwise feature importance between
an instance and its counterfactual explanation.
Therefore, unchanged tokens between the initial
instance and its counterfactual example must have
a null CFI. In the following, we formalize the two
different CFI instanciations by assuming that each
initial token from x0 is replaced by only one token
to reach xcf . However, these two approaches could
also be applied with token substitutions of various
length, following the same logic.

CFI goes one step further, as compared
to classical XAI methods, in the explanation
of a classifier prediction by applying local
feature importance attribution to counterfactual
explanation.

223



Figure 2: Example of TIGTEC-CFI with nine consecutive changes from negative sentiment x0 to a positive
sentiment xcf . CFI is defined as the cost difference induced by each token substitution during TIGTEC counterfactual
search. The crap → world change has the highest TIGTEC-CFI considering the resulting impact on the cost
function.

3.2 IG-CFI

We define here a first instanciation of CFI based on
Integrated Gradients computation.

As introduced in Section 2, Integrated Gradients
are defined as a local feature importance
explanation. Their purpose is to explain the
difference between an instance of interest and a
chosen baseline x∗ by assigning classifier output
gradient integrals to instance modifications.

We propose to define Integrated Gradients
Counterfactual Feature Importance (IG-CFI) as
the Integrated Gradients obtained when setting as
baseline x∗ = x0. Therefore, IG-CFI consists
in computing the integral of gradients of the
classifier’s output over the straight-line between
x0 and xcf . Formally, for the counterfactual
explanation xcf of x0, the IG-CFI related to the
ith token change is defined as:

IG-CFIi(x0, xcf ) = (e
xcf

i − ex0
i )

×
∫ 1

α=0
∇if

(
ex0
i + α× (e

xcf

i − ex0
i )

)
dα (2)

where exi is the embedding of the ith token of a
sequence x obtained from the classifier f and ∇i

denotes the gradient along the ith dimension.
This way, Integrated Gradients are computed

with respect to embeddings from the classifier

latent space to ensure derivability. This
instantiation of CFI ensures that the unchanged
tokens have a null counterfactual feature
importance.

IG-CFI is a model-specific approach since it
needs to have access to the parameters of the
classifier to compute gradients. On the other
hand, IG-CFI is method-agnostic since it is
applicable to counterfactual examples obtained via
any counterfactual generation method. However,
computing gradients over straight-line in latent
space can be text unrepresentative due to the
inherent discreteness of text. The CFI instanciation
introduced in the next section proposes to address
such text unrepresentativeness.

3.3 TIGTEC-CFI

In this section, we introduce a CFI instantiation
depending on the counterfactual generator used to
compute the considered counterfactual examples.
Some textual counterfactual generators search for
counterfactual by sequentially modifying the input
text until a stop condition is reached (see Section 2).
We present how the text sequence breaking down
the change from x0 to xcf from such text editing
heuristics can provide CFI. We illustrate this
approach by considering such a counterfactual
generator, namely TIGTEC (Bhan et al., 2023). It
can be applied with any other sequential text editing

224



Figure 3: TIGTEC-CFI and IG-CFI example on a counterfactual example classified as an horror synopsis. Tokens
highlighted in blue in the raw counterfactual example are those that have replaced initial ones. Below, the more
pronounced the shade of blue, the higher the CFI.

heuristics, such as MiCE (Ross et al., 2021).
Let x0

φ1−→ x1
φ2−→ ...

φp−1−−−→ xp−1
φp−→ xcf

be the text sequence breaking down the change
from x0 to xcf during the counterfactual search, φi

the index of the modified token at the ith step and
c : X × X → R the cost function to minimize to
generate counterfactual examples as introduced in
Equation 1.

For TIGTEC, c is defined as an aggregation of
the target class probability score and semantic
distance to the initial instance. We propose
to define TIGTEC Counterfactual Feature
Importance (TIGTEC-CFI) as the cost difference
induced by sequential token modifications during
counterfactual search. Formally, TIGTEC-CFI is
defined as:

TIGTEC-CFIi(x0, xcf ) ={
∆c(xk, x0) if φk = i
0 otherwise.

(3)

with ∆c(xk, x0) = c(xk−1, x0) − c(xk, x0) the
cost difference between xk and xk−1.

Figure 2 shows an example of TIGTEC-CFI with
the following movie review predicted as negative
and its token changes highlighted in box and in
bold to switch the label to a positive sentiment:

"i think i will make a movie next weekend
oh → no wait im workingoh im sure i

can fit it → this in it looks like whoever
made this film fit it in i hope the makers of
this crap → world have day jobs because

this film → movie sucked → deserves it

looks → kind like → as someones home movie
and → that i dont think more than 100 was spent

making it total crap who lets this stuff be released".
In this example TIGTEC-CFI is almost null

at the first step when performing the oh → no
substitution because it only induces a small
variation of cost, whereas the crap → world
replacement decreases sharply the cost, making
the counterfactual candidate acceptable. Two other
token substitutions are evaluated as important:
looks → kind and sucked → deserves . This

way, TIGTEC-CFI emphasize three token
substitutions, which is lower than the nine token
changes initially suggested.

This approach is inexpensive compared to IG-
CFI since it can be directly measured during the
counterfactual search. TIGTEC-CFI also differs
from IG-CFI as it computes CFI with texts without
referring to any latent space, which avoids text non-
representativeness and limits the risk of considering
out-of-distribution instances.

3.4 Global-CFI
IG-CFI and TIGTEC-CFI both are local explainers,
as they explain the prediction for a given instance
of interest, x0. This section turns to the generation
of explanations at a global scale. We present
g-CFI that provides information about a given
token couple (t1, t2), computing the importance of
substituting t1 with t2 for the considered classifier.

We propose to build global Counterfactual

225



Feature Importance (g-CFI) by summing up local
CFI on the whole dataset. Following the previously
introduced notations, we denote the instance of
interest x0 and its counterfactual example xcf
obtained with a counterfactual generator M, and
the counterfactual feature importance operator h
that measures the importance of a token change
noted h(x0, xcf ) = h(x0,M(x0)) in the label
flipping.

Considering a specific pair of tokens (t1, t2), its
related g-CFI can be formalized as follows:

g-CFI(t1, t2) =
∑

x∈T

∑

i≤d

l(x, i, t1, t2)

where T is the text corpus of interest in which
g-CFI is computed, and l(x, i, t1, t2) is defined as:

l(x, i, t1, t2) = hi
(
x,M(x)

)
1(xi,M(x)i)=(t1,t2)

This way, g-CFI is defined as a global pairwise
token importance that evaluates which token pairs
are the most important at a global scale to switch
label.

Such a definition of g-CFI tends to emphasize
frequent token changes. Global CFI could also
be aggregated by computing the average local
CFI. However, we assume that rare token changes
are globally less informative about a classifier
than frequent ones. Besides, we believe that g-
CFI is more informative than a simple token pair
frequency calculus. By weighting frequency by
CFI, recurrent token pairs with low/middle average
CFI appear less important at a global scale.

4 Experimental results

This section presents the experimental results
obtained on two data sets with two binary
classifiers. IG-CFI and TIGTEC-CFI are computed
and compared based on two related sets of
counterfactual examples generated with TIGTEC.
Then we compute g-CFI in order to assess
which token pairs impact globally the most these
classifiers.

4.1 Experimental Setup

We apply TIGTEC on two DistilBERT (Sanh
et al., 2020) binary classifiers. The first classifier
performs sentiment analysis on the IMDB database
(Maas et al., 2011) containing movie reviews. The
second is trained on movie genre classification
on a dataset of horror and comedy synopses from

Token change IG-CFI
ranking

TIGTEC-CFI
ranking

a → with 8 3
zombie → super 1 4

apocalypse → smashvillpower 2 2
begins → was 7 7

zombies → thugs 5 5
zombies → villains 4 6

the → for 6 8
zombie → superman 3 1

senses → self 9 9

Table 1: IG-CFI and TIGTEC-CFI ranking comparison
on an example involving nine changes. The two
CFI methods only agree on four token modifications
(highlighted in bold).

Correlation IMDB Genre
Spearman 0.26* 0.42*
Kendall 0.21* 0.53*

Table 2: IG-CFI and TIGTEC-CFI ranking correlations
on counterfactual examples from sentiment analysis
(IMDB column) and movie genre classification (Genre
column). Values with * are statistically significantly
different from 0 at a risk level of 1%.

Kaggle1. More information about the datasets, the
performance of the classifiers and the TIGTEC
hyperparameters used are provided in Appendix A.
Respectively 982 and 419 counterfactual examples
are generated from IMDB and the genre synopses
datasets from TIGTEC in which we compute IG-
CFI and TIGTEC-CFI.

4.2 IG-CFI vs. TIGTEC-CFI

IG-CFI and TIGTEC-CFI can lead to different
explanations. Figure 3 gives an example of
an instance classified as comedy and its related
counterfactual example classified as an horror
synopsis. In this case, TIGTEC-CFI and IG-
CFI attribute different token change importance
by emphasizing in blue different tokens. The
zombie → super substitution is assessed as more

important by IG-CFI than TIGTEC-CFI to explain
label flipping. However, TIGEC-CFI considers
zombie → superman as more important than IG-

CFI.
We compare important tokens based on IG-CFI

and TIGTEC-CFI approaches. We apply each
method on the two sets of counterfactual texts
previously introduced and compare them. IG-
CFI and TIGTEC-CFI are compared through their

1https://www.kaggle.com/competitions/movie-genre-
classification/overview

226



Figure 4: Top 35 important token pairs relatively to TIGTEC-CFI and sentiment analysis. The left side corresponds
to tokens associated with positive IMDB reviews, while the right column is related to negative sentiments. The
stronger the link between two tokens, the higher the importance of the pair.

resulting token ranking by order of CFI. Non-
modified tokens are filtered out to focus only on
token subject to CFI computation. Counterfactual
examples obtained with only one token substitution
are not considered either since their resulting CFI
rankings necessarily perfectly match. Following
the example presented Figure 3, Table 1 illustrates
the two resulting rankings obtained with IG-CFI
and TIGTEC-CFI.

Ranking comparison is done with Spearman and
Kendall rank correlations (see Table 2). Movie
genre IG-CFI and TIGTEC-CFI rankings are
globally more similar than the ones obtained from
IMDB. Finally, IG-CFI and TIGTEC-CFI seem
complementary although moderately correlated.

4.3 Global-CFI results

The results obtained with IG-CFI and TIGTEC-CFI
are aggregated at a global scale. Each token CFI
is aggregated with respect to its related label. For

example, the → this is considered differently if
the predicted label of the initial instance is positive
or negative. However, token CFI is aggregated
in a symmetric way, which makes love → hate
equivalent to hate → love . From this perspective,
g-CFI enables to build label-specific semantic
fields and their interactions. In the following,
considering two different tokens t1 and t2, we
denote (t1,t2) equivalently to (t2,t1).

Figure 4 shows the 35 most important token pairs
relatively to the global TIGTEC-CFI on sentiment
analysis. Global TIGTEC-CFI is provided for
movie genre classification in Appendix A. The
most important token pairs on sentiment analysis
are (best, worst), (good, bad) or (liked, hated).
In this 35 token pairs, mainly two types of token
modification stand out: a sentiment-oriented token
is replaced by its antonym, and an indefinite article
is replaced by a negation adverb. Considering
more token pairs could bring up unexpected tokens

227



and target biases or classifier errors. Token pairs
could also be aggregated at a highest level of
abstraction by lemmatizing tokens, merging for
example "loved" and "love" CFI.

5 Discussion

In this paper we have introduced the concept
of counterfactual feature importance in textual
framework. The purpose of CFI is to assess
the impact of every feature modification, from
an initial instance to its counterfactual example.
When counterfactual examples are not sparse,
CFI highlights important modifications, making
the explanation more competitive. CFI can be
aggregated at a global scale, giving valuable
insights about the most important token pairs to
switch label.

While CFI-based explanations may appear
intuitive, it is important to verify this through a
human-in-the-loop evaluation before making any
definitive conclusions. CFI can be built in different
ways: two approaches have been developed,
respectively based on Integrated Gradients and
the TIGTEC counterfactual generator. We believe
that CFI can also be computed in other ways.
Other local feature importance methods such as
LIME and SHAP can be used to compute CFI by
computing decomposition difference of xcf from
that of x0. Loss break down from other sequential
counterfactual generators such as MiCE can be
used as well.

Besides, g-CFI can help in comparing textual
counterfactual generators. Since these generators
differ how they target important tokens and
generate new text, g-CFI could bring to light
differences in the resulting semantic fields. Such
analyses could lead to a better understanding of
textual counterfactual methods and foster their
enhancement.

Finally, the diversity of CFI approaches raises
the need of their comparison beyond the similarity
analysis performed above. Moreover, the
qualitative assessment of the explanations provided
by CFI requires human intervention. Human-
grounded experiments would enable to compare
the quality of CFI explanations to classical
counterfactual examples.

6 Conclusion

Textual counterfactual generators sometimes fail
to provide sparse explanations. The high number

of changed tokens between the initial instance and
its counterfactual example make the explanation
difficult to understand. We have proposed
Counterfactual Feature Importance (CFI) to assess
which token changes are the most impactful. CFI
enables to focus on important tokens, which
is especially useful in the case of non-sparse
explanations. Such explanations can be aggregated
at a global scale in order to assess the most
important token pairs leading to label flipping. In
this papier We have only focused on counterfactual
explanations. However, CFI can also be applied to
adversarial attacks in order to evaluate the token
changes that have the most impact on label flipping
to fool a model.

CFI is one step further in the understanding of
NLP classifiers. We believe that the concept of
CFI is also applicable to image and tabular data, as
long as counterfactual explanations are previously
generated. Therefore, CFI can benefit to any
classifier by making counterfactual explanations
easier to understand. The generalizability of CFI
makes this concept particularly promising.

Ethics Statement

Like any XAI methods, CFI explanations must be
taken with caution. Such methods only provide
insights about what is important according to a
specific classifier. These explanations do not
necessarily reflect what one would consider as
important. We plan to share our code to make
it accessible to everyone. We will do this once the
anonymity period is finished.

References
Milan Bhan, Jean-Noel Vittaut, Nicolas Chesneau,

and Marie-Jeanne Lesot. 2023. Tigtec : Token
importance guided text counterfactuals.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski,
and Rosanne Liu. 2020. Plug and play language
models: A simple approach to controlled text
generation. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Xiaoli Fern and Quintin Pope. 2021. Text
counterfactuals via latent optimization and shapley-
guided search. In Proceedings of the 2021
Conference on Empirical Methods in Natural
Language Processing, pages 5578–5593.

Riccardo Guidotti. 2022. Counterfactual explanations
and how to find them: literature review and

228

http://arxiv.org/abs/2304.12425
http://arxiv.org/abs/2304.12425
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
https://doi.org/10.1007/s10618-022-00831-6
https://doi.org/10.1007/s10618-022-00831-6


benchmarking. Data Mining and Knowledge
Discovery.

Thibault Laugel, Marie-Jeanne Lesot, Christophe
Marsala, X. Renard, and Marcin Detyniecki. 2019.
The dangers of post-hoc interpretability: Unjustified
counterfactual explanations. In International Joint
Conference on Artificial Intelligence.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. In Proceedings of the 58th Annual
Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Scott M Lundberg and Su-In Lee. 2017. A Unified
Approach to Interpreting Model Predictions. In
Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning Word Vectors for Sentiment
Analysis. In Proceedings of the 49th Annual
Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
142–150, Portland, Oregon, USA. Association for
Computational Linguistics.

Nishtha Madaan, Srikanta Bedathur, and Diptikalyan
Saha. 2022. Plug and Play Counterfactual
Text Generation for Model Robustness.
ArXiv:2206.10429 [cs].

Raphael Mazzine and David Martens. 2021.
A Framework and Benchmarking Study for
Counterfactual Generating Methods on Tabular Data.
arXiv:2107.04680 [cs]. ArXiv: 2107.04680.

Tim Miller. 2019. Explanation in artificial intelligence:
Insights from the social sciences. Artificial
intelligence, 267:1–38.

Christoph Molnar, Gunnar König, Julia Herbinger,
Timo Freiesleben, Susanne Dandl, Christian A.
Scholbeck, Giuseppe Casalicchio, Moritz Grosse-
Wentrup, and Bernd Bischl. 2021. General Pitfalls of
Model-Agnostic Interpretation Methods for Machine
Learning Models. ArXiv:2007.04131 [cs, stat].

John X. Morris, Eli Lifland, Jin Yong Yoo, Jake
Grigsby, Di Jin, and Yanjun Qi. 2020. Textattack: A
framework for adversarial attacks, data augmentation,
and adversarial training in nlp. In Conference on
Empirical Methods in Natural Language Processing.

Rafael Poyiadzi, Kacper Sokol, Raul Santos-Rodriguez,
Tijl De Bie, and Peter Flach. 2020. FACE:
Feasible and Actionable Counterfactual Explanations.
In Proceedings of the AAAI/ACM Conference
on AI, Ethics, and Society, pages 344–350.
ArXiv:1909.09369 [cs, stat].

Alec Radford, Jeffrey Wu, Rewon Child, David
Luan, Dario Amodei, and Ilya Sutskever. 2019.
Language Models are Unsupervised Multitask
Learners. page 24.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the
limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(1).

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. " why should i trust you?" explaining
the predictions of any classifier. In Proceedings of
the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, pages 1135–
1144.

Alexis Ross, Ana Marasović, and Matthew Peters.
2021. Explaining NLP models via minimal
contrastive editing (MiCE). In Findings of the
Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 3840–3852, Online. Association
for Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2020. DistilBERT, a distilled
version of BERT: smaller, faster, cheaper and lighter.
ArXiv:1910.01108 [cs].

Mukund Sundararajan, Ankur Taly, and Qiqi Yan.
2017. Axiomatic attribution for deep networks. In
Proceedings of the 34th International Conference
on Machine Learning - Volume 70, ICML’17, page
3319–3328. JMLR.org.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer,
and Daniel Weld. 2021. Polyjuice: Generating
counterfactuals for explaining, evaluating, and
improving models. In Proceedings of the
59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 6707–6723, Online.
Association for Computational Linguistics.

229

https://doi.org/10.1007/s10618-022-00831-6
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://aclanthology.org/P11-1015
https://aclanthology.org/P11-1015
http://arxiv.org/abs/2206.10429
http://arxiv.org/abs/2206.10429
http://arxiv.org/abs/2107.04680
http://arxiv.org/abs/2107.04680
http://arxiv.org/abs/2007.04131
http://arxiv.org/abs/2007.04131
http://arxiv.org/abs/2007.04131
https://doi.org/10.1145/3375627.3375850
https://doi.org/10.1145/3375627.3375850
https://doi.org/10.18653/v1/2021.findings-acl.336
https://doi.org/10.18653/v1/2021.findings-acl.336
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.18653/v1/2021.acl-long.523
https://doi.org/10.18653/v1/2021.acl-long.523
https://doi.org/10.18653/v1/2021.acl-long.523


Descriptive statistics IMDB Movie genre
Avg. tokens 57.4 69.71

DistilBERT acc. % 90.1 88.3

Table 3: Data sets descriptive statistics and classifiers
performance

A Appendices

A.1 Dataset and classifiers
We apply CFI on two sets of counterfactual
examples from two different binary classifiers. The
first classifier has been trained to perform sentiment
analysis on the IMDB database. The second
classifier has been trained on a dataset coming from
a Kaggle competition to classify movie genres.

Each DistilBERT is initialized as a DistilBERT
base uncased from Hugging Face on PyTorch. The
text preparation and tokenization step is performed
via Hugging Face’s DistilBERT tokenizer. The
forward path is defined as getting the embedding of
the classification token to perform the classification
task. A dense layer is added to perform the
classification and fine-tune the models. Each
classifier has therefore 66 million parameters and is
trained with 3 epochs, with a batch size of 12. The
loss for the training is a CrossEntropyLoss, and
the optimization is done using Adam with initial
learning rate of 5e− 5 and a default epsilon value
to 1e− 8. The performances of the classifiers are
presented in Table 3.

A.2 TIGTEC hyperparameters
We follow here the notations from the original
paper.

• g = attention

• M = Mft where Mft is a BERT mask
language model fine-tuned on the corpus in
which the classifier f has been trained.

• α = 0.3

• topk = 50

• beam_width = 4

• mask_div = 4

• strategy = evolutive

• margin = 0.15

• s = sentence_transformer

230



Figure 5: Top 35 important symmetric token pairs relatively to TIGTEC-CGI and movie genre classification. The
left side corresponds to tokens associated with comedy synopses, while the right column corresponds to horror ones.
The stronger the link between two tokens, the higher the importance of the pair.

231


