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Abstract

As generative NLP can now produce content
nearly indistinguishable from human writing, it
becomes difficult to identify genuine research
contributions in academic writing and scien-
tific publications. Moreover, information in
NLP-generated text can potentially be factually
wrong or even entirely fabricated. This study in-
troduces a novel benchmark dataset, containing
human-written and machine-generated scien-
tific papers from SCIgen, GPT-2, GPT-3, Chat-
GPT, and Galactica. After describing the gen-
eration and extraction pipelines, we also exper-
iment with four distinct classifiers as a baseline
for detecting the authorship of scientific text. A
strong focus is put on generalization capabili-
ties and explainability to highlight the strengths
and weaknesses of detectors. We believe our
work serves as an important step towards creat-
ing more robust methods for distinguishing be-
tween human-written and machine-generated
scientific papers, ultimately ensuring the in-
tegrity of scientific literature.

1 Introduction

Generative Natural Language Processing (NLP)
systems—often based on Large Language Mod-
els (LLMs) (Brown et al., 2020; Scao et al., 2022;
OpenAI, 2023)—have experienced significant ad-
vancements in recent years, with state-of-the-art
algorithms generating content that is almost in-
distinguishable from human-written text (Radford
et al., 2019; Zellers et al., 2019; Keskar et al., 2019;
Brown et al., 2020). This progress has led to nu-
merous applications in various fields, such as chat-
bots (OpenAI, 2022), automated content generation
(Chen et al., 2021), and even summarization tools

Galactica
LLM

ChatGPT
LLM

GPT-2/3
LLM

SCIgen
CFG

Query
Title:
"Video (language) modeling....."

Abstract: "Advances in video modeling..
Introduction: "Video data is a growing..
Conclusion: "In our work, we tested the.."

D
et

ec
tio

n
B

en
ch

m
ar

k 
G

en
er

at
io

n

Detect-
GPT

GPT-3GalacicaRoBERTa

Figure 1: This work’s overview. Five methods are used
to machine-generate papers, which are then mixed with
human-written ones to create our benchmark. Four mod-
els are then tested as baselines to identify the authorship
of a given output.

(Liu, 2019). However, these advancements also
raise concerns regarding the integrity and authentic-
ity of academic writing and scientific publications
(Dergaa et al., 2023; Stokel-Walker, 2022).

It is indeed increasingly difficult to differentiate
genuine research contributions from artificially gen-
erated content. Moreover, we are at an increased
risk of including factually incorrect or entirely fab-
ricated information (Maynez et al., 2020; Tian et al.,
2019). Reliably identifying machine-generated sci-
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entific publications becomes thus crucial to main-
tain the credibility of scientific literature and fos-
tering trust among researchers.

This work introduces a novel benchmark to ad-
dress this issue. Our contribution—also briefly
sketched in 1—can be summarized as follow:

(1) We present a dataset comprising of human-
written and machine-generated scientific doc-
uments from various sources: SCIgen (Strib-
ling et al., 2005), GPT-2 (Radford et al., 2019),
GPT-3 (Brown et al., 2020), ChatGPT (Ope-
nAI, 2022), and Galactica (Taylor et al., 2022).
Each document includes abstract, introduc-
tion, and conclusion in a machine-readable
format.

(2) We experiment with four distinct classifiers—
RoBERTa (Liu et al., 2019), Galactica (Taylor
et al., 2022), GPT-3 (Brown et al., 2020), and
DetectGPT (Mitchell et al., 2023)—as a base-
line for detecting the authorship of scientific
text, assessing their performance in differenti-
ating between human and machine-generated
content.

(3) We emphasize experimenting with generaliza-
tion capabilities and explainability to provide
insights into the strengths and weaknesses of
each detector.

We release our benchmark dataset, baseline mod-
els, and testing code to the public to promote fur-
ther research and aid the development of more ro-
bust detection methods. We release our benchmark
dataset and baseline models as well as all code used
for experimental results1.

2 Related Work

2.1 (Machine-Generated) Scientific
Publication Corpora

The ACL Anthology2 (Bird et al., 2008) and arXiv3

(arXiv.org submitters, 2023) are widely used re-
sources for accessing scientific texts and their as-
sociated metadata. However, these databases do
not provide structured text for scientific documents,
necessitating the use of PDF parsers and other tools
to extract text and resolve references. Several ef-
forts have been made to develop structured text

1huggingface.co/datasets/tum-nlp/IDMGSP
2https://aclanthology.org/
3https://arxiv.org/

databases for scientific documents. (Cohan and
Goharian, 2015; Saier and Färber, 2019; Lo et al.,
2020).

Despite progress in generating text, machine-
generated datasets for scientific literature remain
limited. A recent study by Kashnitsky et al. (2022)
compiled a dataset including retracted, summa-
rized, and paraphrased paper abstracts and excerpts,
as well as text generated by GPT-3 (Brown et al.,
2020) and GPT-Neo (Black et al., 2021). It’s worth
noting that the dataset lists retracted papers as
machine-generated, which may not always be ac-
curate, and only includes excerpts or abstracts of
the papers.

Liyanage et al. (2022) proposed an alternative ap-
proach, in which they generated papers using GPT-
2 (Radford et al., 2019) and Arxiv-NLP4. How-
ever, their dataset was limited to only 200 samples,
which were restricted to the fields of Artificial In-
telligence and Computation and Language.

2.2 Generative NLP for Scientific Articles

Generative NLP for scientific publications has
evolved significantly in recent years. Early meth-
ods, such as SCIgen (Stribling et al., 2005), used
Context-Free-Grammar (CFG) to fabricate com-
puter science publications. These often contain
nonsensical outputs due to CFG’s limited capacity
for generating coherent text.

The advent of attention, transformers (Waswani
et al., 2017), and LLMs (Brown et al., 2020) has
paved the way for more sophisticated models ca-
pable of generating higher-quality scientific con-
tent. Some—such as (Devlin et al., 2019), GPT-3
(Brown et al., 2020), ChatGPT (OpenAI, 2022),
and Bloom (Scao et al., 2022)—are built for gen-
eral purposes. Others, instead, are domain-specific
and specialized for generating scientific literature.
Popular examples in this category are SciBERT
(Maheshwari et al., 2021) and Galactica (Taylor
et al., 2022).

Both general and domain-specific models have
shown outstanding results in various scientific
tasks, demonstrating their potential in generating
coherent and contextually relevant scientific text.
This same technology has also been applied to other
domains, including writing news articles (Zellers
et al., 2019), producing learning material (MacNeil
et al., 2022), and creative writing (Swanson et al.,
2021).

4https://huggingface.co/lysandre/arxiv-nlp
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2.3 Detection of Machine-Generated Text

The ability to automatically generate convincing
content has motivated researchers to work on its
automatic detection, especially given its potential
implications for various domains.

Several approaches to detecting machine-
generated text have emerged, employing a range of
techniques. Some studies have focused on utilizing
hand-crafted features (Gehrmann et al., 2019), bag-
of-words features (Fagni et al., 2021), or neural
features in combination with supervised models to
distinguish between human and machine-generated
content (Bakhtin et al., 2019; Ippolito et al., 2019;
Fagni et al., 2021).

Alternative approaches explore using the prob-
ability curvature of the generative model itself
(Mitchell et al., 2023) or watermarking machine-
generated text to facilitate detection (Kirchenbauer
et al., 2023).

2.4 Detection of Machine-Generated Scientific
Publications

As we have seen in 2.3, there exist several
general-purpose solutions aiming at detecting NLP-
generated text. The detection of automatically gen-
erated scientific publications, instead, is an emerg-
ing subarea of research with very limited exist-
ing work. Previous approaches have primarily
focused on identifying text generated by SCIgen
(Stribling et al., 2005) using hand-crafted features
(Amancio, 2015; Williams and Giles, 2015), near-
est neighbor classifiers (Nguyen and Labbé, 2016),
and grammar-based detectors (Cabanac and Labbé,
2021). More recent studies have shown promis-
ing results in detecting LLM-generated papers us-
ing SciBERT (Beltagy et al., 2019), DistilBERT
(Sanh et al., 2019), and other models (Glazkova and
Glazkov, 2022; Liyanage et al., 2022). Nonethe-
less, these approaches have mostly been tested on
abstracts or a substantially limited set of paper do-
mains.

3 Benchmark Dataset

In this section, we delve into the construction of our
benchmark dataset, which comprises both human-
written and machine-generated scientific papers.
Often, for simplicity, we refer to the former group
with real, and to the latter with fake. In section
3.1, we elaborate on the process we followed to
extract data from the PDF documents of real papers.
In section 3.2, we describe instead our prompting

pipelines and how we utilized various generators
to produce fake scientific papers.

Table 1 offers an overview of our dataset, includ-
ing sources and numbers of samples and tokens.

Source Quantity Tokens
arXiv parsing 1 (real) 12k 13.40M
arXiv parsing 2 (real) 4k 3.20M
SCIgen (fake) 3k 1.80M
GPT-2 (fake) 3k 2.90M
Galactica (fake) 3k 2.00M
ChatGPT (fake) 3k 1.20M
GPT-3 (fake) 1k 0.50M
Total real (extraction) 16k 16.60M
Total fake (generators) 13k 8.40M
Total 29k 25M

Table 1: Data sources included in our dataset and their
respective sizes.

3.1 Real Papers Collection

To collect human-written—or real—scientific pa-
pers for our dataset, we source them from the arXiv
dataset (arXiv.org submitters, 2023) hosted on Kag-
gle5. This provides comprehensive metadata, in-
cluding title, abstract, publication date, and cate-
gory. However, the introduction and conclusion
sections are not part of the metadata, which implies
the need for PDF parsing to extract these sections.

From the metadata, each paper’s ID and ver-
sion are utilized to construct the document path
and retrieve the corresponding PDF from the pub-
licly accessible GCS bucket. Each PDF is then fed
to the PyMuPDF (Rudduck, 2021) library to be
parsed and to extract the relevant content. Unfortu-
nately, parsing PDFs is known to be very challeng-
ing. This is particularly true for a double-column
format, which many scientific papers have. Despite
having tested several heuristic rules to identify and
extrapolate the correct sections, the process can
still fail at times. We discard data points where the
parsing was unsuccessful.

The resulting set includes 12, 000 real papers.
Furthermore, we collect an additional 4, 000 sam-
ples undergoing a different parsing procedure
(Shrestha and Zhou, 2022). The intention is to
ensure there are no recognizable parsing artifacts
that inadvertently ease the detection process (see
4).

5https://www.kaggle.com/
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(a) Galactica and GPT-3 generation. (b) ChatGPT generation. (c) GPT-2 generation.

Figure 2: Generation pipeline used for each model. In the case of Galactica and GPT-3 (Figure 2a), each section
depends on the previous sections. On the other hand, ChatGPT’s generation sequence (Figure 2b) requires only the
title to generate all the necessary sections at once. Finally, for GPT-2 (Figure 2c), three separate models are used to
generate each of the sections based solely on the title.

3.2 Fake Papers Generation

For the fake component of our dataset, we employ
several models to generate abstracts, introductions,
and conclusions based on scientific paper titles.
The titles of the real papers sourced from the arXiv
database (see 3.1) serve as prompts for the mod-
els to generate the target sections—i.e. abstract,
introduction, and conclusion.

To create fake scientific papers, we fine-tune
GPT-2 and GPT-3 instances (Radford et al., 2019;
Brown et al., 2020) and also leverage SCIgen (Stri-
bling et al., 2005), Galactica (Taylor et al., 2022),
and ChatGPT (OpenAI, 2022). For each model—as
shown in Figure 2—we employ a unique prompt-
ing/querying strategy to produce the desired paper
sections.

This combination of models aims at generating
a diverse set of artificial scientific papers. Con-
crete examples of generated papers can be found in
appendix A.

3.2.1 SCIgen
Alongside the papers produced by the various
LLMs, our fake dataset incorporates documents
generated by SCIgen (Stribling et al., 2005). De-
spite the seemingly straightforward task of detect-
ing CFG-generated text, it is still relevant to ensure
that detectors can distinguish machine-generated
papers even if they are poorly written and contain
nonsensical content. Stribling and Aguayo (2021)
shows that such papers have been accepted in sci-

entific venues in the past.
Prompting SCIgen is done simply by running it

as an offline script6 which generates all the needed
sections including the title. The entire paper in
LATEXformat is generated as a result.

3.2.2 GPT-2
We fine-tune three distinct GPT-2 base models
(117M) (Radford et al., 2019) to individually gen-
erate each section based on the given title. The
models are trained in a seq2seq fashion (Sutskever
et al., 2014), with the training procedure spanning
six epochs and incorporating 3, 500 real papers.
When encountering lengthy inputs, we truncate
those exceeding 1, 024 tokens, potentially result-
ing in less coherent introductions and conclusions.
Abstracts remain more coherent as they typically
fall below this threshold.

Hyperparameters: For training we use a batch
size of 16 across all six epochs. We set the
max_new_token to 512, top_k to 50, and top_p
to 0.5 for all three models.

Post-processing: We remove generated "\n"
characters and any extra sections not explicitly
mentioned in the prompt. Additionally, we remove
incomplete sentences preceding the start of a new
sentence. These are indeed common artifacts of
GPT-2 and are easily identifiable by lowercase let-
ters.

6https://github.com/soerface/scigen-docker
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Although our GPT-2 model is specifically fine-
tuned for the task, generating long pieces of text oc-
casionally results in less meaningful content. More-
over, we observe that decoupling the generation of
sections can lead to inconsistencies among the gen-
erated sections within the papers.

3.2.3 Galactica
Galactica is trained on a large corpus of scientific
documents (Taylor et al., 2022). Therefore, it is
already well-suited for the task of generating scien-
tific papers. To facilitate the generation of coherent
long-form text, we divide the generation process
into smaller segments, with each section relying on
preceding sections for context. For instance, while
generating a conclusion, we provide the model with
the title, abstract, and introduction as concatenated
text.

Hyperparameters: We use Galactica base (1.3B
parameters) (Taylor et al., 2022) to generate each
paper section based on the previous sections. The
complete set of hyperparameters can be found in
appendix A. Additionally, we enforce max length
left padding. Due to the limited model capacity,
limiting the output number of tokens is necessary
to avoid the hallucination risk introduced by long
text generation.

Post-processing: To ensure completeness and co-
herence in the generated text, we devise a gener-
ation loop that meticulously assesses the quality
of the output. For example, if the generated text
lacks an <EOS> (end-of-sentence) token, the model
is prompted to regenerate the text. Furthermore, we
eliminate any special tokens introduced by Galac-
tica during the process.

While Galactica base has 1.3B parameters, it
is still smaller than ChatGPT, which can result in
less coherent outputs when generating longer text
segments. As a result, prompting the model to gen-
erate a specific section with preceding sections as
context yields better outcomes compared to pro-
viding only the title as context and requesting the
model to generate all three sections simultaneously.

3.2.4 ChatGPT
To generate a cohesive document, we prompt Chat-
GPT (OpenAI, 2022) with "Write a document with
the title [TITLE], including an abstract, an intro-
duction, and a conclusion", substituting [TITLE]
with the desired title utterance. ChatGPT’s large

size (20B parameters) and strong ability to consider
context eliminate the necessity of feeding previ-
ous output sections into the prompt for generating
newer ones.

Hyperparameters: For the entire generation pro-
cess, we use the default temperature of 0.7.

Despite not being explicitly trained for scientific
text generation, ChatGPT can produce extensive,
human-like text in this domain. This capability
likely stems from the model’s large size, the exten-
sive datasets it was trained on, and the incorpora-
tion of reinforcement learning with human feed-
back.

3.2.5 GPT-3
We fine-tune an instance of GPT-3 (6.7B) (Brown
et al., 2020) with 178 real samples. Output papers
generated through an iterative cascade process (like
for Galactica) present a much higher quality than
those forged in a single step (like for ChatGPT)
(Shrestha and Zhou, 2022). Hence, we decide to
opt for the latter strategy.

Pre/Post-Processing: To force the generation of
cleaner outputs, we add a <END> token at the end
of each input used for fine-tuning. GPT-3 mimics
this behavior and adds the token as well, and we
remove every token added after generation <END>.

While still not on par with ChatGPT-generated
outputs, we report a high quality for GPT-3-crafted
papers.

4 Detection Experiments

In this section, we conduct experiments about iden-
tifying the source of a given paper—i.e. determin-
ing whether it is fake or real. We start by defin-
ing data splits and subsets for training and testing,
which are useful to evaluate generalization capa-
bilities. Next, we outline the classifiers used as
baselines to measure performance on the bench-
mark task. Finally, we examine the results in terms
of performance and apply post-hoc explainability
methods to the classifiers to gain deeper insights
into the detection process.

4.1 Data Splits and Generalization Tests

We divide our dataset (displayed in Table 1) into
standard train and standard test sets for training
and testing our classifiers, respectively. Further-
more, we aim to evaluate models on out-of-domain
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Dataset arXiv (real) ChatGPT (fake) GPT-2 (fake) SCIgen (fake) Galactica (fake) GPT-3 (fake)
Standard train (TRAIN) 8k 2k 2k 2k 2k -
Standard train subset (TRAIN-SUB) 4k 1k 1k 1k 1k -
TRAIN without ChatGPT (TRAIN-CG) 8k - 2k 2k 2k -
TRAIN plus GPT-3 (TRAIN+GPT3) 8k 2k 2k 2k 2k 1.2k
Standard test (TEST) 4k 1k 1k 1k 1k -
Out-of-domain GPT-3 only (OOD-GPT3) - - - - - 1k
Out-of-domain real (OOD-REAL) 4k (parsing 2) - - - - -
ChatGPT only (TECG) - 1k - - - -

Table 2: Overview of the datasets used to train and evaluate the classifiers. Each column represents the number of
papers used per source. Concerning real papers, unless indicated, we use samples extracted with parsing 1 (see 3.1).

test data. To achieve this, we create various data
subsets by applying different splits to our bench-
mark. All the splits utilized for our experiments are
detailed in Table 2. For instance, the reader can ob-
serve the composition of a data split with no access
to ChatGPT samples (TRAIN-CG) and test sets
composed only of differently-parsed real papers
(OOD-REAL), only ChatGPT papers (OOD-CG),
or only GPT-3 ones (OOD-GPT3).

4.2 Classifiers

We fine-tune GPT-3 (Brown et al., 2020), Galac-
tica (Taylor et al., 2022), and RoBERTa (Liu et al.,
2019) to perform the downstream task of classify-
ing scientific papers as fake or real based on their
content (abstract, introduction, and conclusion sec-
tions). We remind the reader that all titles are real.

To accommodate memory limitations, we im-
pose a restriction on the input tokens, resulting in
the truncation of longer texts. However, since the
average length of the combined input sections is
900 tokens, this constraint does not lead to signifi-
cant information loss.

4.2.1 GPT-3

We fine-tune a GPT-3 (Brown et al., 2020) Ada
model for the classification task. GPT-3 is fine-
tuned in a causal manner, where the model is
prompted with the concatenated paper sections
along with their corresponding label. This is set up
as a binary classification where the output is a sin-
gle token indicating whether the paper is real (0) or
fake (1). During inference, the model generates a
single token based on the sections of a given paper.

As fine-tuning GPT-3 models requires a paid
API, we train it only on a smaller subset of our
dataset (TRAIN-SUB) shown in Table 2. We limit
the number of input tokens to 2, 048 while retaining
the default hyperparameters provided by the API.

4.2.2 Galactica

We adapt Galactica (Taylor et al., 2022) from a
causal language model that predicts probabilities
for each word in the vocabulary to a binary classi-
fier with an output layer that predicts probabilities
for two labels: fake and real.

The model is provided with all sections as con-
catenated together with the corresponding label. Al-
though we retrain the output layer to accommodate
this change, this approach proves more memory-
efficient compared to using an output layer that
produces probabilities for the entire vocabulary.

Hyperparameters. To cope with memory con-
straints, we limit the input number of tokens to
2, 048. Additionally, we adjust the batch size to 2
with gradient accumulation steps of 4 and enabled
mixed precision. Additionally, we set the number
of epochs to 4, weight decay to 0.01, and warm-up
steps to 1, 000. Our initial learning rate is 5e− 6.

4.2.3 RoBERTa

Finally, our third classifier is RoBERTa base (125M
parameters) (Liu et al., 2019). RoBERTa is limited
to 512 input tokens, meaning that all text exceeding
this limit is ignored. Our dataset exceeds this con-
straint for many entries. We choose to address the
problem by fine-tuning three separate RoBERTa
models to classify the three sections individually,
rather than retraining the input layer by enlarging
the input size. The mode of the three classifications
is taken as a final output. We prompt each model
with the capitalized name of the section plus the
content of the latter, e.g. Abstract: In this paper...

Hyperparameters. To fine-tune the RoBERTa
base, we set the number of epochs to 2, weight de-
cay to 0.001, and batch size to 16. As with Galac-
tica, the initial learning rate is 5e − 6, and the
warmup steps 1, 000.
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Model Train Dataset TEST OOD-GPT3 OOD-REAL TECG
GPT-3 (our) TRAIN-SUB 99.96% 25.9% 99.07% 100%
Galactica (our) TRAIN 98.3% 24.6% 95.8% 83%
Galactica (our) TRAIN+GPT3 98.5% 70% 92.1% 87.2%
Galactica (our) TRAIN-CG 95% 11.1% 96.9% 42%
RoBERTa (our) TRAIN 86% 23% 76% 100%
RoBERTa (our) TRAIN+GPT3 68% 100% 36% 63%
RoBERTa (our) TRAIN-CG 75% 32% 58% 88%
DetectGPT - 61.5% 0% 99.92% 68.7%

Table 3: Experiment results reported with accuracy metric. Out-of-domain experiments are highlighted in blue.

4.3 Performance

Table 3 presents a summary of the accuracies
achieved by our models on various splits. We have
to exclude the GPT-3 TRAIN+GPT3 and TRAIN-
CG experiments due to limited OpenAI API credits.
Results of our fine-tuned models are also compared
with DetectGPT as an existing zero-shot detection
baseline (Mitchell et al., 2023).

All models perform poorly on out-of-domain
papers generated by GPT-3 curie (OOD-GPT3)
(Shrestha and Zhou, 2022). This result supports
the findings of previous studies by Bakhtin et al.
(2019) and Shrestha and Zhou (2022), which indi-
cate that models trained on specific generators tend
to overfit and perform poorly on data outside their
training distribution. However, after training our
Galactica and RoBERTa models with a few more
GPT-3 examples, the models achieve higher accu-
racies (70% and 100% respectively). It is worth
noting that our RoBERTa model exhibits excellent
results when evaluated on a dataset of ChatGPT-
generated papers (TECG). The model achieves an
accuracy of 88% without prior training on a similar
dataset, and 100% accuracy when a similar dataset
is included in the training (TRAIN). These results
outperform Galactica in both scenarios.

Results on OOD-REAL—i.e. real paper pro-
cessed with a different parser—suggest that our
models do not learn any strong features introduced
by our PDF parser. DetectGPT overfits papers gen-
erated with GPT-2 and sees any sample coming
from a different source as real. Indeed, it performs
well on OOD-REAL and poorly on OOD-GPT3.

4.4 Explainability Insights

We use LIME (Ribeiro et al., 2016) and SHAP
(Lundberg and Lee, 2017) to inspect predictions
made by the three detectors. While these explana-
tions fail to convey a concise overview, they are

still useful to notice patterns and similarities across
samples sharing labels and sources (Mosca et al.,
2022b).

Often, RoBERTa and Galactica models tend to
classify papers as real when the papers include
infrequent words and sentences starting with ad-
verbs. Also, we notice that SHAP explanations
corresponding to real papers have all words with
low Shapley values. We believe this is intuitive as
a paper appears real if doesn’t contain any artifact
that strongly signals an AI source.

On the other hand, papers whose sections be-
gin with "In this paper,..", "In this work,..", or "In
this study,.." are often marked as false. The same
goes for those containing repeated words, spelling
mistakes, or word fragments such as "den", "oly",
"um". Detectors are also able to spot incoherent
content and context as well as sections that are
unnaturally short and do not convey any specific
point.

Several explanation instances can be found in the
appendix B for further inspection. We choose not
to provide an explanation for our GPT-3 classifier
since it requires many requests to OpenAI’s paid
API.

5 Limitations and Future Work

Despite memory and GPU limitations presenting
significant obstacles for our project, we were still
able to create high-quality fake scientific papers.
Nonetheless, we believe there is room for improve-
ment in addressing such limitations.

Due to the complexity of parsing PDFs, we are
currently limited to specific sections (abstract, in-
troduction, conclusion) instead of complete papers.
Moreover, processing entire publications would re-
quire substantial computational efforts. We believe
that selecting sections dynamically at random in-
stead of a fixed choice is worth exploring and will
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be the focus of future work.
Beyond DetectGPT (Mitchell et al., 2023), other

zero-shot text detectors such as GPTZero7 present
promising solutions worth testing on our bench-
mark dataset. However, at the time of writing, such
solutions are not available for experiments at scale.

In future work, we aim to address these lim-
itations by exploring dynamic section selection,
improving papers’ quality, adding human-LLMs
co-created samples, and investigating the potential
of zero-shot text detectors like GPTZero as they
become more accessible and scalable.

6 Discussion, Ethical Considerations, and
Broader Impact

It is important to emphasize that our work does
not condemn the usage of LLMs. The legitimacy
of their usage should be addressed by regulatory
frameworks and guidelines. Still, we strongly be-
lieve it is crucial to develop countermeasures and
strategies to detect machine-generated papers to
ensure accountability and reliability in published
research.

Our benchmark dataset serves as a valuable re-
source for evaluating detection algorithms, con-
tributing to the integrity of the scientific community.
However, potential challenges include adversarial
attacks and dataset biases (Mosca et al., 2022a; Hu-
ber et al., 2022). It is essential to develop robust
countermeasures and strive for a diverse, represen-
tative dataset.

7 Conclusion

This work introduced a benchmark dataset for iden-
tifying machine-generated scientific papers in the
LLM era. Our work creates a resource that allows
researchers to evaluate the effectiveness of detec-
tion methods and thus support the trust and integrity
in the scientific process.

We generated a diverse set of papers using
both SCIgen and state-of-the-art LLMs—ChatGPT,
Galactica, GPT-2, and GPT-3. This ensures a
variety of sources and includes models capable
of generating convincing content. We fine-tune
and test several baseline detection models—GPT-
3, Galactica, and RoBERTa—and compare their
performance to DetectGPT. The results demon-
strated varying degrees of success, with some mod-
els showing remarkable performance on specific

7https://gptzero.me

subsets while sometimes struggling with out-of-
domain data.

By providing a comprehensive platform for eval-
uating detection techniques, we contribute to the
development of robust and reliable methods for
identifying machine-generated content. Moving
forward, we plan to address the current limitations
and further enhance the utility of our benchmark
for the research community.

We release a repository containing our bench-
mark dataset as well as the code used for experi-
mental results8.
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lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Rahul Babu Shrestha and Yutong Zhou. 2022. Gener-
ation and explainable detection of artificial research
papers. Master Practical Course - Natural Language
Processing Applications (TUM). Request report at:
edoardo.mosca@tum.de.

Chris Stokel-Walker. 2022. Ai bot chatgpt writes smart
essays-should academics worry? Nature.

Jeremy Stribling and Daniel Aguayo. 2021. Rooter:
A methodology for the typical unification of access
points and redundancy.

Jeremy Stribling, Max Krohn, and Dan Aguayo. 2005.
Scigen - an automatic cs paper generator. https:
//pdos.csail.mit.edu/archive/scigen/. Ac-
cessed: March 1, 2023.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
Advances in neural information processing systems,
27.

Ben Swanson, Kory Mathewson, Ben Pietrzak, Sherol
Chen, and Monica Dinalescu. 2021. Story centaur:
Large language model few shot learning as a cre-
ative writing tool. In Proceedings of the 16th Confer-
ence of the European Chapter of the Association for
Computational Linguistics: System Demonstrations,
pages 244–256.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas
Scialom, Anthony Hartshorn, Elvis Saravia, Andrew
Poulton, Viktor Kerkez, and Robert Stojnic. 2022.
Galactica: A large language model for science. arXiv
preprint arXiv:2211.09085.

Ran Tian, Shashi Narayan, Thibault Sellam, and
Ankur P Parikh. 2019. Sticking to the facts: Con-
fident decoding for faithful data-to-text generation.
arXiv preprint arXiv:1910.08684.

A Waswani, N Shazeer, N Parmar, J Uszkoreit, L Jones,
A Gomez, L Kaiser, and I Polosukhin. 2017. Atten-
tion is all you need. In NIPS.

Kyle Williams and C Lee Giles. 2015. On the use of
similarity search to detect fake scientific papers. In
Similarity Search and Applications: 8th International
Conference, SISAP 2015, Glasgow, UK, October 12-
14, 2015, Proceedings 8, pages 332–338. Springer.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, and Clement Delangue. 2019. Hugging
face’s transformers: State-of-the-art natural language
processing. https://github.com/huggingface/
transformers.

199

https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2022.acl-long.538
https://doi.org/10.18653/v1/2022.acl-long.538
https://doi.org/10.18653/v1/2022.acl-long.538
https://aclanthology.org/2022.coling-1.406
https://aclanthology.org/2022.coling-1.406
https://aclanthology.org/2022.coling-1.406
https://openai.com/blog/chat-ai/
https://openai.com/blog/chat-ai/
http://arxiv.org/abs/2303.08774
https://pypi.org/project/PyMuPDF/
https://pypi.org/project/PyMuPDF/
https://pdos.csail.mit.edu/archive/scigen/
https://pdos.csail.mit.edu/archive/scigen/
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers


Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019. Defending against neural fake
news. Advances in neural information processing
systems, 32.

200



A Appendix: Generation Examples

In this section, we present examples of text that were generated using the models we employed. For
generating text with the Galactica model, an overview of the hyperparameters used is provided in Table 4.

Input Section(s) Output Section Tokenizer max_input_size max_new_tokens do_sample temperature top_k top_p no_repeat_ngram_size early_stopping
Title Abstract 64 512 True - - - - -
Title + Abstract Introduction 576 (64 + 512) 1024 True 0.7 25 0.9 10 True
Title + Abstract + Introduction Conclusion 1600 (64 + 512 + 1024) 1024 True 0.7 25 0.9 10 True

Table 4: Hyperparameters used to generate each paper section in the Galactica model. Each row corresponds to a
decoding of a section based on the previous input sections. Here we used parameters of the MODEL.GENERATE
function provided by Huggingface (Wolf et al., 2019).

A.1 ChatGPT

Figures 3 and 4 provide examples of prompts that can be used to generate paper sections using ChatGPT

Figure 3: Example 1 of Prompting ChatGPT to produce sections of a scientific paper given the paper title.
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Figure 4: Example 2 of Prompting ChatGPT to produce sections of a scientific paper given the paper title.

A.2 Galactica
Each subsection shows how Galactica is prompted to generate the abstract, the introduction and the
conclusion sections.

A.2.1 Abstract Generation
INPUT:

Title: On the Global Structure of Hopf Hypersurfaces in Complex Space Form

OUTPUT:
Abstract: For a generic hypersurface in complex space form, all Hopf hypersurfaces are proved to be
homogeneous or Hopf homogeneous. As a consequence, it is shown that the generalized Sasakian
metric is a Ricci soliton on a Hopf hypersurface.

A.2.2 Introduction Generation
INPUT:

Title: On the Global Structure of Hopf Hypersurfaces in Complex Space Form

Abstract: For a generic hypersurface in complex space form, all Hopf hypersurfaces are
proved to be homogeneous or Hopf homogeneous. As a consequence, it is shown that the generalized
Sasakian metric is a Ricci soliton on a Hopf hypersurface.

Introduction:

OUTPUT:
A Hopf hypersurface is a hypersurface which admits a Hopf field, that is, a vector field such that [ξ, ξ]
is a normal vector field. The Hopf field is unique up to multiplication by a positive constant. The
existence of Hopf fields is equivalent to the existence of a 1-form η such that η ∧ dηn−1 is a volume
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form. Let Mn be a hypersurface in a complex space form M2n+1(c) with constant sectional curvature
c. We denote by g the metric induced by the Riemannian metric of M2n+2(c). The Hopf field is given
by ξ = 1√

n
J∇f , where J is the complex structure on M2n+3 and f is a function on Mn ⊂ M2n+1.

In [1], Wang and Chen showed that a Hopf hypersurface in M2n+l(c) is homogeneous if and only
if the Hopf field is parallel. In this paper, we study the structure of Hopf hypersurfaces in complex
space form. We show that a Hopf hypersurface is homogeneous if and only if it is Hopf homogeneous.
We also show that a Hopf hypersurface is Hopf homogeneous if and only if the generalized Sasakian
metric is a Ricci solitons on it.

A.2.3 Conclusion Generation
INPUT:

Title: On the Global Structure of Hopf Hypersurfaces in Complex Space Form

Abstract: For a generic hypersurface in complex space form, all Hopf hypersurfaces are
proved to be homogeneous or Hopf homogeneous. As a consequence, it is shown that the generalized
Sasakian metric is a Ricci soliton on a Hopf hypersurface.

Introduction:

A Hopf hypersurface is a hypersurface which admits a Hopf field, that is, a vector field
such that [ξ, ξ] is a normal vector field. The Hopf field is unique up to multiplication by a positive
constant. The existence of Hopf fields is equivalent to the existence of a 1-form η such that
η ∧ dηn−1 is a volume form. Let Mn be a hypersurface in a complex space form M2n+1(c) with
constant sectional curvature c. We denote by g the metric induced by the Riemannian metric
of M2n+2(c). The Hopf field is given by ξ = 1√

n
J∇f , where J is the complex structure on

M2n+3 and f is a function on Mn ⊂ M2n+1. In [1], Wang and Chen showed that a Hopf
hypersurface in M2n+l(c) is homogeneous if and only if the Hopf field is parallel. In this paper,
we study the structure of Hopf hypersurfaces in complex space form. We show that a Hopf
hypersurface is homogeneous if and only if it is Hopf homogeneous. We also show that a Hopf hy-
persurface is Hopf homogeneous if and only if the generalized Sasakian metric is a Ricci solitons on it.

Conclusion:
OUTPUT:

We obtain a complete classification of Hopf hypersurfaces in complex space forms.

A.3 GPT-3
The following frame shows GPT-3 training prompt. the input label is separated from the input by the
separator token (###).

Abstract:

For a generic hypersurface in complex space form, all Hopf hypersurfaces are proved to be
homogeneous or Hopf homogeneous. As a consequence, it is shown that the generalized Sasakian
metric is a Ricci soliton on a Hopf hypersurface.

Introduction:

A Hopf hypersurface is a hypersurface which admits a Hopf field, that is, a vector field
such that [ξ, ξ] is a normal vector field. The Hopf field is unique up to multiplication by a positive
constant. The existence of Hopf fields is equivalent to the existence of a 1-form η such that
η ∧ dηn−1 is a volume form. Let Mn be a hypersurface in a complex space form M2n+1(c) with
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constant sectional curvature c. We denote by g the metric induced by the Riemannian metric
of M2n+2(c). The Hopf field is given by ξ = 1√

n
J∇f , where J is the complex structure on

M2n+3 and f is a function on Mn ⊂ M2n+1. In [1], Wang and Chen showed that a Hopf
hypersurface in M2n+l(c) is homogeneous if and only if the Hopf field is parallel. In this paper,
we study the structure of Hopf hypersurfaces in complex space form. We show that a Hopf
hypersurface is homogeneous if and only if it is Hopf homogeneous. We also show that a Hopf hy-
persurface is Hopf homogeneous if and only if the generalized Sasakian metric is a Ricci solitons on it.

Conclusion:

For a generic hypersurface in complex space form, all Hopf hypersurfaces are proved to be
homogeneous or Hopf homogeneous. As a consequence, it is shown that the generalized Sasakian
metric is a Ricci soliton on a Hopf hypersurface.

###

1

A.4 GPT-2
Here below, an example of how the fine-tuned GPT-2 was used to generate the abstract, the introduction
and the conclusion sections.

A.4.1 Abstract Generation
INPUT:

Competitive Multi-Agent Load Balancing with Adaptive Policies in Wireless Networks <|sep|>

OUTPUT:
In this paper, we propose adaptive multi-agent load balancing (AML) based on adaptive policies
to achieve better performance. The adaptive policies can be designed to maximize the number of
agent users and to reduce the number of latency. We present a comprehensive evaluation of AML
on three wireless networks. We demonstrate that the adaptive policies outperform state-of-the-art
AML strategies by an average of 6.5% and by an average of 2.5% when compared to state-of-the-art
strategies. The performance of adaptive policies is evaluated on the three wireless networks with
multiple users and multiple latency.

A.4.2 Introduction Generation
INPUT:

Competitive Multi-Agent Load Balancing with Adaptive Policies in Wireless Networks <|sep|>

OUTPUT:
Wireless networks are increasingly becoming the backbone of the modern world. The wireless
networks have been the main source of energy for many years, and they are the main source of power
for many businesses. However, wireless networks are also the main source of information for many
people. For example, people in many countries rely on a variety of information services, such as
social networks, social media, and e-mail. However, the information services are not available in all
countries. Therefore, the information services are not available for all countries.

A.4.3 Conclusion Generation
INPUT:
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Competitive Multi-Agent Load Balancing with Adaptive Policies in Wireless Networks <|sep|>

OUTPUT:
In this paper, we propose adaptive policies that optimize the network performance of different types
of wireless networks. We show that adaptive policies can achieve competitive performance for
different types of wireless networks. The proposed adaptive policies have been tested in several
real-world wireless networks. We find that adaptive policies outperform state-of-the-art policies for
the most common wireless networks. We also show that adaptive policies can be used to optimize
the network performance of wireless networks by adapting their performance to different types of
wireless networks. The proposed adaptive policies are able to achieve competitive performance for
different types of wireless networks.

B Appendix: Explainability Results

SHAP and LIME explanations of our classifiers.

Figure 5: RoBERTa: Example of SHAP explanation on a real abstract correctly classified.

Figure 6: RoBERTa: Example of SHAP explanation on a real misclassified abstract.

Figure 7: RoBERTa: Example of SHAP explanation on a SCIgen generated abstract correctly classified.
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Figure 8: RoBERTa: Example of SHAP explanation on a GPT-2 generated abstract correctly classified

Figure 9: RoBERTa: Example of SHAP explanation on a Galactica generated abstract correctly classified.

Figure 10: RoBERTa: Example of SHAP explanation on a ChatGPT generated abstract correctly classified.

Figure 11: Galactica: Example of SHAP explanation on a real paper correctly classified.

Figure 12: Galactica: Example of SHAP explanation on a misclassified real paper.

Figure 13: Galactica: Example of SHAP explanation on a Galactica generated paper correctly classified.
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Figure 14: Galactica: Example of SHAP explanation on a misclassified Galactica generated paper.

Figure 15: RoBERTa: Example of LIME explanation on a real abstract correctly classified.

Figure 16: RoBERTa: Example of LIME explanation on a SCIgen generated abstract correctly classified.

Figure 17: RoBERTa: Example of LIME explanation on a GPT-2 generated abstract correctly classified.

Figure 18: RoBERTa: Example of LIME explanation on a Galactica generated abstract correctly classified.

Figure 19: RoBERTa: Example of LIME explanation on a ChatGPT generated abstract correctly classified.
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