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Abstract

This paper presents novel experiments shed-
ding light on the shortcomings of current met-
rics for assessing biases of gender discrimina-
tion made by machine learning algorithms on
textual data. We focus on the Bios dataset, and
our learning task is to predict the occupation of
individuals, based on their biography. Such pre-
diction tasks are common in commercial Nat-
ural Language Processing (NLP) applications
such as automatic job recommendations. We
address an important limitation of theoretical
discussions dealing with group-wise fairness
metrics: they focus on large datasets, although
the norm in many industrial NLP applications
is to use small to reasonably large linguistic
datasets for which the main practical constraint
is to get a good prediction accuracy. We then
question how reliable are different popular mea-
sures of bias when the size of the training set
is simply sufficient to learn reasonably accu-
rate predictions. Our experiments sample the
Bios dataset and learn more than 200 models
on different sample sizes. This allows us to sta-
tistically study our results and to confirm that
common gender bias indices provide diverging
and sometimes unreliable results when applied
to relatively small training and test samples.
This highlights the crucial importance of vari-
ance calculations for providing sound results in
this field.

1 Introduction

Potential biases introduced by Artificial Intelli-
gence (AI) systems are now both an academic con-
cern, but also a critical problem for industry, as
countries plan to regulate AI systems that could
adversely affect individual users. The so-called AI
act1 will require AI systems sold in the European

1https://eur-lex.europa.eu/legal-content/EN/
TXT/HTML/?uri=CELEX:52021PC0206&from=EN

Union to have good statistical properties with re-
gard to any potential discrimination they could en-
gender. In particular, under the AI Act, AI systems
that exploit linguistic data like those for review-
ing job candidates from text-based candidacies fall
into the category of tightly regulated AI systems,
as they are intended to be used for the recruitment
or selection of natural persons (see Annex III of the
AI act). Such AI systems will require frequent and
rigorous statistical testing for unwanted biases.2

These regulatory advances have made it a press-
ing issue to define which metrics are appropriate
for evaluating whether machine learning models
can be considered fair algorithms in various in-
dustrial settings. In this context, we believe that
these articles open at least two issues: (1) Each
fairness metric quantifies the fairness of a model in
a different way and not all metrics are compatible
with each other, as already discussed in (Klein-
berg et al., 2016; Chouldechova, 2017; Pleiss et al.,
2017). It is therefore easy to optimize its algo-
rithm according to a single metric to claim fairness
while overlooking all the other aspects of fairness
measured by other metrics. (2) Given that contem-
porary, theoretical discussions of fairness focus on
large datasets but that the norm in many industrial

2Such AI systems are considered high-risk. The AI act (Ar-
ticle 9.7) states: "The testing of the high-risk AI systems shall
be performed, as appropriate, at any point in time throughout
the development process, and, in any event, prior to the plac-
ing on the market or the putting into service. Testing shall be
made against preliminarily defined metrics and probabilistic
thresholds that are appropriate to the intended purpose of the
high-risk AI system". Article 10.2 specifies that "Training, val-
idation, and testing data sets shall be subject to appropriate
data governance and management practices. Those practices
shall concern in particular, examination in view of possible bi-
ases" (among others). Article 71 states that "non-compliance
of the AI system with the requirements laid down in Article
10 ... shall be subject to administrative fines of up to 30 000
000 EUR or, if the offender is a company, up to 6 % of its total
worldwide annual turnover for the preceding financial year".
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NLP applications is to use small linguistic datasets
(Ezen-Can, 2020), one can wonder how reliable
different popular measures of bias when the size
of the training and validation sets is simply suffi-
cient to learn reasonably accurate predictions. In
general, this leads us to pose two questions, which
are central to this paper: Are fairness metrics al-
ways reliable on small samples, which are common
in industrial contexts? How do they behave when
applying standard debiasing techniques?

To answer these questions, we propose a new
experimental protocol to expose gender biases in
NLP strategies, using variously sized subsamples
of the Bios dataset (De-Arteaga et al., 2019). We
create 50 samples for each sample size (10k, 20k,
50k, and 120k) and train a model on each of the
200 samples. This gives us a mean and a vari-
ance on our results for all sample sizes to be able
to compare them from a statistical point of view.
We study the biases in these samples using three
metrics; each sheds light on specific properties of
gender bias.

Our study shows how bias is related to the train-
ing set size on a standard NLP dataset by revealing
three points: First, commonly accepted bias indices
appear unreliable when computed on ML models
trained on relatively small training sets. Moreover,
our experiments reveal that the group parity gender
gap metric (3.5) appears to be more reliable than
other metrics on small samples. Second, in the
tested standard and large training sets, results are
not homogeneous across professions and across the
measures: sometimes there is gender bias against
males, and sometimes against females in profes-
sions where one would expect something different.
Finally, the most traditional de-biasing methods,
which consist in removing gender-sensitive words
or replacing them with neutral variants, makes dif-
ferent metrics yield surprising and sometimes seem-
ingly incompatible bias effects. We explain this
phenomenon by the definitions of the metrics. In
light of these findings, we think that one should use
the main fairness metrics jointly to look for biases
in smaller datasets and run enough models to have
a variance. Such bootstrapping procedures appear
essential to robustly analyze how fair a prediction
model is.

Our paper is structured as follows. Section 2
surveys related work. Section 3 introduces our
experimental setup. Section 4 discusses our results,
with conclusions coming in Section 5. Section 6

discusses some of the limitations of our work.

2 Related Work

Gender bias is pervasive in NLP applications: in
machine translation (Vanmassenhove et al., 2019;
Stanovsky et al., 2019; Savoldi et al., 2021; Wis-
niewski et al., 2021), in hate speech detection (Park
et al., 2018; Dixon et al., 2018), sentiment analysis
(Kiritchenko and Mohammad, 2018; Zellers et al.,
2019), and in coreference resolution (Rudinger
et al., 2018; Zhao et al., 2018). Gender bias with
respect to classification has already been examined
in (De-Arteaga et al., 2019; Gonen and Goldberg,
2019; Bolukbasi et al., 2016a; Lu et al., 2020; Bor-
dia and Bowman, 2019), and reduced in (Pruk-
sachatkun et al., 2021; Zhao et al., 2019, 2017).
In particular, for the BERT model, Bhardwaj et al.
(2021) investigated gender bias. More generally,
Bender et al. (2021) has studied the impact of in-
creasingly large language models and has high-
lighted the sexist or racist biases and prejudices
that result from them.

However, the above-mentioned works only fo-
cused on single, large datasets. Recently, a growing
literature has started to propose to leverage statis-
tical properties of fairness metrics, thus providing
both sophisticated analysis and practically useful
algorithms (Lum et al., 2022; DiCiccio et al., 2020).
In particular, a more rigorous statistical approach
for BERT models was introduced in (Sellam et al.,
2021).

In this paper, we investigate the pertinence of
different fairness metrics on samplings of different
sizes out of a large dataset. We apply our principled
statistical procedure and we present the results of
these measures, along with their standard deviation
and properties coming from Student’s t-tests. In ad-
dition to our scientific contribution, we have paid
particular attention to the clarity of our explana-
tions and the simplicity of our proposed protocol to
allow small players to easily employ them for their
real-world use cases. Finally, our results attest to
the importance of applying techniques of statistical
analysis to Fairness problems, and we hope that the
guarantees gained through them provide a convinc-
ing argument for its more generalized application
in the field.

3 Experimental protocol

In this section, we detail the various components of
our experimental setup. Section 3.1 describes the
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dataset and Section 3.2 the general type of model
used to train the 200 models. Section 3.3 intro-
duces our debiasing technique used to illustrate our
protocol. Section 3.4 explains the sampling proce-
dure and gives guarantees on the representativeness
of the samples. Finally, Section 3.5 describes the
different fairness metrics that we will compare and
we justify these choices.

3.1 The Bios data set
The Bios dataset (De-Arteaga et al., 2019) contains
about 400K biographies (textual data). For each
biography, Bios specifies the gender (M or F) and
the occupation (among 28 occupations, categorical
data) of its author. Figure 7 (Appendix) shows the
distribution of each occupation by gender.

3.2 DistilBERT model
Our task is to predict the occupation using only
the textual data of the biography. This task is rele-
vant in the case of our study because job prediction
from LinkedIn biographies is used for job recom-
mendation. It is therefore easy to imagine the con-
sequences of gender discrimination in this context.

For this task, we will use the DistilBERT ar-
chitecture. DistilBERT (Sanh et al., 2019) is a
transformer architecture derivative from but smaller
and faster than the original BERT (Devlin et al.,
2018). This model is commonly used to do text
classification. DistilBERT is trained on BookCor-
pus (Zhu et al., 2015) (like BERT), a dataset con-
sisting of 11,038 unpublished books and English
Wikipedia (excluding lists, tables and headers), us-
ing the BERT base model as a teacher.

We have fine-tuned DistilBERT to adapt it to our
text classification task. In our protocol, only the
datasets were intervened on while keeping other
factors the same in each model. We used 5 epochs,
a batch size of 16 observations, an AdamW op-
timizer with a learning rate of 2e-5, and a cross-
entropy loss when training the model.

3.3 De-biasing methodology
In this part, we state the debiasing technique used
for the illustration of our protocol. Note that this
technique is very basic and is only used to explain
our experimental protocol. This protocol could be
applied with any more elaborate debiasing tech-
nique.

A classic method for debiasing consists of re-
moving explicit gender indicators (i.e.’he’, ’she’,

’her’, ’his’, ’him’, ’hers’, ’himself’, ’herself’, ’mr’,

’mrs’, ’ms’, ’miss’ and first names). For a model
like DistilBERT, however, we could not just re-
move words because the model is sensitive to sen-
tence structure, not just lexical information. We,
therefore, adjusted the method by replacing all the
first names with a neutral first name3 (Camille) and
by choosing only one gender for all datasets (e.g.,
for all individuals of gender g, we did nothing; for
the others, we replaced explicit gender indicators
with those of g). We then created two datasets with
only female or male gender indicators, and the only
first name Camille.

3.4 Sampled training and test sets
We tested the robustness of our model with respect
to the various bias measures on training sets of dif-
ferent sizes. We randomly sampled 50 different
training sets containing 10K, 20K, 50K, and 120K
biographies out of the 400K of (De-Arteaga et al.,
2019). We trained a model on each of these 200
samples. Each of these models has the same ar-
chitectures and the same hyper-parameters stated
previously. To guarantee the representativeness of
the sample, we ensured that each sample had the
same percentage of each gender for each occupa-
tion as in the initial data set. For example, given
2002 female surgeons out of 388862 persons in the
initial dataset (0.51 %), we randomly picked 51
women surgeons for a sample with 10000 individ-
uals (0.51 %). For the split between the train and
test sets, we respectively used 70% and 30% of the
dataset.

Creating these 200 different models and observa-
tions makes it possible to quantify the variability of
the results obtained using each size of subsampled
training sets. This will additionally allow us to en-
sure that all differences discussed in our results are
statistically significant using Student’s t-tests. Our
experimental protocol, therefore, gives us more
guarantees than traditional protocols based on a
single model.

3.5 Gender bias metrics
Let Ŷ and Y be the predicted and the true target
labels (i.e., the occupations), respectively. Let G be
a random variable representing the binary gender
of the biography’s subject. For each model, we
quantified the gender bias by using the following
metrics: Group Parity (GP), True Positive Rate

3We can take any first name because, since we change all
the first names of the dataset by this one, it will necessarily be
neutral.
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(TPR), and Predictive parity (PP). They are defined
as:

GPg,y = P (Ŷ = y|G = g) , (1)

TPRg,y = P (Ŷ = y|G = g, Y = y) , (2)

PPg,y = P (Y = y|Ŷ = y,G = g) . (3)

To measure the gender gap with these metrics,
we computed the difference between binary gen-
ders g and g̃ — for each occupation y:

M_Gapg,y = Mg,y −Mg̃,y ,

where M is GP , TPR or PP . We now discuss
each measure in turn.

Statistical/Group Parity (GP) The condition
GP verifies gender balance (ie. GP_Gapg,y = 0)
if the males and females groups have equal prob-
ability of being assigned to the predicted class
ŷ ∈ {noty, y}. It is the most famous and intuitive
metric of fairness.

True Positive Rate (TPR) TPR_Gapg,y = 0 if
among all individuals in the y class, the probability
of being predicted ŷ is the same for males and
females. This metric is widely used in the field of
NLP in particular.

Predictive Parity (PP) PP_Gapg,y = 0 if
among all individuals predicted to belong to the
y class, the probability of Y = y is the same for
males and females. PP is similar to Calibration
(within groups), and widely used in fairness to com-
pare with other metrics. We use PP here because
it uses the same parameters Y and Ŷ as our other
metrics.

4 Results and discussion

As shown in Figure 1, all the models we trained
reached a prediction accuracy ranging from 0.72
to 0.86, as in (De-Arteaga et al., 2019), which we
consider as good since the classification problem
involved 28 different occupations.

All comparisons in this part were considered as
significant by using Student’s t-tests (p-value of
0.05).

We created two datasets without gender infor-
mation: one version with all female gender indica-
tors and the other with all male gender indicators.
Gender, therefore, has no impact on the finetuning
part of our model. However, since we are starting

from a pre-trained DistilBERT model (without a
gender-neutral dataset), we had to check that the
pre-training had no impact on the prediction. We
therefore also made a Student’s test between the
predictions of one model trained on the dataset
with all the female gender indicators, and of an-
other trained on the dataset with all the male gen-
der indicators. The difference was not statistically
significant; using one model or the other makes no
difference.

The analysis of the results of our protocol is
made in two steps: a specific part and a general
part. Below in Section 4.1, we analyze biases on
two specific occupations, Surgeon and Physician.
These two occupations are socially very interesting
and their male/female distribution is very different,
which is something we wanted to study. In Section
4.2, we also observe the biases across the gamut of
occupations in bios. All the results found in this
preliminary study remain valid in a generalized
case where we look at all the classes of the model.
Dividing our study like this allows us to discuss var-
ious details which support our key message without
weighing down the article in the specific part while
guaranteeing that our analysis is global and applies
to the other classes of the model in the general part.

4.1 Results and discussion for the classes
Surgeon and Physician

Although the model is trained to predict the occu-
pations of bio authors from the 28 possible choices,
we focus, in our study, on the analysis of the biases
on two specific occupations: Surgeon versus the 27
remaining occupations, and Physician versus the
other occupations. We chose these professions so
that we could compare an occupation with an im-
balanced gender distribution and one with balanced
a gender distribution. The occupation Physician is
well balanced in the training set between males and
females (49,5% female), while the training set for
Surgeon contains many more males than females
(15% female).

We computed F1-scores in Figure 2, which are
good to reasonable, except for the 10K samples
for surgeons, which appear as too small for our
predictive task. Quantitative results related to the
fairness metrics are shown in Figures 3 and 4. Each
box-plot contains the TPR, GP, PP Gender Gaps
obtained on the test set for surgeons and physician.
Negative (positive) gender gaps mean that there is
discrimination against females (males).
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Figure 1: Boxplots representing the variations of prediction accuracy for all sampling sizes

Figure 2: Boxplots representing the variations of prediction F1-scores for all sampling sizes for surgeon (top) and
physician (bottom)

4.1.1 Results on small data samples

Our experiments clearly show that the lower the
amount of observations in the training set, the more
the fairness metrics vary in the test set. The samples
with 10K and 20K observations present particularly
unstable biases. For example, most TPR (resp. GP)
Gender Gaps are negative (resp. positive) for sur-
geon (resp. physician) but some samples yield pos-
itive TPR (resp. negative GP) Gender Gaps. This
is problematic since we cannot deduce a priory that
a particular sample should produce discrimination
one way or the other.

In addition, the average biases also depend on
the sample size. Again, we obtained unstable av-
erage biases for small samples (10K, 20K). The
bias indicators are estimated on the minority class:

an amount of 41, 115, 334, and 903 predicted sur-
geons were obtained in the test set for the 10K,
20K, 50K, and 120K sampling sizes. Hence, their
estimation is unstable for small samples. However,
GP appears more stable than the other metrics in
our experiments, in particular when there were few
observations. Its variance was indeed close to 0.01,
which is much lower than the variances of 0.1 and
0.2 for GP and PP, respectively. We explain this
because on our dataset, for TPR and PP, they do
not use all predicted surgeons (unlike GP), but only
the predicted surgeons who are also real surgeons
(in 10k sampling, there are 41 predicted surgeons
vs. 30 real surgeons and predicted surgeons, which
is an information loss of 26,8%). We explain this
intuition mathematically in detail in appendix A.
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Figure 3: Boxplots of the gender gaps obtained using 10K, 20K, 50K, and 120K randomly sampled observations
(50). (Left) True Positive Rate (TPR) gender gaps for surgeons and physicians; (Middle) Predictive Parity (PP)
gender gaps for surgeons and physicians; (Right) Group Parity (GP) gender gaps for surgeons and physicians.

Considering this result, we recommend using a
simpler indicator like GP gender gap for small-size
sets.

4.1.2 Bias analysis with different metrics
General results Even for large samples with
120K observations, biases sometimes differed from
what we expected. For the occupation surgeon
(15% of females) the gender gap was negative for
all metrics, which was expected. For physician
(49,5% of females), we also expected to have a
negative or zero gender gap (see (Bolukbasi et al.,
2016b)). However, the gender gaps were positive
for all metrics, which means that the models dis-
criminated against males. This example shows that
intuitions of model-builders about biases are not
always correct and this awareness should influence
model construction and testing.

Results with debiasing Intuitively, removing ex-
plicit gender indicators should reduce the bias (De-
Arteaga et al., 2019). As shown Figure 4, however,
our experiments show that this is not necessarily
the case. Using TPR and GP Gender Gaps, we
see a bias initially in favor of women (resp. men)
and increases (resp. decreases) for the physician
(resp. surgeon) class after debiasing. Removing
gender indicators thus favored women in these two
occupations.

PP Gender Gap shows different effects for de-

biasing: For physician (resp. surgeon), the initial
bias in favor of women (resp. men) decreases (resp.
increases) after debiasing. Removing gender indi-
cators thus favored men in these two occupations.

To explain this phenomenon, we can remark
that removing gender indicators allowed us to pre-
dict more women than before in the two profes-
sions. The metrics interpret this differently. By
definition, PPf,y = P

(
Y = y|Ŷ = y,G = f

)

decreases when the number of Ŷ increases. In
addition, TPRf,y = P

(
Ŷ = y|Y = y,G = f

)

and GPf,y = P
(
Ŷ = y|G = f

)
increases when

the number of Ŷ increases.
Using either GP/TPR gender gap or PP gender

gap amounts to choosing between focusing on the
number of people predicted in the discriminated
group (parity) or focusing on the people in the
discriminated group who are well predicted (truth).
This explains the different interpretations of these
indicators.

4.2 Results and discussion for all classes

In this section, we confirm our analysis of the spe-
cific occupations of Surgeon and Physician from a
global point of view on all the classes of the model.

The general results on all occupations confirm
the analysis we made on the two occupations previ-
ously:
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Figure 4: Boxplots representing the fairness metrics for surgeon (top) and physician (bottom) for 120k samplings
for the base model, model with only female indicators, and model with only male indicators

Figure 5: Variance of TPR/PP/GP gender gap for all occupations for model training on the classic dataset for all
sample sizes. The higher the variance, the darker the green. We have 50 sampling for each sample size. We kept
only professions that have at least one prediction per gender for all samplings. So we had to remove paralegal, dj,
rapper, pastor, chiropractor, software engineer, attorney, yoga teacher, painter, model, personal trainer, comedian,
accountant, interior designer, and dietitian

1. In Figure 5, we have more and more important
deviations on the variance of the metrics as
the size of the data set decreases. And that
on most trades. As explained before, the GP
gender gap is more stable, because it has more
data.

2. In the first table of Figure 6 (for the classic
model), the metrics give inconsistent results
for several occupations: depending on the met-
ric bias in favor of men or women for the same
profession and the same model. This is par-
ticularly visible for the occupations: software
engineer, poet, architect, attorney, and nurse.

3. By comparing the two tables in Figure 6, we
confirm that depending on the metric we are
looking at, the basic debiasing technique used
will not have the same effects on the bias. In
several professions, we see that the bias on
the TPR gender gap in favor/against women
increases when on the bias on the PP gender
gap decreases and vice versa. This is evident
in the professions: surgeon, pastor, photog-
rapher, chiropractor, teacher, journalist, ar-
chitect, attorney, nurse, composer, personal
trainer, comedian, interior designer, and di-
etetitan.

These results give us guarantees on the general-
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Figure 6: Mean of TPR/PP/GP gender gap for all occupations for model trained on 120K samplings. On the
right, the model was trained on the classic dataset, and on the left, the model was trained on the dataset without
gender indicators. The more it is red, the more it is biased in favor of males, the more it is blue, the more it is biased
in favor of females. We kept only professions with more than 10 predictions per gender. So we had to remove
paralegal, dj and rapper.

ization of our analysis carried out on the two classes
previously. We find the same problems with the
metrics and the size of the sample, regardless of
the occupation being looked at.

5 Conclusion

Our paper used the Bios dataset to study the influ-
ence of the training set size on discriminatory bi-
ases. Our results shed light on new phenomena: (1)
fairness metrics did not converge to stable results
for small sample sizes, which precluded any con-
clusions about the nature of the biases; (2) even on
large training samples, the biases discovered were
not always those expected and varied according to
the metrics for several occupations; (3) a simple
debiasing method, which consists in removing ex-
plicit gender indicators, had an unstable impact in
our results depending on the metrics, though our
analysis of the metrics can explain the instability.
These results give two clear messages to data sci-
entists who must design NLP applications with a
potential social impact. They should first be partic-
ularly careful, as the decision rules they train may
have unexpected discriminatory biases. In addition,
a bias metric not only returns a score but has a
strong practical meaning and may be unreliable, in
particular when working with small training sets.
So multiple metrics should be considered and statis-
tical methods to obtain the variance of the observed
metrics are necessary to guarantee the fairness of a

model.

6 Limitations

A limitation of our conclusions is that although it is
necessary to use several fairness metrics to be able
to properly quantify the bias, this is not enough.
These metrics must be well chosen according to
the context and the task being looked at. The ex-
pertise of a person working in the field is therefore
always necessary to have the most complete possi-
ble interpretation of the bias. More specifically, the
different fairness metrics measure distinct proper-
ties, and the fact that they are often incompatible
has been a core part of the fair ML conversation
from the beginning (Barocas et al., 2017). Thus,
suggesting to choose a different metric depending
on the sample size may sometimes be inappropriate,
since this choice may depend on the meaning of the
metric in a given application. We must therefore
be very careful and see the notion of robustness
as additional necessary information and not as a
replacement for the metric’s meaning.

We also did not reduce the bias using advanced
strategies because this paper focuses more on the
analysis intended for a population closer to the law
than to machine learning. In this vein, it is interest-
ing to note that more and more tools are available
to reduce bias. In particular, (Sikdar et al., 2022)
makes it possible to reduce the bias according to
several fairness metrics, therefore remaining in our
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logic of taking several metrics.
The main problem raised by our article comes

from the fact that fairness indices are not stable
when they are calculated. We should consider them
as random variables and look at their law. The
first step is to look at the mean and the variance as
done in this paper but having the full distribution
would be more interesting. Works that compute the
asymptotic law can be taken as an example like (Ji
et al., 2020; Besse et al., 2022).
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erable amount of attention these days and it is ex-
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on textual data. We believe that transmitting knowl-
edge from research to industry on a subject like
fairness is essential to make the field of ML more
ethical. Hence, this work focuses on issues that
most affect the industrial ML landscape and con-
tains a clear message to them on how they should
change their current practices.
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A Mathematical intuition

Intuition Let Ŷ and Y be the predicted and the
true target labels, respectively. Let G be a random
variable representing the binary gender and let n
be the number of all individuals. We can write the
estimators of Group Parity, True Positive Rate, and
Predictive Parity metrics like this:

ĜP g,y =

∑n
i=1 1{Ŷi=y ∩ Gi=g}∑n

i=1 1{Gi=g}

ˆTPRg,y =

∑n
i=1 1{Ŷi=y ∩ Yi=y ∩ Gi=g}∑n

i=1 1{Yi=y ∩ Gi=g}

P̂P g,y =

∑n
i=1 1{Ŷi=y ∩ Yi=y ∩ Gi=g}∑n

i=1 1{Ŷi=y ∩ Gi=g}

We set A = {Ŷi = y ∩ Gi = g} and B =
{Yi = y}. By definition, #(A ∩ B) ≤ #A
where # is the cardinal of the set. So we have
#{Ŷi = y ∩ Yi = y ∩ Gi = g} ≤ #{Ŷi =
y ∩ Gi = g},∀i = 1, ..., n.
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We can define nGP , nTPR, nPP the number of
individuals respectively looked by the estimator of
Group Parity, True Positive Rate, and Predictive
Parity metrics and we have:

nGP =

n∑

i=1

#({Ŷi = y ∩ Gi = g} ∩ {Gi = g})

=

n∑

i=1

#{Ŷi = y ∩ Gi = g},

nTPR =

n∑

i=1

#({Ŷi = y ∩ Yi = y ∩ Gi = g}

∩ {Yi = y ∩ Gi = g})

=
n∑

i=1

#{Ŷi = y ∩ Yi = y ∩ Gi = g},

nTPR =
n∑

i=1

#({Ŷi = y ∩ Yi = y ∩ Gi = g}

∩ {Ŷi = y ∩ Gi = g})

=
n∑

i=1

#{Ŷi = y ∩ Yi = y ∩ Gi = g}.

Then : nTPR = nPP ≤ nGP .

B Additional figure
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Figure 7: Number of biographies for each occupation by gender on the total dataset
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