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Abstract

Metric Differential Privacy is a generalization
of differential privacy tailored to address the
unique challenges of text-to-text privatization.
By adding noise to the representation of words
in the geometric space of embeddings, words
are replaced with words located in the proxim-
ity of the noisy representation. Since embed-
dings are trained based on word co-occurrences,
this mechanism ensures that substitutions stem
from a common semantic context. Without
considering the grammatical category of words,
however, this mechanism cannot guarantee that
substitutions play similar syntactic roles. We
analyze the capability of text-to-text privatiza-
tion to preserve the grammatical category of
words after substitution and find that surrogate
texts consist almost exclusively of nouns. Lack-
ing the capability to produce surrogate texts
that correlate with the structure of the sensitive
texts, we encompass our analysis by transform-
ing the privatization step into a candidate selec-
tion problem in which substitutions are directed
to words with matching grammatical properties.
We demonstrate a substantial improvement in
the performance of downstream tasks by up
to 4.66% while retaining comparative privacy
guarantees.

1 Introduction

From compliance with stringent data protection
regulations to building trust, privacy emerged as a
formidable challenge to applications that build on
user-generated data, and consensus exists regarding
the need to safeguard user privacy.

In the context of text analysis, privacy is typi-
cally protected by sanitizing personally identifiable
information from the text via ad-hoc filtering or
anonymization. The literature is replete with naïve
approaches that either redact words from the text
or insert distractive words into the text. Using gen-
eralization and suppression on quasi-identifiers, an
intuitive way of expressing privacy is presented by

k-anonymity (Sweeney, 2002) and its notable adap-
tations for text data (Jiang et al., 2009; Sánchez and
Batet, 2016).

However, these approaches are fundamentally
flawed. Incapable of anticipating an adversary’s
side knowledge, most anonymization schemes are
vulnerable to re-identification and thus provably
non-private. As text conveys seemingly innocuous
information, researchers demonstrated that this in-
formation can be leveraged to identify authorship
(Song and Shmatikov, 2019) or disclose identifi-
able information (Carlini et al., 2020; Pan et al.,
2020; Song and Raghunathan, 2020; Thomas et al.,
2020). Carlini et al. (2020), for instance, recov-
ered verbatim text from the training corpus using
black-box querying to a language model.

Building upon noise calibration, Differential Pri-
vacy (DP) (Dwork et al., 2006b) attracted consid-
erable attention for their robust notion of privacy.
For text analysis, DP is applied to the vector-valued
representation of text data (Coavoux et al., 2018;
Weggenmann and Kerschbaum, 2018; Vu et al.,
2019).

We focus on Metric Differential Privacy
(Chatzikokolakis et al., 2013), in which data is pro-
cessed independently, similar to the setting of ran-
domized response (Kasiviswanathan et al., 2011).
To avoid the curse of dimensionality of randomized
response, noise is scaled by a general distance met-
ric. For text-to-text privatization, Feyisetan et al.
(2020) adopted a distance metric so that words that
are close (i.e. more similar) to a word are assigned
with a higher substitution probability than those
that are more distant (i.e. less similar). This re-
quires that the text is mapped onto a continuous
embedding space (Mikolov et al., 2013; Penning-
ton et al., 2014; Bojanowski et al., 2017). Pro-
ceeding from the embedding, each word in the text
is privatized by a three-step protocol: (1) retriev-
ing the vector representation of the word, (2) per-
turbing the vector representation of the word with
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noise sampled from a multivariate distribution, and
(3) projecting the noisy representation of the word
back to the discrete vocabulary space. As the noisy
representations are unlikely to exactly represent
words in the embedding space, a nearest neighbor
approximation is returned.

Since text-to-text privatization operates directly
on embeddings and words in the embedding space
are mapped based on co-occurrences, words tend to
be substituted by words that stem from a common
semantic context. However, there is no guarantee
that words are substituted by words that serve simi-
lar roles within the grammatical structure of a text.
Motivated by the example of sentiment analysis,
in which sentiment is typically expressed by ad-
jectives and forms of adjectives (Benamara et al.,
2007), we hypothesize that substitutions strictly
based on co-occurrences may degrade downstream
performance. This hypothesis is in line with lin-
guists finding repeated evidence for the relevance
of grammatical properties for language understand-
ing (Myhill et al., 2012).

We summarize our contributions as follows:

• We investigate text-to-text privatization via
metric differential privacy in terms of its capa-
bility to preserve the grammatical properties
of words after substitution. We find that priva-
tization produces texts that consist to a large
extent of incoherent nouns.

• We incorporate grammatical categories into
the privatization step in the form of a con-
straint to the candidate selection. We demon-
strate that broadening the candidate pool to
k > 1 (instead of k = 1) and selecting a sub-
stitution with matching grammatical proper-
ties amplifies the performance in downstream
tasks while maintaining an equivalent level of
privacy.

2 Preliminaries

2.1 Differential Privacy
Differential Privacy (DP) (Dwork et al., 2006b)
emerged as a robust notion for privacy applied in
privacy-preserving data mining and machine learn-
ing. Due to its composability and robustness to
post-processing regardless of an adversary’s side
knowledge, it formalizes privacy without the criti-
cal pitfalls of previous anonymization schemes. To
ensure a consistent understanding of the algorith-
mic foundation of differential privacy, we present

a brief taxonomy and a formal definition of the
variants used for text analysis.

Formally, a randomized mechanism M : D →
R with domain D and range R satisfies ε-
indistinguishability if any two adjacent inputs
d, d′ ∈ D and for any subset of outputs S ⊆ R
it holds that:

P[M(d) ∈ S]

P[M(d′) ∈ S]
≤ eε. (1)

At a high level, a randomized mechanism is
differentially-private if the output distributions
from two adjacent datasets are (near) indistinguish-
able, where any two datasets are considered adja-
cent that differ in at most one record. An adversary
seeing the output can therefore not discriminate if
a particular observation was used. This notion of
indistinguishability is controlled by the parameter
ε acting as a privacy budget. It defines the strength
of the privacy guarantee (with ε → 0 representing
strict privacy and ε → ∞ representing the lack
of privacy). To enhance the accounting of the pri-
vacy budget, several relaxations exist (Dwork et al.,
2006a; Mironov, 2017; Dong et al., 2019).

Depending on the setting, DP can be categorized
into global DP (Dwork et al., 2006b) and local DP
(Kasiviswanathan et al., 2011).

Global DP addresses the setting in which pri-
vacy is defined with respect to aggregate statistics.
It assumes a trusted curator who can collect and
access raw user data. The randomized mechanism
is applied to the collected dataset to produce differ-
entially private output for downstream use. With
noise drawn from a predetermined distribution, the
design of the randomized mechanism builds upon
an additive noise mechanism. Commonly used
distributions for adding noise include Laplace and
Gaussian distribution (Dwork et al., 2014). The
noise is further calibrated according to the func-
tion’s sensitivity and the privacy budget. This tech-
nique is useful for controlling the disclosure of
private information of records processed with real-
valued and vector-valued functions.

Local DP addresses the setting in which pri-
vacy is defined with respect to individual records.
In contrast to global DP, local DP does not rely
on a trusted curator. Instead of a trusted curator
that applies the randomized mechanism, the ran-
domized mechanism is applied to all records inde-
pendently to provide plausible deniability (Bind-
schaedler et al., 2017). The randomized mecha-
nism to achieve local DP is typically Randomized
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Response (RR) (Warner, 1965), which protects pri-
vate information by answering a plausible response
to the sensitive query.

Since we aim for text-to-text privatization, for-
mulating DP in the local setting through RR ap-
pears to be a natural solution. However, the strong
privacy guarantees constituted by RR impose re-
quirements that render it impractical for text. That
is, RR requires that a sentence s must have a non-
negligible probability of being transformed into any
other sentence s

′
regardless of how unrelated s and

s
′

are. This indistinguishability constraint makes it
virtually impossible to enforce that the semantics
of a sentence s are approximately captured by a
privatized sentence s

′
. Since the vocabulary size

can grow exponentially large in length |s|, the num-
ber of sentences semantically related to s becomes
vanishingly small probability under RR (Feyisetan
et al., 2020).

2.2 Metric Differential Privacy
Metric Differential Privacy (Chatzikokolakis et al.,
2013) is a generalization of differential privacy that
originated in the context of location-based privacy,
where locations close to a user are assigned with a
high probability, while distant locations are given
negligible probability. By using word embeddings
as a corollary to geo-location coordinates, metric
differential privacy was adopted from location anal-
ysis to textual analysis by Feyisetan et al. (2020).

We follow the formulation of Xu et al. (2021) for
metric differential privacy in the context of textual
analysis. Equipped with a discrete vocabulary set
W , an embedding function ϕ : W → R, where
R represents a high-dimensional embedding space,
and a distance function d : R × R → [0,∞) sat-
isfying the axioms of a metric (i.e., identity of in-
discernibles, symmetry, and triangle inequality),
metric differential privacy is defined in terms of
the distinguishability level between pairs of words.
A randomized mechanism M : W → W satisfies
metric differential privacy with respect to the dis-
tance metric d(·) if for any w,w

′
, ŵ ∈ W the out-

put distributions of M(w) and M(w
′
) are bounded

by Equation 2 for any privacy budget ε > 0:

P[M(w) = ŵ]

P[M(w′) = ŵ]
≤ eεd{ϕ(w),ϕ(w

′
)}. (2)

This probabilistic guarantee ensures that the log-
likelihood ratio of observing any word ŵ given two
words w and w′ is bounded by εd{ϕ(w), ϕ(w′)}
and provides plausible deniability (Bindschaedler

et al., 2017) with respect to all w ∈ W . We refer
to Feyisetan et al. (2020) for a complete proof of
privacy. For M to provide plausible deniability, ad-
ditive noise is in practice sampled from a multivari-
ate distribution such as the multivariate Laplace
distribution (Feyisetan et al., 2020) or truncated
Gumbel distribution (Carvalho et al., 2021b).

We recall that differential privacy requires ad-
jacent datasets that differ in at most one record.
Since the distance d(·) captures the notion of close-
ness between datasets, metric differential privacy
instantiates differential privacy when Hamming dis-
tance is used, i.e., if ∀x, x′ : d{ϕ(w), ϕ(w′

)} = 1.
Depending on the distance function d(·), metric
differential privacy is therefore generally less re-
strictive than differential privacy. Intuitively, words
that are distant in metric space are easier to distin-
guish compared words that are in close proximity.
Scaling the indistinguishability by a distance d(·)
avoids the curse of dimensionality that arises from
a large vocabulary W and allows the mechanism
M to produce similar substitutions ŵ for similar
w and w

′
. However, this scaling complicates the

interpretation of the privacy budget ε, as it changes
depending on the metric employed.

2.3 Related Work

Grounded in metric differential privacy, text-to-text
privatization implies that the indistinguishability of
substitutions of any two words in the vocabulary is
scaled by their distance.

Fernandes et al. (2018) achieve this indistin-
guishability by generating a bag-of-words repre-
sentation and applying the Earth Mover’s distance
to obtain privatized bags.

In contrast to a bag-of-words representation,
Feyisetan et al. (2020) formalized text-to-text priva-
tization to operate on continuous word embeddings.
Word embeddings capture the level of semantic
similarity between words and have been popular-
ized by efficient embedding mechanisms (Mikolov
et al., 2013; Pennington et al., 2014). This mecha-
nism was termed MADLIB.

The issue with this mechanism is that the magni-
tude of the noise is proportional to the dimensional-
ity of the vector representation. This translates into
adding the same amount of noise to any word in the
embedding space, regardless of whether this word
is located in a dense or sparse region. For words
in densely populated areas, adding noise that is
large in magnitude renders it difficult for the mech-
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Figure 1: Embedding space of the 1, 000 most fre-
quent words in 100-dimensional GloVe, automatically
encoded with their universal part-of-speech tags.

anism to select reasonable substitutions, as nearby
relevant words cannot be distinguished from other
nearby but irrelevant words. For words in sparsely
populated areas, adding noise of small magnitude
renders the mechanism susceptible to reconstruc-
tion, as the word closest to a noisy representation
is likely to be the original word.

To tackle some of the severe shortcomings of
MADLIB, a variety of distance metrics have been em-
ployed to scale the indistinguishability, including
Hamming distance (Carvalho et al., 2021a), Man-
hattan distance (Fernandes et al., 2019), Euclidean
distance (Fernandes et al., 2019; Feyisetan et al.,
2020; Carvalho et al., 2021b; Feyisetan and Ka-
siviswanathan, 2021), Mahalanobis distance (Xu
et al., 2020) and Hyperbolic distance (Feyisetan
et al., 2019).

While related extensions have focused almost
exclusively on geometric properties to enhance
text-to-text privatization, we focus on linguistic
properties. We extend MADLIB by a candidate se-
lection that directs substitutions based on matching
grammatical properties and demonstrate that mul-
tivariate perturbations supported by grammatical
properties substantially improve the utility of the
surrogate texts in downstream tasks.

3 Methodology

Since text-to-text privatization operates directly on
geometric space of embeddings, it is necessary to
understand the structure of the embedding space.
To get an understanding of the embedding space,
we selected a subset of 1, 000 most frequent words
from the 100-dimensional GloVe embedding and
manifolded them onto a two-dimensional represen-
tation. Enriched by grammatical properties derived
from the universal part-of-speech tagset (Petrov

et al., 2011), we chart a t-distributed stochastic
neighbor embedding (Van der Maaten and Hinton,
2008) in Figure 1.

We note that we derived each word’s grammat-
ical category without context, which may explain
the general tendency towards nouns (presumably
misclassified verbs). Regardless of potentially mis-
classified grammatical categories, we can draw the
following conclusions: while nouns, verbs, and ad-
jectives are distributed throughout the embedding
space, we find distinct subspaces for numerals and
punctuation. This is because word embeddings are
trained towards an objective that ensures that words
occurring in a common context have similar em-
beddings, disregarding their syntactic roles within
the structure of a text. Considering that text-to-text
privatization typically selects the nearest approxi-
mate neighbor after the randomized mechanism is
queried as substitution, we expect this mechanism
to fall short in producing syntactically coherent
texts.

We adopt the multivariate Laplace mechanisms
of MADLIB (Feyisetan et al., 2020). Aimed at pre-
serving the grammatical category of a word after
its substitution, we incorporate a constraint into
the candidate selection that directs the randomized
mechanism towards words with a matching gram-
matical category. This constraint is incorporated
as follows: we create a dictionary that serves as a
lookup table for the grammatical category of each
word in the vocabulary and generalize the random-
ized mechanism to return a flexible k ≫ 1 (instead
of k = 1) approximate nearest neighbors. If avail-
able, a word is replaced by the nearest word (mea-
sured from the noisy representation) that matches
its grammatical category. Otherwise, the protocol
reduces to canonical MADLIB. The computational
overhead of the candidate selection is O(log k).

This modification introduces the size of the can-
didate pool k as an additional hyperparameter. Intu-
itively, k should be chosen based on the geometric
properties of the embedding, i.e., k should be large
enough to contain at least one other word with a
matching grammatical category.

We investigate our modification toMADLIB in
terms of its capability to preserve grammatical
properties and its implications. For reasons of re-
producibility, we base all experiments on the 100-
dimensional GloVe embedding.

To keep the computational effort feasible, we
formed a vocabulary that consists of 24, 525 words
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reflecting a natural distribution of grammatical cat-
egories: 26 pronouns, 5, 000 nouns, 5, 000 verbs,
5, 000 adjectives, 4, 341 adverbs, 92 adpositions,
5, 000 numerals, 6 conjunctions, 2 particles, 39
determiner, and 19 punctuations.

Once we determined our sub-vocabulary, we cal-
culated the necessary size of the candidate pool k.
We counted the number of steps required from each
word in our subset until a neighbor with a matching
category was found. Averaging this count revealed
that each word is linked to another word with a
matching category within a neighborhood of 20.
We thus parameterized the candidate pool to a fixed
k = 20 across all experiments.

4 Experiments

We conduct a series of experiments at a strategi-
cally chosen set of privacy budgets ε = {5, 10, 25}
to demonstrate the relevance of directing substi-
tution to words that share similar syntactic roles
rather than restricting substitution only to words
that appear in a similar semantic context.

These privacy budgets represent three privacy
regimes: ε = 5 for high privacy, ε = 10 for moder-
ate privacy, and ε = 25 for low privacy.

4.1 Linguistic Analysis

We intend to assess the effectiveness of our con-
straint to the candidate selection in retaining gram-
matical properties of words after substitution. We
query each word contained in the vocabulary 100
times and record the grammatical category for its
surrogate word in the form of a frequency count.

Given a moderate privacy budget of ε = 10, Fig-
ure 2 visualizes the calculated frequency counts
similar to a confusion matrix. The diagonal rep-
resents the preservation capability of grammatical
categories, i.e., universal part-of-speech tags. A
comparison across ε ∈ {5, 10, 25} is deferred to
Figure A.1 in the Appendix A.

We start with the examination of the baseline
mechanism in Figure 3(a). Consistent with the in-
dependent and concurrent results of Mattern et al.
(2022), our results indicate that the privatization
mechanism is likely to cause grammatical errors.
Mattern et al. (2022) estimate that the grammatical
category changes in 7.8%, whereas we calculated
about 45.1% for an identical privacy budget. This
difference arises from the fact that Mattern et al.
(2022) only consider the four most frequent cat-
egories of nouns, verbs, adjectives, and adverbs,
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(a) MADLIB with k = 1
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(b) MADLIB with k = 20

Figure 2: Approximated frequency counts by querying
a subset of words and recording their universal part-of-
speech tags before and after substitution. The diagonal
represents the ideal preservation of grammatical proper-
ties.

while we consider eleven categories according to
the universal part-of-speech tagset. In addition to
the number of grammatical categories, we indicate
the fluctuations between categories, while Mattern
et al. (2022) only measures whether a category was
changed. Owing to the tracking of the fluctuations,
we find a disparate impact on the preservation of
the grammatical categories. We find that the preser-
vation of grammatical categories of words declines
with growing guarantees for privacy, until the text
after privatization consist almost entirely of nouns.

We compare these results to our constrained
mechanism in Figure 2(b). With the introduction
of a constrained candidate pool of size k = 20,
we observe an increased likelihood that surrogate
texts retain the grammatical structure of the origi-
nal texts. This can be seen by the dominance of the
vertical line in Figure 3(a) compared to initial signs
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('it', 'PRON') ('doing', 'VERB')
("'s", 'VERB') ('concept', 'NOUN')

('been', 'VERB') ('courtesy', 'NOUN')
('done', 'VERB') ('funding', 'NOUN')
('before', 'ADP') ('1979', 'NUM')

('but', 'CONJ') ('relatively', 'ADV')
('never', 'ADV') ('took', 'VERB')

('so', 'ADV') ('listening', 'VERB')
('vividly', 'ADV') ('chunky', 'NOUN')

('or', 'CONJ') ('or', 'CONJ')
('with', 'ADP') ('vinyl', 'NOUN')

('so', 'ADV') ('handy', 'ADJ')
('much', 'ADJ') ('gangsters', 'NOUN')

('passion', 'NOUN') ('fanaticism', 'NOUN')
('.', 'PUNCT') ('doom', 'NOUN')

(a) MADLIB with k = 1

('it', 'PRON') ('itself', 'PRON')
("'s", 'VERB') ('grand', 'ADJ')

('been', 'VERB') ('having', 'VERB')
('done', 'VERB') ('make', 'NOUN')
('before', 'ADP') ('since', 'ADP')

('but', 'CONJ') ('but', 'CONJ')
('never', 'ADV') ('otherwise', 'ADV')

('so', 'ADV') ('back', 'ADV')
('vividly', 'ADV') ('fatally', 'ADV')

('or', 'CONJ') ('or', 'CONJ')
('with', 'ADP') ('for', 'ADP')

('so', 'ADV') ('essentially', 'ADV')
('much', 'ADJ') ('regular', 'ADJ')

('passion', 'NOUN') ('virtuosity', 'NOUN')
('.', 'PUNCT') ('(', 'PUNCT')

(b) MADLIB with k = 20

Figure 3: Example of syntax-preserving capabilities of
MADLIB with and without grammatical constraint.

of a diagonal line in Figure 2(b). Compared to the
baseline value 45.1%, the preservation capability
bounds at 81.4%.

We illustrate the alignment of grammatical prop-
erties between words from a sensitive text and and
their surrogate words with an example sentence in
Figure 3. We note that our syntactic guidance pre-
vents words from being misleadingly replaced by
numbers (and vice versa), as in the case of before
being replaced by 1979.

4.2 Geometric Analysis

Intuitive properties for analyzing a mechanism op-
erating on embeddings include magnitude, direc-
tion, and orthogonality. Since embeddings capture
word co-occurrences, we expect most substitutions
to be located in the same region of an embedding
space and in the same direction from the embed-
ding origin.

We aim to measure the differences in the Eu-
clidean distance of words with those of their corre-
sponding substitutes generated by baseline M(w)
and our constraint M′

(w). The results capture
∥w − ŵ∥ and ∥w − ŵ

′∥, respectively. Since the
distances are zero when w = ŵ or identical when
ŵ = ŵ

′
, we are only interested in the distances

when a substitution has occurred and the mech-
anisms decided on a distinct candidate for their
substitution, i.e., M(w) ̸= M′

(w) ̸= w.

k = 1 k 1
0

2

4

6

8

10

12

||w
w
′ ||

= 5

k = 1 k 1

= 10

k = 1 k 1

= 25

Figure 4: Euclidean distance for word substitutions.
We depict default MADLIB (k = 1) in blue and MADLIB
(k = 20) with grammatical constraint in orange.

Figure 4 depicts the calculated distances for
querying words from our subset 100 times. The
distance approximation was carried out at a strate-
gically chosen discrete set of values of ε =
{5, 10, 25}. Since the distance is calculated as
the difference between words and their substitutes,
lower values indicate better substitutions. The dis-
tances depend on the amount of noise injected into
the randomized mechanisms. The more noise, the
larger the distances. Apparent across all privacy
budgets, the distances between words and their
substitutions are slightly shifted towards smaller
distances. Since the distributions of distances are
almost identical, we can take a principled guess that
substitution in both mechanisms generally occurs
within a similar region of the embedding space.

4.3 Privacy Analysis

Confronted with a non-zero probability that the
candidate pool contains the sensitive word and no
other word exists in the candidate pool with match-
ing grammatical properties, it could be argued that
the privacy guarantees suffer from the increased
risk of self-substitution. By calculating the plau-
sible deniability (Bindschaedler et al., 2017), we
evaluate the risk of self-substitution arising from
our grammatically constrained candidate selection.

In line with previous studies on text-to-text pri-
vatization (Feyisetan et al., 2019, 2020; Xu et al.,
2021; Qu et al., 2021), we record the following
statistics as proxies for plausible deniability.

• Nw = P{M(w) = w} measures the probabil-
ity that a word is not substituted by the mech-
anism. This is approximated by counting the
number of times a word w is substituted by
the same word after running the mechanism
100 times.

• Sw = |P{M(w) = w
′}| measures the effec-

tive support in terms of the number of distinct
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substitutions produced for a word from the
mechanism. This is approximated by the car-
dinality of the set of words w‘ after running
the mechanism 100 times.

Since the noise is scaled by 1/ε, we can make
a connection between the proxy statistics and the
privacy budget ε. A smaller ε corresponds to a
more stringent privacy guarantee. Adding more
noise to the vector representation of a word results
in fewer self-substituted words (lower Nw) and a
more diverse set of distinct substitutions (higher
Sw). A higher ε corresponds to a less stringent
privacy guarantee. This translates into less substi-
tutions (higher Nw) and a narrow set of distinct
substitutions (lower Sw). From a distributional
perspective, it follows that Nw (Sw should be pos-
itively (negatively) skewed to provide reasonable
privacy guarantees.

For privacy budgets of ε = {5, 10, 25}, we
present the distribution of Nw and Sw over 100
independent queries Figure 5. While lower values
of ε are desirable from a privacy perspective, it
is widely known that text-to-text privatization re-
quires slightly larger privacy budgets to provide
reasonable utility in practice. Values of ε up to
20 and 30 have been reported in related mecha-
nisms (Feyisetan et al., 2020). The histograms
serve as visual guidance for comparing (and se-
lecting) the required privacy budget ε. As both
mechanisms build upon the Euclidean distance as
a metric, their privacy guarantees should match by
using the same privacy budget ε. Directing the
substitution to words with a matching grammatical
category result in marginal changes to the plausible
deniability. This is visually recognizable by the
distribution shift. The grammatical constraint risks
slightly more self-substitutions and reduced effec-
tive support. This is because words are substituted
(almost) only by words from the same grammatical
category, reducing the pool of unique words that are
appropriate for substitution and thus reducing the
effective support of the multivariate mechanism.
Out of 100 words queried given a fixed privacy
budget of ε = 10, self-substitution increases on av-
erage from about 29 to 32, while effective support
decreases on average from about 66 to 61. The fact
that both changes in Nw and Sw do not exceed or
fall below 50 indicates that plausible deniability is
assured for the average-case scenario. We conclude
that the grammatically constrained candidate selec-
tion does not come at the expense of privacy and
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(a) Nw refers to the number of substitute words that are identi-
cal to a queried sensitive word.
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(b) Sw refers to the number of substitute words that are unique
from a queried sensitive word.

Figure 5: Plausible deniability statistics approximated
for a carefully compiled sub-vocabulary of 24, 525
words of varying lexical categories, with each word
independently privatized over a total number of 100
queries. We present the baseline in blue and highlight
the distribution shift induced by the grammatical con-
straint in orange.

can therefore be incorporated into the privatization
step without the need to recalibrate the proxies for
plausible deniability.

Rather than compromising privacy, our con-
strained candidate selection can be alternatively
viewed as a barrier against reconstruction attacks.
Recall that the nearest neighbor search is general-
ized from k = 1 to k ≫ 1. This generalization
may impede naïve inversion attacks such as the
one proposed in Song and Raghunathan (2020),
in which an adversary attempts to recover a word
by finding the nearest neighbor to the substitute
word. Although this inversion attack is not com-
prehensive, it can be used as a reference point for
investigations regarding the robustness of privacy
attacks. We include the setup and the results of a
membership inference attack in the Appendix B.

4.4 Utility Analysis

To evaluate whether the preservation of syntactic
roles translates to better utility in downstream tasks,
we conduct experiments with BERT (Devlin et al.,
2018) on a subset of GLUE (Wang et al., 2019).

Once for each mechanism under comparison,
we privatize the training corpus of each dataset.
Since the privacy guarantees do not exactly match,
we calculate the available privacy budget for each
mechanism such that the .90 quantile of words is
plausible deniable. This resembles a practical sce-
nario where we allow a negligible subset of words
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Classification Textual Similarity Textual Entailment Avg.
Level of
Privacy

CoLA SST2 QQP MRPC STSB MNLI QNLI RTE
-

(MCC) (ACC) (ACC) (ACC) (SCC) (ACC) (ACC) (ACC)

BERT - 0.5792 0.9243 0.8879 0.8329 0.8854 0.8229 0.8912 0.6927 0.8146

k = 1
p = 0.9 0.0248 0.8127 0.6940 0.5603 0.6153 0.5304 0.6327 0.5663 0.5545
p = 0.5 0.2303 0.8848 0.8181 0.6242 0.7951 0.7114 0.8339 0.6027 0.6875

k = 20
p = 0.9 0.0928 0.8510 0.7519 0.5946 0.6988 0.6251 0.7423 0.4525 0.6011
p = 0.5 0.3493 0.9035 0.8397 0.6333 0.8011 0.7301 0.8627 0.5420 0.7077

Table 1: Results on a subset of GLUE (Wang et al., 2019). We report Matthews correlation for the CoLA dataset,
Spearman correlation for the STSB dataset, and the accuracy score for all remaining datasets. The level of privacy
increases with the quantile of words that are provable plausible deniable. p = .90 denotes an (almost) worst-case
scenario. p = .50 denotes an average-case scenario. We fixed the candidate pool to k = 20. A candidate pool of
k = 1 reduces to the randomized mechanism of Feyisetan et al. (2020). Bold font indicates the best result from
three independent trials of the worst-case scenario.

without provable privacy guarantees.
We report the performance scores in Table 1. A

baseline trained on unprotected data is listed as an
upper bound on the performance. All trials mimic
the training of the baseline. To privatize the texts in
the datasets, we use our modification with a vary-
ing candidate pool of size k ∈ 1, 20. Recall that
k = 1 reduces our modification to the multivariate
mechanisms of Feyisetan et al. (2020). Although
we focus our analysis on a worst-case scenario in
which the .90-quantile of words is plausibly deni-
able, we included test results for an average-case
scenario in which only a .50-quantile of words en-
joys plausible deniability.

On average, BERT bounds at 81.46% when
trained on sensitive text. Compared to the base-
line, BERT trained on surrogate texts attains 55.45%
when the candidate pool is k = 1. By broadening
the candidate pool to k = 20 and directing the
substitution to words with matching grammatical
categories, BERT trained on surrogate texts ranks at
60.11%. This corresponds to narrowing down the
performance loss by 4.66%.

Contrary to our initial assumption that preserv-
ing the syntactic role of words is particularly rel-
evant to sentiment analysis, we find evidence that
accounting for syntactic information during privati-
zation benefits a variety of downstream tasks. We
conclude that linguistic guidance is a legitimate
alternative perspective to previous extensions that
focus on the geometric position of words in the
embedding.

5 Conclusion

Privatizing written text is typically achieved
through text-to-text privatization over the embed-

ding space. Since text-to-text privatization scales
the notion of indistinguishably of differential pri-
vacy by a distance in the geometric space of em-
beddings, prior studies focused on geometric prop-
erties (Feyisetan et al., 2019; Xu et al., 2020; Car-
valho et al., 2021b).

Unlike prior studies on amplifying text-to-text
privatization by accounting for the geometric po-
sition of words within the embedding space, we
initialized a set of strategies for amplification from
the perspective of grammatical properties, such as
category, number, or tense.

By incorporating grammatical properties in the
form of part-of-speech tags into text-to-text priva-
tization, we direct the privatization step towards
preserving the syntactic role of a word in a text.
We experimentally demonstrated that that surrogate
texts that conform to the structure of the sensitive
text outperform surrogate texts that strictly rely on
co-occurrences of words in the embedding space.

Limitations. We note that directing the substitu-
tion to candidates with matching grammatical cate-
gories incurs additional information leakage that is
not accounted for by our modification. Too remedy
the unaccounted information leakage, one could re-
cast the candidate selection through the exponential
mechanism (McSherry and Talwar, 2007).
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Appendices

A Linguistic Evaluation

Covering three levels of privacy budgets ε, we include the detailed linguistics analysis of the multivariate
substitutions obtained from MADLIB (Feyisetan et al., 2020) in Figure A.1.

Without a constraint on syntactic roles, we cannot expect the privatization step to yield surrogate texts
that conform to the structure of the sensitive texts. From the diagonal, it can be clearly seen that our
grammatical constraint retains most grammatical categories across all budget budgets and all types of
categories. At a low privacy budget of ε = 5, the preservation capability of grammatical categories is
0.4163. At a moderate privacy budget of ε = 10, the preservation capability bounds at 0.8145. At a high
privacy budget of ε = 25, the advantage in the preservation capability diminishes as the perturbation
probability in general decreases.
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0.00 0.15 0.00 0.00 0.00 0.84 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

0.00 0.27 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.71 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

= 25
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(b) MADLIB with k = 20

Figure A.1: Linguistics analysis with respect to the grammatical category of a sub-vocabulary after 100 times of
querying a randomized mechanism. Given a candidate pool k of nearest neighbors, k = 1 represents substitutions
solely based on co-occurrences, whereas k = 20 represents grammatically constraint substitutions. The size of the
candidate pool has been approximated by the sub-vocabulary’s neighborhood.

B Setup and Results from Membership Inference Attack

To eliminate the possibility that the performance gain is caused by mismatching privacy guarantees, we
perform a Membership Inference Attack (MIA) introduced by Shokri et al. (2017). Given black-box access
to a model, an adversary attempts to infer the presence of records from an inaccessible training corpus.
We follow the experimental setup of Carvalho et al. (2021b) for our membership inference attack. To
maximize the attack uncertainty, we divide the IMDb dataset into four disjoint partitions with an equal
number of members and non-members, respectively. The target model is trained on the first partition
after privatization by each mechanism, whereas the shadow model is trained on the non-privatized second
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partition. The shadow model architecturally mimics the target model. We then build an attack model
composed of a two-layer multi-layer perception with a hidden size of 64 and non-linear activations. To
train the attack model, we feed the logits obtained by the second and third partitions given by the shadow
model, where logits from the second first partition are labeled as members and logits from the third
partition are labeled as non-members. Once the attack model is trained, we feed the logits of the first
partition and the fourth partition obtained by the target model, where logits from the first partition are
labeled as members and logits from the fourth partition are labeled as non-members.

We measure the success rate of our membership attack using macro-averaged metrics for precision and
recall. Precision captures the fraction of records for which the membership was correctly inferred. Recall
captures the coverage of the membership attack. Since the baseline accuracy of the membership attack is
0.5, we consider a randomized mechanism to be provably private if and only if it holds the attack accuracy
close to that of random guessing. We report the attack accuracy as the area under the precision-recall
curve. We report a non-private membership accuracy of 0.53. Given a practical privacy budget, both
mechanisms fluctuate around the 0.5 mark averaged across three independent trials. With no clear hint,
we thus conclude that the performance gain induced by a grammatical constraint cannot be attributed to a
latent privacy loss.
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