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Abstract

Feature attribution methods highlight the im-
portant input tokens as explanations to model
predictions, which have been widely applied to
deep neural networks towards trustworthy AI.
However, recent works show that explanations
provided by these methods face challenges of
being faithful and robust. In this paper, we pro-
pose a method with Robustness improvement
and Explanation Guided training towards more
faithful EXplanations (REGEX) for text clas-
sification. First, we improve model robustness
by input gradient regularization technique and
virtual adversarial training. Secondly, we use
salient ranking to mask noisy tokens and max-
imize the similarity between model attention
and feature attribution, which can be seen as a
self-training procedure without importing other
external information. We conduct extensive
experiments on six datasets with five attribu-
tion methods, and also evaluate the faithfulness
in the out-of-domain setting. The results show
that REGEX improves fidelity metrics of expla-
nations in all settings and further achieves con-
sistent gains based on two randomization tests.
Moreover, we show that using highlight expla-
nations produced by REGEX to train select-
then-predict models results in comparable task
performance to the end-to-end method.

1 Introduction

As the broad adoption of Pre-trained Language
Models (PLMs) requires humans to trust their out-
put, we need to understand the rationale behind the
output and even ask questions regarding how the
model comes to its decision (Lipton, 2018). Re-
cently, explanation methods for interpreting why
a model makes certain decisions are proposed and
become more crucial. For example, feature attribu-
tion methods assign scores to tokens and highlight
the important ones as explanations (Sundararajan
et al., 2017; Jain et al., 2020; DeYoung et al., 2020).

However, recent studies show that these expla-
nations face challenges of being faithful and ro-
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Figure 1: Visualization of positive and negative high-
lights produced by post-hoc explanation methods (e.g.,
feature attribution). However, these explanations suffer
from unfaithfulness problems (e.g., same model frame-
work A and A’ with different attributions) and can be fur-
ther fooled by adversarial manipulation without chang-
ing model output (Ghorbani et al., 2019) (see §4.4).

bust (Yeh et al., 2019; Sinha et al., 2021; Ivankay
et al., 2022), illustrated in Figure 1. The faithful-
ness means the explanation accurately represents
the reasoning behind model predictions (Jacovi and
Goldberg, 2020). Though some works are proposed
to use higher-order gradient information (Smilkov
et al., 2017), by incorporating game-theoretic no-
tions (Hsieh et al., 2021) and learning from pri-
ors (Chrysostomou and Aletras, 2021a), how to
improve the faithfulness of highlight explanations
remains an open research problem. Besides, the
explanation should be stable between functionally
equivalent models trained from different initializa-
tions (Zafar et al., 2021). Intuitively, the potential
causes of these challenges could be (i) the model
is not robust and mostly leads to unfaithful and
fragile explanations (Alvarez-Melis and Jaakkola,
2018; Li et al., 2022) and (ii) those explanation
methods themselves also lack robustness to imper-
ceptible perturbations of the input (Ghorbani et al.,
2019); hence we need to develop better explanation
methods. In this paper, we focus on the former and
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argue that there are connections between model
robustness and explainability; any progress in one
part may represent progress in both.

To this end, we propose a method with
Robustness improvement and Explanation
Guided training to improve the faithfulness of
EXplanations (REGEX) while preserving the
task performance for text classification. First, we
apply the input gradient regularization technique
and virtual adversarial training to improve model
robustness. While previous works found that
these mechanisms can improve the adversarial
robustness and interpretability of deep neural
networks (Ross and Doshi-Velez, 2018; Li
et al., 2022), to the best of our knowledge, the
faithfulness of model explanations by applying
them has not been explored. Secondly, our method
leverages token attributions aggregated by the
explanation method, which provides a local linear
approximation of the model’s behaviour (Baehrens
et al., 2010). We mask input tokens with low
feature attribution scores to generate perturbed text
and then maximize the similarity between new
attention and attribution scores. Furthermore, we
minimize the Kullback–Leibler (KL) divergence
between model attention of original input and
attributions. The main idea is to allow attention
distribution of the model to learn from input
importance during training to reduce the effect of
noisy information.

To verify the effectiveness of REGEX, we con-
sider a variety of classification tasks across six
datasets with five attribution methods. Addition-
ally, we conduct extensive empirical studies to ex-
amine the faithfulness of five feature attribution
approaches in out-of-domain settings. The results
show that REGEX improves the faithfulness of the
highlight explanations measured by sufficiency and
comprehensiveness (DeYoung et al., 2020) in all
settings while outperforming or performing compa-
rably to the baseline, and further achieves consis-
tent gains based on two randomization tests. More-
over, we show that using the explanations output
from REGEX to train select-then-predict models
results in comparable task performance to the end-
to-end method, where the former trains an indepen-
dent classifier using only the rationales extracted
by the pre-trained extractor (Jain et al., 2020). Con-
sidering neural network models may be the primary
source of fragile explanations (Ju et al., 2022; Tang
et al., 2022), our work can be seen as a step towards

understanding the connection between explainabil-
ity and robustness – the desiderata in trustworthy
AI. The main contributions of this paper can be
summarized as:

• We explore how to improve the faithfulness
of highlight explanations generated by feature
attributions in text classification tasks.

• We propose an explanation guided train-
ing mechanism towards faithful attributions,
which encourages the model to learn from in-
put importance during training to reduce the
effect of noisy tokens.

• We empirically demonstrate that REGEX
models generate more faithful explanations
by extensive experiments on 6 datasets and 5
methods, which suggests that the faithfulness
of highlight explanations may be improved by
considering model robustness.1

2 Related Work

Model Robustness and Explainability As it has
recently been shown that deep neural networks are
vulnerable to adversarial attacks even with PLMs,
several works are proposed to ensure that AI sys-
tems are trustworthy and reliable, which include
quantifying the vulnerability and designing new
attacks and better defense technologies (Hendrycks
et al., 2020; Wang et al., 2021). However, as the de-
bug tools for black-box models, explanation meth-
ods also lack robustness to imperceptible and tar-
geted perturbations of the input (Heo et al., 2019;
Camburu et al., 2019; Meister et al., 2021; Hsieh
et al., 2021). While significantly different explana-
tions are provided for similar models (Zafar et al.,
2021), how to elicit more reliable explanations is a
promising direction towards interpretation robust-
ness. Different from Camburu et al. (2020) that
addresses the inconsistent phenomenon of explana-
tions, we investigate the connection between model
robustness and faithfulness of the explanations.

Explanation Faithfulness The faithfulness of ex-
planations is important for NLP tasks, especially
when humans refer to model decisions (Kinder-
mans et al., 2017; Girardi et al., 2018). Jacovi
and Goldberg (2020) first propose to evaluate the
faithfulness of Natural Language Processing (NLP)

1We will publicly release the code, pre-trained models and
all experimental setups.
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Figure 2: The overall framework of proposed REGEX method. REGEX consists of two components for robustness
improvement and explanations guided training respectively. For latter, we iteratively mask input tokens with low
attribution scores and then minimize the KL divergence between attention of masked input and feature attributions.

methods by separating the two definitions between
faithfulness and plausibility and provide guidelines
on how evaluation of explanations methods should
be conducted. Recently, some works have focused
on faithfulness measurements of NLP model expla-
nations and improve the faithfulness of specific ex-
planations (Wiegreffe et al., 2021; Yin et al., 2021;
Chrysostomou and Aletras, 2021b; Bastings et al.,
2022). Among them, Ding and Koehn (2021) pro-
pose two specific consistency tests intending to
measure if the post-hoc explanations remain con-
sistent with similar models.

Incorporate Explanations into Learning While
most previous explanation methods have been de-
veloped for explaining deep neural networks, some
works explore the potential to leverage these expla-
nations to help build better models (Liu and Avci,
2019; Rieger et al., 2020; Jayaram and Allaway,
2021; Ju et al., 2021; Bhat et al., 2021; Han and
Tsvetkov, 2021; Ismail et al., 2021; Chrysostomou
and Aletras, 2021a; Stacey et al., 2022; Ye and Dur-
rett, 2022). For example, Hase and Bansal (2021)
propose a framework to understand the role of ex-
planations in learning, and find that explanations
are suitably used in a retrieval-based modeling ap-
proach. Similarly, Adebayo et al. (2022) inves-
tigate whether post-hoc explanations effectively
detect model reliance on spurious training signals,
but the answer seems to be negative. While effec-
tively incorporating explanations remains an open
problem, we focus on using model explanations in
a self-training way to improve its faithfulness.

3 Method

3.1 Problem Formulation

First, we consider the setting of multi-label text
classification problem with n input examples

{(xi, yi)}ni=1. The input space embedded into vec-
tors is x ⊆ Rl×d and the output space is Y . A
neural classifier is fθ : X → Y where fθ(x) pa-
rameterized by θ which denotes the output class for
one example x = (x1, · · · , xl) ∈ X , where l rep-
resents the length of the sequence. The optimiza-
tion of the network is to minimize the cross-entropy
loss L over the training set as follows:

Lclassify = −
n∑

i=1

log pθ(yi|xi). (1)

Then, given an input xi = (x1, · · · , xl) and its
particular prediction fθ(xi) = yi, the goal of fea-
ture attribution is to assign each token with a nor-
malized score that then can be used to extract a
compact set of relevant sub-sequences with respect
to the prediction. Formally, an attribution of the pre-
diction at input xi is a vector ai = (ai1, · · · , ail)
and aij is defined as the attribution of xij . Af-
ter that, we denote the set of extracted tokens
(i.e., highlight explanations or rationales) provided
by taking top-k values from xi as ri, and use
ri = xi \ ri, as the complementary set of ri to
denote the set of irrelevant tokens.

3.2 Robustness Improvement
Adversarial attacks are inputs that are intentionally
constructed to mislead neural networks (Szegedy
et al., 2013; Goodfellow et al., 2015). Given the
fθ and an input x ∈ X with the label y ∈ Y , an
adversarial example xadv satisfies

xadv = x+ ϵ, f(x) = y ∧ f(xadv) ̸= y (2)

where ϵ is the worst-case perturbation. Several de-
fense methods have been proposed to increase the
robustness of deep neural networks to adversarial
attacks. We adopt two popular methods: virtual ad-
versarial training (Miyato et al., 2015) which lever-
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ages a regularization loss to promote the smooth-
ness of the model distribution, and input gradient
regularization (Ross and Doshi-Velez, 2018) which
regularizes the gradient of the cross-entropy loss.
Note that the methods used to improve the robust-
ness are not limited to these techniques.

As shown in Figure 2, we aim to improve the
robustness of deep neural networks intrinsically. In-
stead of adopting adversarial training objective, we
follow Jiang et al. (2019) to regularize the standard
objective using virtual adversarial training (Miyato
et al., 2018):

Lat(x, y, θ) = max
δ

l(f(x+ δ; θ), f(x; θ)). (3)

The goal of this approach is the enhancement
of label smoothness in the embedding neighbor-
hood. Specially, we run additional projected gradi-
ent steps to find the perturbation δ with violation
of local smoothness to maximize the adversarial
loss. On the other hand, input gradient regular-
ization trains neural networks by minimizing not
just the “energy” of the network but the rate of
change of that energy with respect to the input
features (Drucker and LeCun, 1992). The goal of
this approach is to ensure that if any input changes
slightly, the KL divergence between the predictions
and the labels will not change significantly. For-
mally, it takes the original loss term and penalizes
the ℓ2 norm of its gradient and parameters:

Lgr(x, y, θ) = ∥ ∂

∂x
L(x, y, θ)∥2 + ∥θ∥2. (4)

It can also be interpreted as applying a particular
projection to the Jacobian of the logits and regular-
izing it (Ross and Doshi-Velez, 2018).

3.3 Explanation Guided Training
If post-hoc explanations faithfully quantify the
model predictions, the irrelevant tokens should
have low feature attribution scores (Ismail et al.,
2021). Based on this intuition, we leverage the ex-
isting explanations to guide the model for reducing
feature attribution scores of irrelevant tokens with-
out sacrificing the model performance. Concretely,
we propose the Explanation Guided Training (EGT)
mechanism. Instead of using the saliency method
(i.e., gradient of the target class with respect to the
input) (Simonyan et al., 2014), we apply the Inte-
grated Gradients (IG) method (Sundararajan et al.,
2017) that is more faithful via axiomatic proofs to
calculate the token importance. We do not assume

the IG is totally faithful, and we also experiment
with other attribution methods in §5.1. It integrates
the gradient along the path from an uninformative
baseline to the original input. This baseline in-
put is used to make a high-entropy prediction that
represents uncertainty. As it takes a straight path
between baseline and input, it requires computing
gradients several times. The motivation for using
path integral rather than vanilla gradient is that the
gradient might have been saturated around the in-
put while the former can alleviate this problem.
Formally, given an input x and baseline x′, the in-
tegrated gradient along the ith dimension is defined
as follows:

IGi(x) ::= (xi − x′
i)

∫ 1

α=0

∂fθ(x
′+α×(x−x′))

∂xi
dα, (5)

where ∂fθ(x)
∂xi

represents the gradient of f along the
ith dimension at x which is the concatenated em-
bedding of the input sequence, and the attribution
of each token is the sum of the attributions of its
embedding. Note that we attribute the output of the
model with ground-truth labels during training. We
also test other feature attribution methods in §5.1.

After calculating the token’s importance score
by ℓ2 aggregation over embedding dimensions, we
sort tokens of x based on these scores and mask the
bottom K% words according to that sorting. We
define the sorting function as s(·) and the masking
function as m(·). For example, si(x) is the ith

smallest element in x, and mk(s(x),x) replaces
all xi ∈ {si (x)}ceil(1,Kl)

e=0 with a mask distribution,
i.e., mk(s(x),x) removes the K% lowest features
from x based on the order provided by s(x). Dur-
ing training, we generate a new input x̃ for each
example x by masking the features with low attri-
bution scores as follows:

x̃ = mk(sIG(x),x). (6)

x̃ is then passed through the network which results
in an attention scores att(x̃). Following Jain et al.
(2020), the attention scores are taken as the mean
self-attention weights induced from the first token
index to all other indices. Then we maximize the
similarity between att (x) and att(x̃) to ensure
that the model produces similar output probability
distributions over labels for both masked and un-
masked inputs. The optimization objective for the
EGT is:

Lkl(x, y, θ) = DKL (att(x); IG(x))+

DKL (att(x̃); IG(x)) ,
(7)
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where DKL is the KL divergence function between
two distributions. The motivation behind two KL
divergence terms is to encourage the model to focus
on high salient words and ignore low salient words
during training, and generate similar outputs for the
original input x and masked input x̃, which can be
seen as a special adversarial example. On the other
hand, as the calculation of the mask input is batch-
wise, the model should learn to assign low gradient
values to irrelevant tokens for the predicted label in
an iterative way.

3.4 Training
We define the final weighted loss as follows,

L = λ1Lclassify + λ2Lgr + λ3Lat + λ4Lkl, (8)

where λ1, λ2, λ3 and λ4 are hyper-parameters.
Mixing these losses requires multiple forward and
backward propagations (2.1x training time), but not
increases inference time. And in this process we do
not introduce external knowledge, only use salient
ranking as self-training. At inference, we calculate
the label probability and use different explanation
methods in §4.1 to generate highlight explanations.

3.5 Erasure-based Faithfulness Evaluation
To evaluate post-hoc explanations, we adopt suffi-
ciency that measures the degree to which the high-
light explanation is adequate for a model to make
predictions, and comprehensiveness that measures
the influence of explanations to predictions (DeY-
oung et al., 2020). These two metrics are usually
used to evaluate faithfulness as it does not require
re-training and the main idea is to estimate the
effect of changing parts of inputs on model out-
put. Let pθ(yj |xi) be the output probability of the
j-th class for the i-th example, and rationale ri
extracted according to attribution scores. Formally,
the sufficiency we used is as follows:

S(xi, y
j , ri) = 1−max(0, pθ(y

j |xi)− pθ(y
j |ri)), (9)

sufficiency(xi, y
j , ri) =

S(xi, y
j , ri)− S(xi, y

j ,0)

1− S(xi, yj ,0)
,

(10)

where higher sufficiency values are better as we
normalize and reverse it between 0 and 1, and
S(xi, y

j ,0) is the sufficiency of the input where no
token is erased. Similarly, we define the compre-
hensiveness as follows:

C(xi, y
j , ri) = max(0, pθ(y

j |xi)− pθ(y
j |ri)), (11)

comprehensiveness(xi, y
j , ri) =

C(xi, y
j , ri)

1− S(xi, yj ,0)
, (12)

where higher comprehensiveness values are bet-
ter. As choosing the appropriate rationale length is
dataset dependent, we use the Area Over the Pertur-
bation Curve (AOPC) metrics for sufficiency and
comprehensiveness. It defines bins of tokens to be
erased and calculates the average measures across
bins. Here, we keep the top 1%, 5%, 10%, 20%,
50% tokens into bins in the order of decreasing
attribution scores.

4 Experiments

We conduct the experiments in six datasets
under the in-domain/out-of-the-domain settings:
SST (Socher et al., 2013), IMDB (Maas
et al., 2011), Yelp (Zhang et al., 2015), and
AmazDigiMu/AmazPantry/AmazInstr (Ni et al.,
2019) (See details in Appendix A). The baseline is
a text classification model fine-tuned on the train-
ing set while the same pre-trained language model
is applied to REGEX. In other words, the baseline
is optimized by Eqn. 1 without robustness improve-
ment and explanation guided training mechanisms.

4.1 Post-hoc Explanation Methods

We consider five feature attribution methods and a
random attribution method:

Random (RAND) (Chrysostomou and Aletras,
2022): Token importance is assigned at random.

Attention (α) (Jain et al., 2020): Normalized
attention scores are used to calculate token impor-
tance.

Scaled Attention (α∇α) (Serrano and Smith,
2019):Normalized attention scores αi scaled by the
corresponding gradients ∇αi =

∂ŷ
∂αi

.

InputXGrad (x∇x) (Shrikumar et al., 2016;
Kindermans et al., 2016): The input attribution
importance is generated by multiplying the gradient
∇xi =

∂ŷ
∂xi

with the input.

Integrated Gradients (IG) (Sundararajan et al.,
2017): See §3.3 for details.

DeepLift (Shrikumar et al., 2017): The differ-
ence between each neuron activation and a refer-
ence vector is used to rank words.
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Train Test Normalized Sufficiency (↑) Normalized Comprehensiveness (↑)
RAND α∇α α DeepLift x∇x IG RAND α∇α α DeepLift x∇x IG

SST
SST .30(.38) .68(.51) .48(.42) .71(.42) .49(.40) .49(.41) .22(.19) .56(.39) .41(.22) .52(.25) .43(.26) .43(.26)

IMDB .25(.31) .54(.53) .45(.39) .46(.32) .40(.31) .40(.32) .19(.23) .75(.54) .66(.34) .61(.27) .58(.27) .58(.28)
Yelp .24(.32) .51(.56) .38(.40) .45(.35) .35(.33) .36(.34) .22(.21) .70(.48) .57(.28) .59(.24) .48(.24) .47(.25)

IMDB
IMDB .34(.32) .82(.55) .51(.46) .80(.36) .54(.36) .53(.36) .17(.16) .71(.48) .39(.31) .62(.25) .31(.23) .32(.24)
SST .30(.24) .72(.35) .42(.28) .68(.28) .46(.27) .45(.27) .21(.27) .59(.46) .28(.32) .51(.33) .32(.33) .33(.33)
Yelp .32(.35) .81(.48) .53(.41) .79(.36) .48(.36) .47(.36) .20(.21) .71(.45) .42(.32) .64(.26) .33(.26) .34(.26)

Yelp
Yelp .35(.23) .82(.32) .59(.31) .82(.29) .53(.24) .53(.25) .10(.12) .64(.20) .39(.14) .63(.16) .24(.15) .23(.16)
SST .33(.41) .76(.45) .49(.43) .75(.44) .60(.41) .60(.41) .16(.17) .57(.24) .31(.18) .55(.21) .40(.22) .40(.22)

IMDB .38(.18) .83(.34) .59(.32) .82(.25) .61(.22) .61(.22) .13(.19) .74(.34) .43(.29) .70(.23) .31(.23) .31(.24)

AmazDigiMu
AmazDigiMu .50(.34) .73(.56) .55(.34) .66(.31) .60(.41) .62(.39) .18(.13) .60(.32) .12(.14) .21(.10) .26(.16) .24(.17)

AmazInstr .60(.29) .75(.54) .67(.32) .67(.31) .66(.33) .68(.32) .16(.19) .62(.47) .18(.23) .15(.19) .24(.22) .23(.23)
AmazPantry .53(.33) .70(.55) .60(.33) .64(.31) .60(.37) .62(.36) .19(.21) .61(.46) .13(.22) .18(.17) .24(.23) .22(.25)

AmazPantry
AmazPantry .55(.25) .79(.46) .56(.36) .82(.19) .54(.28) .52(.27) .15(.20) .50(.42) .14(.31) .52(.15) .16(.25) .17(.25)

AmazDigiMu .54(.24) .78(.47) .56(.37) .82(.19) .52(.27) .50(.26) .14(.19) .50(.41) .16(.32) .52(.15) .14(.23) .15(.24)
AmazInstr .55(.17) .81(.42) .53(.30) .82(.15) .51(.20) .50(.20) .14(.24) .60(.52) .13(.40) .60(.23) .15(.30) .16(.30)

AmazInstr
AmazInstr .52(.16) .82(.34) .58(.18) .82(.21) .59(.18) .58(.17) .16(.26) .58(.52) .22(.26) .56(.29) .18(.28) .19(.29)

AmazDigiMu .56(.21) .82(.38) .58(.21) .82(.22) .60(.24) .59(.22) .12(.23) .48(.46) .16(.20) .46(.22) .15(.24) .15(.25)
AmazPantry .56(.22) .81(.39) .58(.21) .81(.23) .59(.24) .58(.23) .13(.27) .50(.51) .16(.22) .47(.25) .16(.27) .17(.29)

Table 1: Normalized sufficiency and comprehensiveness in the in- and out-of-domain settings for five feature
attribution approaches and a random attribution. REGEX vs. baseline (shown in brackets). For example, a value of
.30 (.38) represents the result of Normalized Sufficiency on the SST test set with the RAND method, .30 means the
score of our method, and .38 means the baseline.

Train Test Full-text F1 α∇α α DeepLift x∇x IG

SST (20%)
SST 89.7(90.1) 88.9(87.7) 83.0(81.1) 87.3(84.4) 77.8(76.3) 77.8(76.8)
IMDB 83.4(84.3) 86.3(81.8) 65.3(52.6) 81.1(64.0) 53.2(55.0) 53.2(56.3)
Yelp 87.8(87.9) 90.2(88.1) 76.5(72.6) 80.4(75.4) 64.4(59.6) 64.4(63.9)

IMDB (2%)
IMDB 91.3(91.1) 88.9(87.9) 79.2(80.4) 87.6(87.2) 59.1(59.8) 59.1(59.7)
SST 88.0(85.8) 80.6(80.9) 71.8(71.8) 72.9(70.1) 65.7(69.6) 65.7(70.7)
Yelp 90.3(91.0) 90.4(87.8) 72.7(82.0) 86.5(79.4) 70.5(69.0) 70.5(69.1)

Yelp (10%)
Yelp 96.1(96.9) 96.3(94.0) 87.1(90.4) 97.1(93.6) 71.2(70.5) 71.2(71.9)
SST 85.3(86.8) 82.0(59.3) 58.1(69.8) 69.9(67.2) 67.6(67.7) 67.6(69.3)
IMDB 86.2(88.6) 86.7(78.0) 51.5(64.5) 79.1(66.6) 48.0(53.0) 48.0(55.8)

AmazDigiMu (20%)
AmazDigiMu 72.4(70.6) 67.9(66.1) 62.5(63.4) 67.5(65.8) 48.3(51.9) 48.3(65.8)
AmazInstr 60.3(61.2) 60.9(58.0) 50.0(57.2) 60.9(57.4) 39.0(46.0) 39.0(57.2)
AmazPantry 61.0(64.6) 60.1(59.1) 46.3(56.5) 59.0(56.5) 38.8(44.8) 38.8(44.8)

AmazPantry (20%)
AmazPantry 71.3(70.2) 67.8(67.3) 59.6(62.6) 68.0(67.2) 50.3(48.6) 50.3(48.7)
AmazDigiMu 60.1(59.5) 58.5(57.7) 51.5(54.6) 58.4(56.2) 42.7(41.2) 42.7(57.7)
AmazInstr 65.7(64.5) 64.9(63.8) 54.9(58.0) 65.5(63.6) 43.3(40.1) 43.3(40.3)

AmazInstr (20%)
AmazInstr 72.9(71.5) 69.5(69.8) 63.1(62.1) 70.7(69.7) 47.5(45.6) 47.5(48.6)
AmazDigiMu 60.7(61.3) 58.6(60.0) 51.6(53.2) 58.9(57.8) 43.7(43.8) 43.7(60.0)
AmazPantry 67.9(68.2) 65.0(64.5) 55.8(56.3) 65.6(63.1) 45.2(44.6) 45.2(47.6)

Table 2: Average macro F1 results of Full-text and FRESH models with a prescribed rationale length. REGEX
vs. baseline (shown in brackets, averaged across 5 seeds). The reference performance (Full-text F1) is from the
BERT-base model fine-tuned on the full text. Full results are in Appendix E. The bold numbers represent the results
of the best FRESH model trained with rationales from REGEX model among five attribution methods.

4.2 Post-hoc Explanations Faithfulness

We conduct experiments on the faithfulness met-
rics (i.e., normalized sufficiency and normalized
comprehensive) to compare the fidelity of different
post-hoc explanation methods between the base-
line and REGEX models. We extract rationale r
from a model by selecting the top-k most impor-
tant tokens measured by these post-hoc explanation
methods. Following Chrysostomou and Aletras
(2022), we also evaluate explanation faithfulness in
out-of-domain settings without retraining models
(i.e., zero-shot), and we follow their settings with
six dataset pairs and a random attribution baseline.

Especially the model has first trained on the source
datasets, and then we evaluate its performance on
the test set of the target datasets.

As shown in Table 1, REGEX improves the
explanation faithfulness with all five attribution
methods by a large gap under most in- and out-
of-domain settings. Among them, scaled attention
and DeepLift perform better than others. For ex-
ample, REGEX surpasses the baseline in the suf-
ficiency metric for the explanation extracted by
DeepLift under all scenarios, while the comprehen-
siveness decreases when the model is trained in the
AmazDigiMu dataset and tested in the AmazInstr
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dataset. It shows that REGEX improves the fidelity
of post-hoc explanations measured by sufficiency
and comprehensiveness. Nevertheless, we observe
a decrease in the comprehensiveness metrics for
attention and IG on specific datasets. For exam-
ple, considering the uncertainty of attention as an
interpretable method (Serrano and Smith, 2019),
the fidelity metrics of attention attribution are infe-
rior to the baseline on all three Amazon Reviews
datasets.

Overall, feature attribution approaches outper-
form random attributions of in- and out-of-domain
settings in most cases. Moreover, results show that
post-hoc explanation sufficiency and comprehen-
siveness are higher in in-domain test sets than in
out-of-domain except for the Yelp dataset. On the
other hand, as shown in Table 2, REGEX improves
performance or achieves similar task performance
to the baseline on most out-of-domain datasets.

4.3 Quantitative Evaluation by FRESH
Method

We further compare the average macro F1 of the
FRESH classifier (Jain et al., 2020) across five ran-
dom seeds in the in- and out-of-domain settings. In
short, FRESH is a select-then-predict framework,
and the general process is that an extractor is first
trained where the labels are induced by arbitrary
feature importance scores over token inputs; then,
an independent classifier is trained exclusively on
rationales provided by the extractor which are as-
sumed to be inherently faithful. Here, rationales
extracted by the top-k most important tokens are
used as input to the classifier for training and test.

As shown in Table 2, the best two methods are
DeepLift and scaled attention, which achieve a sim-
ilar performance as the original text input model
in the in- and out-of-domain settings and is con-
sistent with the faithfulness evaluation. For exam-
ple, the FRESH classifier applying the DeepLift
attribution method is higher than the baseline and
outperforms the model with the full text input (97.1
vs. 96.9) on the Yelp dataset. It also illustrates
that the performance depends on the choice of the
feature attribution method.

4.4 Explanation Robustness
Following Zafar et al. (2021), we test implementa-
tion invariance of feature attributions by Untrained
Model Test (UIT) and Different Initialization Test
(DIT). The UIT and DIT measure the consistency
and calculate the Jaccard similarity between feature

Jaccard@25% Init#1 Init#2 Init#3 Init#4 #Untrained
Init#1 1.0 .44(.33) .54(.34) .56(.34) .28(.27)
Init#2 .44(.33) 1.0 .45(.44) .41(.34) .16(.17)
Init#3 .54(.34) .45(.44) 1.0 .56(.36) .22(.21)
Init#4 .56(.34) .41(.34) .56(.36) 1.0 .12(.16)
#Untrained .28(.27) .16(.17) .22(.21) .12(.16) 1.0

Table 3: Jaccard@25% between the feature attributions
(REGEX vs. baseline, here we use scaled attention)
for models with same architecture, with same data, and
same learning schedule, except for randomly initial pa-
rameters.

attributions generated by the post-hoc explanation
method. We use Jaccard similarity for explanations
extracted by top 25% important tokens using the
scaled attention method. If the two attributions
are more similar, the Jaccard metric is higher. We
compare the REGEX and baseline by comparing
two identical models trained from different initial-
izations. The #Untrained is a untrained model
which randomly initialize the fully connected lay-
ers attached on top of the Transformer encoders. As
shown in Table 3, REGEX achieves an improved
performance than baseline. For example, REGEX
gets 0.56 while baseline gets 0.36 for Init#3
and Init#4. As we expected, the similarity be-
tween explanations of the trained and untrained
models is low, e.g., 0.12 between Init#4 and
#Untrained. It shows that improving faithful-
ness of explanations can strengthen interpretation
robustness. However, the overall results between
the two feature attributions are still low as 50% of
similarity comparisons are less than 0.5.

5 Analysis

5.1 Ablation Study

We perform ablation studies to explore the effect
of robustness improvement and explanation guided
training for faithfulness evaluations shown in Ta-
ble 4 (all results in Table 10), and investigate the
effect of different hyper-parameters on experimen-
tal results. We further compare the effect of the
two aggregation methods (i.e., mean and ℓ2) during
explanation guided training and the effect of using
different feature attribution in §3.3 on the faithful-
ness of highlight explanations after training.

Robustness improvement is important for im-
proving sufficiency and comprehensiveness.
Compared with REGEX without explanation
guided training, sufficiency and comprehensive-
ness of REGEX without robustness improvement
decrease more (0.14 vs. 0.02, 0.23 vs. 0.02, 0.29
vs. 0.07, 0.35 vs. 0.08).
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Figure 3: Comparisons between different explanation
guided training λ4 on the SST dataset.
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Figure 4: Comparisons between different mask ratio K
on the SST dataset.

Methods Suff. Comp.
α∇α DeepLift α∇α DeepLift

Saliency (Mean) .52 .48 .48 .42
InputXGrad (Mean) .52 .53 .37 .39
DeepLift (Mean) .61 .58 .52 .49
IG (Mean) .47 .45 .49 .51
Saliency (ℓ2) .70 .65 .55 .43
InputXGrad (ℓ2) .58 .54 .58 .49
DeepLift (ℓ2) .69 .68 .53 .47
REGEX .68 .71 .56 .52

w/o robustness improvement .54 .42 .33 .17
w/o explanation guided training .66 .64 .54 .44

Table 4: Ablation study with different aggregation meth-
ods and feature attribution methods in §3.3.

The performance of the attention method varies
more across different hyper-parameters. In
Figure 3, we compare different λ4 in Eqn. 8 and
observe that all methods achieve best sufficiency
at 0.01 and best comprehensiveness at 0.001. In
Figure 4, we compare different mask ratios in §3.3
and find that the mask ratio between 0.15 and 0.2
is useful as larger values can bring noise.

The choice of aggregation method and feature
attribution method in §3.3 has a large effect
on the faithfulness evaluation. We find that for
most attribution methods, ℓ2 aggregation has higher
fidelity performance. For example, Saliency with
ℓ2 aggregation is better than Saliency with mean
aggregation with more sufficiency improvement
(0.70 vs. 0.55). Though there is no best method for
explanation guided training, gradient-based meth-
ods (e.g., IG, 0.71) may be good choices in line
with Atanasova et al. (2020).

…,is the fact that the wonderful RAYMOND MASSEY is relegated 
to the last twenty or so minutes in the trial scene. …
David NIVEN and KIM HUNTER are wonderfully cast as the young 
lovers…. French accented MARIUS GORING is a delight (he even 
gets in a remark about Technicolor) as the heavenly messenger 
sent to reclaim Niven when his wartime death goes unreported due 
to an oversight. Seeing this tonight on TCM for the first time in 
twenty or so years, I think it‘s a supreme example of what a 
wonderful year 1946 was for films. The Technicolor photography, 
somewhat subdued and not garish at all, is excellent and the way it 
shifts into B&W for the heavenly sequences is done with great 
imagination and effectiveness….

Label: Positive  Prediction: Positive  Dataset: IMDB  ID: Test 1364

…but pompous horror icon Christopher Lee squirming in the midst 
of it all (the gracefully-aged star has pathetically asserted a number 
of times in interviews that he hasn't appeared in horror-oriented 
fare since his last picture for Hammer Films back in 1976!). Anyway, 
this film should have borne the subtitle "Your Movie Is A Turd" �  
being astoundingly inept in all departments (beginning with the all-
important werewolf make-up)!
The plot (and dialogue) is not only terrible, but it has the limpest 
connection with Dante's film �  strangely enough, the author of the 
original novel Gary Brandner co-wrote this himself! Still, one of the 
undeniable highlights (er...low points) of the film is the pointless 
elliptical editing �

Label: Negative Prediction: Negative  Dataset: IMDB ID: Test 1373

Table 5: We randomly pick two examples from test set
of IMDB dataset, and highlight the Top-k important
tokens using DeepLift method (REGEX vs. Baseline).

5.2 Qualitative Analysis

Table 5 presents two randomly-chosen examples
of the test set of the IMDB dataset. For example,
the top-k important tokens returned by REGEX
are wonderfully, wonderful, wonderful, excellent
and great in the first example. We observe that
these highlight explanations seem intuitive to hu-
mans and reasonably plausible. Though faithful-
ness and plausibility are not necessarily correl-
ative (Jacovi and Goldberg, 2020), we find that
the highlights extracted by REGEX contain more
sentiment-related words, which should be helpful
for review-based text classification.

6 Conclusion

We explore whether the fidelity of explanations
can be further optimized and propose an explana-
tion guided training mechanism. Extensive empir-
ical studies are conducted on six datasets in both
in- and out-of-domain settings. Results show that
our method REGEX improves both fidelity met-
rics and performance of select-then-predict mod-
els. The analysis of explanation robustness further
shows that the consistency of explanations has been
improved. The observation suggests that consider-
ing model robustness yields more faithful explana-
tions. In the future, we would like to investigate
more PLMs architectures and faithfulness metrics
under the standard evaluation protocol.
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7 Limitations

Possible limitations include the limited PLM archi-
tecture/size (although we include additional results
with RoBERTa in the Appendix D) and faithfulness
evaluation metrics are not necessarily comprehen-
sive. And we only focus on text classification tasks.
As a result, we do not investigate other language
classification (e.g., natural language inference and
question answering) and text generation tasks. If
we can intrinsically know or derive the golden faith-
ful explanations (Bastings et al., 2022; Lindner
et al., 2023), the exploration of model robustness
and explainability will be alternatively investigated
for revealing the internal reasoning processes. And
future work could include human study (e.g., evalu-
ation about whether explanations help users choose
the more robust of different models) and improve
the robustness by more diverse ways (e.g., model
distillation and data augmentation).

Our findings are also in line with Tang et al.
(2022) and Logic Trap 3 (Ju et al., 2022) which
claims the model reasoning process is changed
rather than the attribution method is unreliable. Dif-
ferent from this two works – output probability per-
turbation or changing information flow, we view
our results as complementary to their conclusion
via sourcing the improvement of faithfulness. Al-
though we show the link between robustness and
faithfulness empirically, future work can strengthen
the conclusions by discussion on a more conceptual
and theoretical level. From a theoretical perspec-
tive, one possible reason is that the gradient of
the model is more aligned with the normal direc-
tion to the close decision boundaries (Wang et al.,
2022). In the future, we would like to analyze the
relationship between robustness and explainability
from geometric dimension.

Furthermore, we do not exhaustively experiment
with all possible evaluation settings of interest even
with the scale of our experiments. For example,
saliency guided training methods (Ismail et al.,
2021) could have been used as another baseline.
We hope this work inspires more future work that
develops more effective strategies to make expla-
nations reliable and investigate how our findings
translate to large language models, such as GPT-3
model family2, as with the emergent capabilities of
these models, fidelity to their explanations or ratio-
nale will have societal impacts on accountability of
NLP systems.

2https://beta.openai.com/playground
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Metric Attack Results
Number of successful attacks: 12(45)
Original accuracy(%): 93.0(96.0)
Accuracy under attack(%): 90.0(84.8)
Attack success rate(%): 3.23(11.71)
Average perturbed word(%): 39.06(27.02)
Average num. words per input: 244.73(244.73)
Avg num queries: 408.47(339.69)

Table 6: Attack results of REGEX and baseline by
CHECKLIST attack recipe.

Methods Full-text F1
Saliency (Mean) 87.81±3.64
InputXGrad (Mean) 91.21±0.23
DeepLift (Mean) 87.99±0.48
IG (Mean) 91.60±0.08
Saliency (ℓ2) 83.52±1.29
InputXGrad (ℓ2) 90.83±0.29
DeepLift (ℓ2) 87.62±0.53
REGEX 89.73±0.05

w/o robustness improvement 90.57±0.52
w/o explanation guided training 85.19±2.80

Table 7: Macro F1 and standard deviations with differ-
ent aggregation methods and feature attribution methods
in §3.3.

A Dataset

We consider six datasets to evaluate explanations
and the data statistics are as follows.

SST: The Stanford Sentiment Treebank (SST)
dataset (Socher et al., 2013) includes review sen-
tences (positive/negative) for analysis of the com-
positional effect of sentiment. The training set,
development set, and test set consist of 6920, 872,
and 1821 examples.

IMDB: The IMDB dataset (Maas et al., 2011)
consists of 25k movies reviews from IMDB web-
site labeled by sentiment (positive/negative). The
training set, development set, and test set consist
of 20k, 2.5k, and 2.5k examples.

Yelp: The Yelp dataset (Zhang et al., 2015) in-
cludes highly polar movie reviews and is trans-
formed to a binary classification task (posi-
tive/negative). The training set, development set,
and test set consist of 476k, 84k, and 38k examples.

AmazDigiMu/AmazPantry/AmazInstr: The
amazon reviews dataset (Ni et al., 2019) is
constructed by personalized justification from
existing from Amazon review data. We choose
the 3-class review and product metadata for
three categories: Digital Music, Prime Pantry
and Musical Instruments (Chrysostomou and
Aletras, 2022). These examples are then divided

into three subsets: AmazDigiMu (122k/21k/25k
examples), AmazPantry (99k/17k/20k examples)
and AmazInstr (16k/29k/3k examples).

B Experiment Settings

We use Spacy 3 to pre-tokenize the sentence and
apply the BERT-base model to encode text (Devlin
et al., 2019). We use AdamW optimizer with batch
sizes of 8, 16, 32, 64 for model training. The initial
learning rate is 1× 10−5 for fine-tuning BERT pa-
rameters and 1× 10−4 for the classification layer.
The maximum sequence length, the dropout rate,
the gradient accumulation steps, the training epoch
and the hidden size d are set to 256, 0.1, 10%, 10,
768 respectively. We clip the gradient norm within
1.0. The learning parameters are selected based on
the best performance on the development set. Our
model is trained with NVIDIA Tesla A100 40GB
GPUs (PyTorch & Huggingface/Transformers 4 &
Captum 5). Following Jiang et al. (2019), we set
the perturbation size ϵ = 1 × 10−5, the step size
η = 1 × 10−3, ascent iteration step C = 2 and
the variance of normal distribution σ = 1× 10−5.
The weight parameters λ1, λ2, λ3, λ4 are set to
1.0, 0.01, 0.5, 0.01 respectively. The mask ration
K is set to 0.15. The number of steps used by
the approximation method in IG is 50, and we use
zero scalar corresponding to each input tensor as
IG baselines. The parameters are selected based on
the development set. For the baseline and FRESH
model, we use the same transformer-based mod-
els as mentioned previously to encode tokens and
we choose rationale length by following Chrysos-
tomou and Aletras (2022). The model is trained
for 10 epochs, and we keep the best models with
respect to macro F1 scores on the development sets.

C Text Classification to Attacks

We conduct the behavioral testing with
CHECKLIST (Ribeiro et al., 2020) and
TextAttack (Morris et al., 2020) to at-
tack REGEX text classification models. We
randomly choose 400 examples from IMDB test
set as original attack examples, and the attack
recipe greedily search adversarial examples
to change the predicted label by contracting,
extending, and substituting name entities in the
sentence. The results are shown in the Table 6 and

3https://spacy.io/models/en
4https://github.com/huggingface/transformers
5https://captum.ai/
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Jaccard@25% Init#1 Init#2 Init#3 Init#4 #Untrained
Init#1 1.0 .56(.40) .60(.48) .61(.41) .30(.31)
Init#2 .56(.40) 1.0 .50(.46) .39(.36) .20(.19)
Init#3 .60(.48) .50(.46) 1.0 .55(.30) .24(.25)
Init#4 .61(.41) .39(.36) .55(.30) 1.0 .18(.18)
#Untrained .30(.31) .20(.19) .24(.25) .18(.18) 1.0

Table 8: Jaccard@25% between the feature attribu-
tions (REGEX vs. baseline, scaled attention) based
on RoBERTa (Liu et al., 2019) large model.

the attack success rate which is used to evaluate
the effectiveness of the attacks is 3.23%.

D UIT and DIT with Larger Pre-trained
Language Model

To further verify the effect of model scale on the
results, we conducted experiments on the robust-
ness of explanations under the pre-trained language
model RoBERTa (Liu et al., 2019), including UIT
and DIT. The experimental results are shown in
the Table 8. We have two findings: (1) the size of
the model has a certain positive effect on the sta-
bility of explanations, with the Jaccard similarity
improved under REGEX and Baseline, although
the improvement is not significant. (2) REGEX can
still improve performance under larger pre-trained
models which further strengths our findings.

E Full Results

Table 7 presents the Full-text F1 of variants in abla-
tion study. Table 9 lists the full results for FRESH
(select-then-predict) models. Table 10 lists the full
results of ablation study.

From these results, we further found that suffi-
ciency of the extracted explanations when using
one robustness training method (either virtual
adversarial training or input gradient regular-
ization) is inferior to the sufficiency when us-
ing no robustness training. We speculate that
there are several reasons: (1) the two mechanisms
are related, i.e., removing one has a more signif-
icant impact than removing both simultaneously;
(2) the results have variance despite the adoption
of the AOPC metric, not to mention that the suffi-
ciency metrics suffer from out-of-distribution chal-
lenges; (3) these ablation experiments are on mod-
els trained on SST and tested on SST; future works
could perform a more detailed ablation analysis on
other datasets (such as in out-of-domain settings).
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Train Test α∇α α DeepLift x∇x IG
SST 88.88±0.7 83.00±0.3 87.31±0.5 77.84±0.5 77.84±0.5

SST IMDB 86.27±0.2 65.32±1.9 81.18±0.6 53.22±0.6 53.22±0.6
Yelp 90.15±0.1 76.45±0.6 80.35±2.1 64.38±0.5 64.38±0.5

IMDB 88.88±0.3 79.16±0.2 87.60±0.2 59.14±1.0 59.14±1.0
IMDB SST 80.60±1.6 71.75±0.3 72.91±0.6 65.68±2.2 65.68±2.2

Yelp 90.37±0.5 72.71±1.0 86.51±0.4 70.54±0.9 70.54±0.9

Yelp 96.27±0.1 87.13±0.1 97.05±0.0 71.22±0.1 71.22±0.1
Yelp SST 82.03±0.5 58.13±0.6 69.89±0.4 67.58±0.6 67.58±0.6

IMDB 83.68±0.4 51.51±0.4 79.10±1.2 47.99±1.8 47.99±1.8

AmazDigiMu 67.87±0.4 62.53±0.9 67.52±1.0 48.30±2.2 48.30±2.2
AmazDigiMu AmazInstr 60.95±0.1 49.98±0.8 60.92±0.5 39.02±0.2 39.02±0.2

AmazPantry 60.05±0.3 46.27±0.9 59.01±1.0 38.83±1.0 38.83±1.0

AmazPantry 67.83±1.0 59.62±0.8 67.99±1.6 50.33±1.2 50.33±1.2
AmazPantry AmazDigiMu 58.49±0.8 51.48±1.0 58.40±0.5 42.71±0.8 42.71±0.8

AmazInstr 64.91±0.5 54.92±1.7 65.55±1.0 43.31±0.9 43.31±0.9

AmazInstr 69.52±0.7 63.06±0.6 70.73±0.2 47.47±1.0 47.47±1.0
AmazInstr AmazDigiMu 58.59±0.8 51.64±0.4 58.93±0.5 43.68±0.7 43.68±0.7

AmazPantry 64.95±0.9 55.82±0.6 65.58±0.2 45.24±0.8 45.24±0.8

Table 9: Macro F1 and standard deviations of FRESH models with Top-k explanations. RED means REGEX
outperforms the baseline.

Methods Normalized Sufficiency (↑) Normalized Comprehensiveness (↑)
RAND α∇α α DeepLift x∇x IG RAND α∇α α DeepLift x∇x IG

Saliency (Mean) .32 .52 .32 .48 .44 .45 .25 .48 .53 .42 .40 .38
InputXGrad (Mean) .40 .52 .43 .53 .42 .42 .18 .37 .19 .39 .22 .22
DeepLift (Mean) .36 .61 .42 .58 .50 .51 .22 .52 .66 .49 .37 .37
IG (Mean) .29 .47 .37 .45 .29 .27 .24 .49 .26 .51 .28 .33
Saliency (ℓ2) .32 .70 .36 .65 .54 .54 .17 .55 .20 .43 .37 .37
InputXGrad (ℓ2) .34 .58 .38 .54 .43 .43 .29 ..58 .25 .49 .31 .30
DeepLift (ℓ2) .30 .69 .39 .68 .53 .53 .16 .53 .26 .47 .37 .37
REGEX .30 .68 .48 .71 .49 .49 .22 .56 .41 .52 .43 .43

w/o robustness improvement .38 .54 .43 .42 .42 .42 .12 .33 .18 .17 .20 .20
w/o virtual adversarial training .27 .47 .32 .31 .33 .33 .14 .39 .21 .19 .24 .24
w/o input gradient regularization .23 .54 .30 .32 .40 .40 .19 .57 .25 .28 .40 .40

w/o explanation guided training .32 .66 .40 .64 .54 .54 .16 .54 .27 .44 .39 .39

Table 10: Full results of ablation study with different aggregation methods and feature attribution methods in §3.3.
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