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Abstract

We introduce SPEAR-TTS, a multi-speaker
text-to-speech (TTS) system that can be trained
with minimal supervision. By combining two
types of discrete speech representations, we
cast TTS as a composition of two sequence-
to-sequence tasks: from text to high-level se-
mantic tokens (akin to ‘‘reading’’) and from
semantic tokens to low-level acoustic tokens
(‘‘speaking’’). Decoupling these two tasks en-
ables training of the ‘‘speaking’’ module us-
ing abundant audio-only data, and unlocks the
highly efficient combination of pretraining and
backtranslation to reduce the need for paral-
lel data when training the ‘‘reading’’ compo-
nent. To control the speaker identity, we adopt
example prompting, which allows SPEAR-
TTS to generalize to unseen speakers using
only a short sample of 3 seconds, without any
explicit speaker representation or speaker labels.
Our experiments demonstrate that SPEAR-
TTS achieves a character error rate that is com-
petitive with state-of-the-art methods using
only 15 minutes of parallel data, while match-
ing ground-truth speech in naturalness and
acoustic quality.

1 Introduction

Training a text-to-speech (TTS) system typically
requires hundreds of hours of parallel data in
the form of transcribed utterances. As a conse-
quence, high-quality TTS is only available for a
few dozen languages. Moreover, the audio gen-
erated by these systems is only as diverse as the
parallel data that they are trained on, which should
contain many speakers, with various accents, of
diverse demographics, and in heterogeneous re-
cording conditions. At the same time, extremely
diverse audio-only data can be relatively abun-
dant online, present in the forms of podcasts,
radio, and TV shows. This makes it attractive to
use such audio-only data for building realistically

sounding TTS systems while minimizing the need
for diverse parallel data.

In this paper, we investigate how audio-only
data can be leveraged to reduce the need for su-
pervision in training TTS systems. We introduce
SPEAR-TTS,1 a multi-speaker TTS system that can
be trained with as little as 15 minutes of parallel
data from a single speaker. Moreover, SPEAR-
TTS can synthesize a new voice using only 3
seconds of speech, without any speaker labels
or explicit speaker representation. SPEAR-TTS
leverages recent advances in the ‘‘textless’’ mod-
eling of spoken language (Lakhotia et al., 2021;
Polyak et al., 2021; Kreuk et al., 2021; Kharitonov
et al., 2022; Borsos et al., 2023). These meth-
ods represent continuous audio waveforms as
sequences of tokens from a finite vocabulary,
casting speech generation as a language model-
ing task. In particular, AudioLM (Borsos et al.,
2023) combines two types of discrete tokens:
high-level semantic tokens and low-level acous-
tic tokens, which can be mapped to audio. Using
these representations, we cast the TTS problem as
a ‘‘translation’’ from text transcripts to acoustic
tokens with semantic token representations serv-
ing as a pivot ‘‘language’’ (Utiyama and Isahara,
2007). This way, TTS is a composition of two
sequence-to-sequence (seq2seq) tasks: translating
text to semantic tokens, and translating semantic
to acoustic tokens.

The key benefit of such an approach is that the
supervision needed to learn how to map text into
the intermediate semantic token representation
(‘‘reading’’) and how to produce speech from
it (‘‘speaking’’) become decoupled. While the
‘‘reading’’ stage relies on parallel text-audio data,
the audio tokens used to train the ‘‘speaking’’
component are produced by self-supervised audio
models and therefore can be extracted from a

1SPEAR stands for ‘‘speak, read and prompt’’.
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massive amount of unlabeled speech data. As a
result, the quality and diversity of the generated
speech become independent from the available
parallel data.

Casting each stage of SPEAR-TTS as a seq2seq
problem allows us to use standard Transformer
models (Vaswani et al., 2017) and makes it easy
to tap into the vast pool of ideas developed by
the machine translation community to reduce the
need for supervision. Specifically, we combine
BART-style pretraining (Lewis et al., 2020) with
backtranslation (Sennrich et al., 2016) to signifi-
cantly reduce the amount of parallel supervision
required to train SPEAR-TTS.

To control the voice used by SPEAR-TTS
when producing an utterance, we leverage an ex-
ample prompting mechanism that is closely related
to prompting in textual language models (Brown
et al., 2020). Here we condition the ‘‘speaking’’
model with an audio clip representing the target
voice, steering it to use this voice when generating
the utterance. This feature can simplify building
controllable multi-speaker TTS systems for lan-
guages where only single-speaker parallel data is
available.

Our experimental study on English speech
shows that, by combining pretraining and back-
translation over a large dataset (551 hours) with
just 15 minutes of parallel data from a single
speaker, SPEAR-TTS:

• Generates speech with high fidelity to the
input transcript—CER 1.92% on LibriSpeech
test-clean (Panayotov et al., 2015);

• reliably reproduces the voice of an unseen
speaker, when using a 3-second example
from the target speaker;

• achieves high acoustic quality, comparable
to that of the ground-truth utterances (MOS
4.96 vs. 4.92).2

Overall, our approach to building TTS using
massive self-supervised pretraining and back-
translation of discrete speech representations
considerably differs from how existing TTS sys-
tems are implemented (Shen et al., 2018; Kong
et al., 2020; Ren et al., 2020; Kim et al., 2021;
Ao et al., 2022; Wang et al., 2023), significantly

2Samples can be found on the demo site: https://
google-research.github.io/seanet/speartts
/examples/.

reducing the costs related to data collection and
potentially providing high-quality multi-speaker
TTS for languages that are not well covered today.

2 Related Work

Our work relates to several research directions
that we overview in this Section.

Discretized Speech Processing The work of
Lakhotia et al. (2021) on generative spoken lan-
guage modeling and generation pioneered the use
of language models on discretized speech repre-
sentations. Their work became a foundation for
a range of extensions, including emotion transfer
(Kreuk et al., 2021), prosody (Kharitonov et al.,
2022), and dialog (Nguyen et al., 2023) modeling.

SPEAR-TTS is based on AudioLM (Borsos
et al., 2023), a recent development in this line
of work that achieves a superior quality in spo-
ken language modeling and a high audio quality.
SPEAR-TTS extends AudioLM along several di-
mensions. We adapt it to the text-to-speech sce-
nario by conditioning it with a transcript input and
show that by combining pretraining and back-
translation, we can dramatically reduce the amount
of supervision required to train a high-fidelity TTS
system. Finally, SPEAR-TTS explicitly incorpo-
rates a prompt-like mechanism for a voice control.

Low- and Semi-supervised TTS Guided-TTS
(Kim et al., 2021) is another TTS system that lever-
ages audio-only data. It combines (a) a denoising
diffusion probabilistic model (DDPM) that learns
to model audio-only data, and (b) a phoneme clas-
sifier that guides the generative process towards
producing an utterance with a desired transcript.
Guided-TTS 2 (Kim et al., 2022) extends it by al-
lowing speaker adaptability either via finetuning
or in a zero-shot manner, using a 10-second speech
sample processed by a dedicated speaker embed-
ding module. Another adaptable DDPM-based
TTS system was proposed by Levkovitch et al.
(2022), which uses the classifier guidance mech-
anism to steer generation towards a particular
voice in a zero-shot manner.

In contrast to SPEAR-TTS, the above works
rely on stronger supervision: a phoneme classi-
fier that is trained on LibriSpeech 960 and a pre-
trained speaker verification system. Conversely,
SPEAR-TTS uses a parameter-less prompting
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mechanism which does not require any speaker
labels.

Liu et al. (2020) combine a sequential auto-
encoder with vector quantization and temporal
segmentation mechanisms to learn a phoneme-
like discrete speech representation, along with a
seq2seq model that maps these representations to
phonemes. Similarly to SPEAR-TTS, this system
can be trained with almost no supervision, how-
ever the generated speech is single-speaker only
and of much lower quality than ground-truth au-
dio (2.33 vs 4.81 in their experiments).

Prompted Audio Generation When a sentence
is prepended by an emotional prompt, expressed
in plain English, e.g., [I am really sad,] Tortoise
TTS (Betker, 2022) synthesizes text in a sad voice.

Wang et al. (2023) propose VALL-E, a TTS sys-
tem that allows prompt-based conditioning of the
synthesized voice and emotion. In contrast to the
two-stage architecture of SPEAR-TTS, VALL-E
predicts an equivalent of acoustic tokens directly
from a phoneme representation of a text. This
is unlike SPEAR-TTS which only prompts the
model with self-supervised audio tokens. Another
difference is the amount of the parallel training
data used: VALL-E is trained on the 60k hours of
ASR-transcribed LibriLight (Kahn et al., 2020).

3 Discrete Speech Representations

Below is a brief overview of the two self-
supervised audio representations which we adapt
from AudioLM. These representations occupy the
opposite ends of the reconstruction quality vs. bi-
trate trade-off: Acoustic tokens are typically high-
bitrate, allowing high-fidelity audio generation,
while semantic tokens are low-bitrate, thus mak-
ing it easier to achieve a long-span coherence. A
detailed discussion can be found in Borsos et al.
(2023)[Section III-B].

Semantic Tokens The role of semantic tokens
is to provide a coarse, high-level conditioning to
subsequently produce acoustic tokens. Thus, they
should provide a representation of speech where
linguistic content—from phonetics to semantics—
is salient, while paralinguistic information such as
speaker identity and acoustic details are removed.
To obtain such a representation, we train a self-
supervised speech representation model based on

w2v-BERT (Chung et al., 2021). After its train-
ing, we run a k-means clustering on the mean-
variance normalized outputs of a specific layer.
We use the centroid indices as discrete tokens.

Acoustic Tokens Acoustic tokens are discrete
audio representations that provide high-fidelity
reconstruction of the acoustic details. We train
a SoundStream (Zeghidour et al., 2021) codec
to reconstruct speech while compressing it into
few discrete units using a residual quantizer. To
represent the hierarchy of residual quantizers in a
sequence, we flatten the tokens corresponding to
the different levels by interleaving them (Borsos
et al., 2023). We use the SoundStream codec to
convert audio to acoustic tokens and synthesize
audio back from acoustic tokens.

4 SPEAR-TTS Overview

SPEAR-TTS extends AudioLM (Borsos et al.,
2023) by enabling text as a form of condi-
tioning. Similarly to AudioLM, SPEAR-TTS is
organized in two main stages, as illustrated in
Figure 1. In the first stage (S1), text inputs are
translated into a sequence of discrete semantic
tokens. The second stage (S2) maps semantic to-
kens into acoustic tokens, which are decoded to
speech by the SoundStream decoder (Zeghidour
et al., 2021). This way, S1 learns to map text to
the internal representation provided by semantic
tokens (‘‘reading’’), while S2 handles the pro-
duction of speech from this intermediate internal
representation (‘‘speaking’’).

By using semantic tokens as an intermedi-
ate representation, we achieve two goals. First,
semantic tokens provide us with a high-level rep-
resentation of speech. Thus, it is easier to learn a
mapping from text transcripts to semantic tokens
than directly between text and acoustic tokens.
Second, as both semantic and acoustic tokens are
derived from self-supervised models, the second
stage S2 can be trained using audio-only data.
This turns out to be extremely beneficial for
training S2, as the typical scale of available audio-
only data is considerably larger than that of paral-
lel data.

In turn, separating S1 from S2 allows us to
pretrain the former with a denoising pretext task
operating on succinct semantic tokens, further
harnessing audio-only data.
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Figure 1: SPEAR-TTS. The first stage S1 (‘‘reading’’) maps tokenized text to semantic tokens. The second
stage S2 (‘‘speaking’’) maps semantic tokens to acoustic tokens. Acoustic tokens are decoded to audio wave-
forms using the SoundStream decoder.

5 S1: Improving Supervision Efficiency

The first stage S1 maps tokenized text into se-
mantic tokens. We use parallel text-semantic to-
kens data to learn this mapping. We start with a
text-audio TTS dataset and extract semantic to-
kens from audio. As a result, S1 is reduced to a
seq2seq task that can be implemented by encoder-
decoder or decoder-only Transformer architec-
tures (Vaswani et al., 2017).

Training Transformer seq2seq models can re-
quire substantial amounts of parallel data, which
can be extremely scarce for some languages. In
the following, we discuss two approaches used to
alleviate this limitation: target domain pretraining
(§ 5.1) and backtranslation (§ 5.2).

5.1 Pretraining

We take inspiration from BART and pretrain an
encoder-decoder Transformer on a denoising task
(Lewis et al., 2020). In this task, the model is
provided with a corrupted version of an original
semantic token sequence and the goal is to produce
the corresponding uncorrupted token sequence.
Such pretraining does not require parallel data and
we carry it out using a large audio-only dataset.

Typical corruption methods include random
substitution, deletion and masking of individual
tokens or entire spans of tokens (Lewis et al.,
2020; Raffel et al., 2020). In preliminary studies,
we observed that deleting individual tokens in-
dependently at random works better than other
alternatives.

After pretraining the model P , we finetune it
for the S1 task. To achieve this, we freeze the
upper layers of the encoder and all parameters of
the decoder, excluding the parameters used in the

decoder-encoder cross-attention layers, and up-
date the lower layers of the encoder. The exact
number of layers to tune is a hyperparameter.

5.2 Backtranslation
The same text sequence can be rendered as
audio in multiple ways, with varying voice, ac-
cent, prosody, emotional content, and recording
conditions. This one-to-many relationship makes
the text-to-speech problem highly asymmetric—
unlike text translation, where, for example,
English-French translation is roughly equally hard
in either direction. Thus, it is very attractive to use
backtranslation (Sennrich et al., 2016; Edunov
et al., 2018), i.e., to use the available parallel data
to train a speech-to-text model and use it to gen-
erate synthetic parallel data from an audio-only
corpus.

The two-stage architecture of SPEAR-TTS is
particularly suitable for backtranslation as it can
be implemented as translation between semantic
tokens and text. The benefits are two-fold: (a)
a reduction in the computational complexity due
to never dealing with raw audio or long acoustic
token sequences,3 and (b) the ability to leverage
the same semantic token-level pretraining (§ 5.1)
when training the ‘‘backward’’-direction model.

In order to obtain a backtranslation model, we
start from the same pretrained model P as above.
However, this time we freeze the encoder and only
finetune the decoder. Afterwards, we transcribe
audio-only data using this model. Next, we use
the synthetically generated parallel data to train
the first stage of the TTS system, which, in turn,
is also obtained via finetuning another copy of
P (see § 5.1). After finetuning on the synthetic

3An acoustic representation is ≥ 6× longer than the
semantic one.
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Figure 2: Training S1, combining pretraining and backtranslation. We start with pretraining an encoder-
decoder model P on a denoising task, using a semantic-token representation of speech-only data. Next, we fine-
tune its decoder to backtranslate (semantic tokens to transcripts) using a small parallel dataset. Then, we use this
model to transcribe the speech-only dataset and obtain a synthetic parallel dataset. In turn, this synthetic dataset
is used to finetune the encoder of P for ‘‘translation’’ in the forward direction (text transcripts to semantic to-
kens), along with the original small parallel dataset.

data, we continue finetuning on the original par-
allel data. Figure 2 illustrates this process.

6 S2: Controlling the Generation Process

The second stage model S2 maps semantic to-
kens into acoustic tokens. To train it, we extract
pairs of semantic and acoustic token sequences
from each utterance in an audio-only dataset.
Next, we train a Transformer model to perform
seq2seq translation between the two token se-
quences. The second stage generates utterances
with randomly varying voice, tempo, and record-
ing conditions, reproducing the distribution of the
characteristics observed in the training data. As
S1 and S2 are trained independently, this diversity
of speech is also preserved when S1 is trained on
a single-speaker dataset.

To control the characteristics of the speaker’s
voice, we combine two findings from AudioLM
(Borsos et al., 2023): (a) whenever the speech
prefix is represented solely by semantic tokens,
AudioLM generates continuations by sampling a
different random voice each time; (b) however,
when conditioning also includes acoustic tokens,
AudioLM maintains the voice characteristics cap-
tured by the acoustic tokens when generating the
continuation. In contrast to AudioLM, we ex-
plicitly incorporate this ability during training, as
illustrated in Figure 3. During training, we ran-
domly select two non-overlapping windows of
speech from each training example, from which

we compute sequences of semantic and acoustic
tokens. We consider one of the windows as the
prompt and the other as the target output. Next,
we concatenate the sequences in the following
order: (a) semantic tokens from the prompt, (b)
semantic tokens from the target, (c) acoustic to-
kens from the prompt, and (d) acoustic tokens
from the target. During training of S2, (a)–(c) are
used as prefix and the model learns to generate the
target acoustic tokens (d), preserving the speaker
identity captured by the acoustic tokens from the
prompt. At inference time, (a)–(c) are provided
as input, and (d) is generated autoregressively.
We also add a special separator token to inform
the model about the expected discontinuity. This
prevents boundary artifacts, which sometimes oc-
cur otherwise. Note that the text transcript of the
prompt is not needed.

The speech samples generated by S2 might
contain some background noise, since this is typ-
ically present in the training data. We consider
two methods to control the noise level in the syn-
thesized speech at inference time. First, in the
case of prompted generation, it is possible to se-
lect prompts containing cleaner speech. Second,
we can use a stochastic sampling (e.g., temper-
ature sampling), generate multiple sequences for
the same input and then use a no-reference au-
dio quality metric to select the samples contain-
ing the least amount of noise. To this end, we
use a MOS estimator model similar to DNSMOS
(Reddy et al., 2021).
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Figure 3: Controlling generation with example prompting in S2. For prompted generation, we concatenate
token sequences in the following order: semantic tokens from the prompt, semantic tokens from the target,
acoustic tokens from the prompt. Then, the model generates acoustic tokens corresponding to the semantic tokens
from the target, while preserving the voice and speaking conditions in the acoustic tokens from the prompt.
Squares correspond to the parts of the prompt.

Name Size, hours
Transcripts

Used for
used?

LibriLight 60k ✗
Acoustic & semantic tokens,
pretraining S1, and training S2

LJSpeech 0.25..24 ✓ Finetuning S1 for backtranslation
LibriTTS train 551 ✗ Source of backtranslated data

LibriSpeech test-clean
3 ✓ Intelligibility evaluation

(shorter than 10s)
LibriSpeech train-clean +

105 ✗
Training the voice classifier used

test-clean in the evaluation

Table 1: Datasets used in the paper. For each dataset, we highlight its size, use, and whether textual
transcripts are used.

7 Experimental Setup

7.1 Training and Validation Data

In this Section, we describe datasets that are
used in this paper for training and evaluation.
We provide an outline in Table 1.

Acoustic and Semantic Tokens: We use Libri-
Light (Kahn et al., 2020) to train the self-
supervised representation models (SoundStream
and w2v-BERT) as well as the k-means used to
discretize w2v-BERT embeddings into semantic

tokens. We use the largest unlab-60k split of Libri-
Light that contains around 60,000 hours of English
audiobooks read by more than 7,000 speakers.

First Stage S1: To experiment in the low-
supervision regime, we train S1 on LJSpeech
(Ito and Johnson, 2017), a single-speaker dataset
containing 24 hours of parallel data. By using
LJSpeech as the only source of parallel data, we
also show that our method generalizes to multiple
speakers, even if the parallel training data itself
contains only a single speaker. Since LJSpeech
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does not specify a canonical train/dev/test split,
we follow Liu et al. (2022, 2020) and randomly
select 300 utterances as development and another
300 utterances as test set (30 minutes each), using
the rest as training data. To simulate scenarios in
which very limited data is available, we uniformly
sample subsets of 3 hours, 1 hour, 30 minutes, and
15 minutes from the training set. As an indicative
figure, the 15 minute subset contains around 21k
semantic tokens and 2k words.

Pretraining: To pretrain a model on the se-
quence corruption task (§ 5.1), we extract semantic
tokens from LibriLight (Kahn et al., 2020), since
pre-training only requires audio data.

Backtranslation: In our experiments with back-
translation, we use LibriTTS (Zen et al., 2019)
as a source of unlabelled speech (ignoring tran-
scripts). We pool all training subsets of LibriTTS
to obtain an audio-only dataset containing 551
hours of speech. Using LibriTTS as a source for
audio-only data for backtranslation allows us to
compare SPEAR-TTS with S1 trained on original
and backtranslated LibriTTS transcripts.

Second Stage S2: To train S2, we extract pairs
of semantic and acoustic token sequences from
LibriLight (Kahn et al., 2020).4

7.2 Evaluation Data
We use LibriSpeech test-clean (Panayotov
et al., 2015) to measure the character error rate
(CER) (see § 7.4). As LJSpeech only contains
sequences shorter than 10 seconds, we filter out
sequences longer than that from LibriSpeech
test-clean. As a result, we obtain 2,007 utterances,
with a total duration of approximately 3 hours.
Importantly, LibriSpeech test-clean has no
intersection with any training or validation data
we used.

7.3 Preprocessing
To prepare the data for training, we unroll standard
abbreviations used in LJSpeech. Next, we apply
the G2p en phonemizer (Park and Kim, 2019).
After removing the lexical stress information from
its output, we obtain a string representation in a
vocabulary of 47 tokens (39 phonemes from the
CMU Dictionary, whitespace, and punctuation).

4In Appendix A, we study the impact of reducing
the amount of data used for training S2 on the overall
performance.

7.4 Metrics

Character Error Rate (CER) We transcribe
the synthesized utterances using an in-house ASR
system and we evaluate the faithfulness to the in-
put transcript by measuring the character error rate
(CER). We use the LibriSpeech test-clean dataset
(Panayotov et al., 2015) to calculate CER, since it
requires minimal postprocessing to be compared
to the output of the adopted ASR system. On the
original audio, CER is equal to 0.98%.

Voice Preservation When prompting the model
with a short utterance, we evaluate the consistency
of the speaker voice between the prompt and the
generated speech. We use the same speaker clas-
sifier as Borsos et al. (2023), which is trained
on a union of LibriSpeech train-clean-100 and
test-clean (251 and 40 speakers, respectively). It
computes predictions over a set of 291 speaker
classes (see Appendix C for more details). We
measure how often the speaker label predicted
from the generated speech matches the one
predicted from the prompt.

Quality We rely on human judgments to eval-
uate the perceived quality of SPEAR-TTS by
collecting Mean Opinion Scores (MOS). In this
context, human raters listen to individual audio
segments and rate their audio quality and speech
naturalness on a scale from Poor (1) to Excellent
(5).

7.5 Baselines

As our main baseline, we consider a system explic-
itly trained to target the low-supervision scenario.
Namely, we use a modification of FastSpeech2
(Ren et al., 2020), which is a non-autoregressive
model that uses auxiliary duration, pitch, and en-
ergy predictors. Specifically, in our experiments
we consider the adaptation to the low-supervision
setting by Pine et al. (2022). The model takes as
input the phoneme representation of the text and
predicts a spectrogram, which is then vocoded
with HiFi-GAN (Kong et al., 2020). We denote
this modification as FastSpeech2-LR. In a sub-
jective evaluation reported by Pine et al. (2022),
FastSpeech2-LR trained on 1 (3) hour(s) of par-
allel data performed on par with an open-source
implementation of Tacotron2 (Shen et al., 2018)
trained with 10 (24) hours of parallel data. We use
checkpoints trained on 15 minutes, 30 minutes,
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1 hour, 3 hours, and 24 hours that were shared by
the authors.5

We also compare SPEAR-TTS to VALL-E
(Wang et al., 2023), a recent TTS system that
demonstrates state-of-the-art results in zero-shot
voice adaptation. Similarly to SPEAR-TTS, it is
capable of voice transfer using a 3-second voice
prompt. VALL-E maps the input text to coarse
acoustic tokens, and uses a non-autoregressive re-
finement stage to predict fine-grained acoustic to-
kens. VALL-E is trained on an ASR-transcribed
version of LibriLight (Kahn et al., 2020), contain-
ing roughly 60,000 hours of parallel data. Since
the model is not publicly available, the com-
parison is based on the samples provided on its
demo page.

8 Hyperparameters & Training Details

8.1 Discrete Speech Representations

We follow the setup of AudioLM (Borsos et al.,
2023) to compute both semantic and acoustic to-
kens, with a few differences. The semantic tokens
are obtained by quantizing the embeddings re-
turned by the 7th layer of w2v-BERT using a
codebook of size 512. As a result, 1 second of
audio is represented by 25 semantic tokens with
a vocabulary size of 512, resulting in a bitrate of
225 bit/s. We remove sequentially repeated se-
mantic tokens, as done in Lakhotia et al. (2021)
and Borsos et al. (2023).

We extract acoustic tokens from a Sound-
Stream neural codec (Zeghidour et al., 2021) with
3 quantization levels, each with a codebook of
size 1024. We use a vocabulary with 3 × 1024
unique tokens and represent each frame as a flat
sequence of tokens, interleaving the first, second,
and third quantization layers, respectively. As a
result, 1 second of audio is represented by 50 Hz×
3 = 150 acoustic tokens, a bitrate of 1500 bit/s.

8.2 First Stage (S1)

In all experiments, we use the Adafactor opti-
mizer (Shazeer and Stern, 2018) with inverse
square-root learning rate decay. As a regulariza-
tion method, we use label smoothing with the
smoothing parameter set to 0.1, except in the case

5https://github.com/roedoejet/FastSpeech2
ACL2022 reproducibility.

Embed. dim. FFN dim. Head dim. # heads

T5-small 256 512 64 6
T5-base 768 2048 64 12
T5-large 1024 2816 64 16

Table 2: Architecture details. We report details
for T5-small, T5-base, and T5-large layers. The
number of layers used is defined by a grid search
(Section 8).

of pretraining, when a large amount of data is
available.

Pretraining The pretraining task is configured
so that the probability of deleting individual to-
kens is set to 0.6. This parameter was selected via
grid search inspecting the validation accuracy of
S1 after finetuning. We apply dropout with prob-
ability equal to 0.5 and set the batch size to 256.
We ran the pretraining for 1M updates and used
the resulting checkpoint P in all our experiments.
As the architecture, we use T5-Large (Raffel
et al., 2020), which is a 24 layer encoder-decoder
model (see Table 2).

Finetuning The same pretrained checkpoint P
is finetuned for different purposes (Figure 2). In
all cases we perform a grid search on the drop-
out rate ({0.1, 0.3, 0.5}) and the number of layers
to finetune, selecting the combination with the
highest validation accuracy (with teacher-forcing).
More specifically, when finetuning on ground-
truth parallel data (as an ablation), we freeze both
the upper layers of the encoder and the entire de-
coder, while updating the weights of the encoder
embeddings and the lower layers. The number of
the lower layers to tune is searched in {4, 6, 8}.
When finetuning on synthetic parallel data, we
search over the number of the encoder’s lower
layers to be finetuned in {4, 6, 8, 10, 12, 24}.
Next, we finetune the lower 4 layers of the encoder
on the original parallel data (to avoid overfitting
when very little data is available). Finally, when
finetuning the decoder for backtranslation, we
finetune N top and N bottom layers, with N ∈
{2, 3, 4, 12}. During finetuning, we select the
checkpoint with the best validation accuracy.

Training from Scratch As an ablation exper-
iment, we train S1 from scratch, experimenting
with different variants of T5 architectures (Raffel
et al., 2020), depending on the amount of data
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SPEAR-TTS
Training Pretraining (b) Backtranslation

Parallel training data FastSpeech2-LR from scratch (a) from scratch (c) pretraining (d)

24 h 1.99±0.20 3.67±0.21 2.38±0.13 2.26±0.14 2.06±0.12

3 h 2.52±0.25 20.1±0.74 3.07±0.15 2.21±0.12 2.01±0.12

1 h 2.74±0.27 × 5.51±0.21 2.23±0.13 2.16±0.13

30 min 3.18±0.28 × 21.3±0.43 2.52±0.15 2.20±0.12

15 min 4.90±0.34 × × 2.88±0.19 2.21±0.12

Table 3: Intelligibility of SPEAR-TTS and our baselines, depending on the training scenario and the
amount of parallel data available from LJSpeech. We measure CER (%, lower is better) on LibriSpeech
test-clean. ± indicates 95% CI obtained by bootstrap. ‘‘×’’ indicates models that produce unintelligible
speech.

available. We adopt a decoder-only model with-
out causal masking on the input sequence (Raffel
et al., 2020), which led to better results in our pre-
liminary experiments. We perform a grid-search
on the following hyperparameters: dropout prob-
ability {0.1, 0.3, 0.5}; architecture size (T5-small
or T5-base, see Table 2); the number of layers
(T5-small: 2, 4, 6, 8; T5-base: 4, 6, 8, 12).

8.3 Second Stage (S2)

For S2, we use a 12-layer decoder-only Trans-
former model, with each layer having 12 heads
with dimensionality 64, embedding dimensional-
ity of 768, and FFN size of 2048. The optimizer
and the learning rate schedule are the same as
for S1.

8.4 Inference

We use beam search to sample from S1 and
temperature sampling to sample from S2. This
combination ensures faithfulness to the transcript
while enabling more diverse and natural sounding
speech. We use a beam size equal to 10, as larger
values do not lead to improvements in CER but
are more computationally expensive. When gen-
erating backtranslation data we re-use the settings
of S1, without running any additional hyperpa-
rameter search. For S2, we experiment with sam-
pling temperatures T ∈ {0.50, 0.55, . . . , 0.95, 1.0}
and select T = 0.75 which minimizes the CER
on the LJSpeech validation dataset. In this case,
the S1 model is trained on synthetically gener-
ated parallel data obtained by backtranslation,
with the backtranslation model trained on the 15
minute split of LJSpeech.

To control the noise levels in the synthesized
speech, we employ the sampling technique (§ 6)

where we sample ns = 3 audio utterances corre-
sponding to the input and select the one that has
highest quality according to a no-reference audio
quality model similar to DNSMOS (Reddy et al.,
2021).

9 Experiments

We evaluate SPEAR-TTS along several dimen-
sions. First, we measure the faithfulness of the
generated speech to the input transcript, for dif-
ferent training scenarios and amounts of parallel
data available (§ 9.1). Then, we show that SPEAR-
TTS is able to successfully control the speaker
voice, without any degradation in terms of fidelity
to the transcript (§ 9.2).

9.1 Intelligibility and Supervision Efficiency

When evaluating SPEAR-TTS, we consider the
following training settings for S1: (a) training
from scratch using parallel data; (b) finetuning the
pretrained checkpoint P using parallel data; (c)
finetuning the pretrained checkpoint P to obtain
the backtranslation model and then training the
forward model from scratch on the synthetically
generated data; (d) same as (c), but both the
backward and the forward models are obtained by
finetuning P with an additional finetuning of the
forward model on the original parallel data.

Table 3 reports the main results in terms of
CER, as a proxy for the intelligibility of the gener-
ated speech. We observe that when decreasing the
amount of parallel data, training from scratch (a)
results in very high error rates. Conversely, thanks
to pretraining (b), SPEAR-TTS maintains a rela-
tively low CER (≤ 4%), when using as little as 3
hours of parallel data. This is similar to the CER
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CER (%) Speaker accuracy (%) Voice diversity (bits)
top-1 top-3

1.92 92.4 98.1 0.41

Table 4: Voice preservation in prompted gener-
ation. S1 is trained on 15 min of parallel data.

achieved with 24 hours, but without pretraining.
Backtranslation (c) has a general positive impact,
especially when the amount of parallel data is
reduced, achieving a CER of 2.88% with only 15
minutes. By combining backtranslation with pre-
training (d), the CER is further decreased to 2.21%
with the same amount of parallel data. This indi-
cates that having a fixed decoder is useful to cope
with the noisy nature of the synthetically gener-
ated training data obtained via backtranslation.

We also compare SPEAR-TTS to FastSpeech2-
LR, observing that when using 24 hours of par-
allel data, both systems perform approximately
on par (FastSpeech2-LR: 1.99% vs. SPEAR-TTS:
2.06%). However, as the amount of parallel data
is reduced, CER of FastSpeech2-LR increases
very rapidly. As a result, there is a significant
gap when only 15 minutes are available, that is,
FastSpeech2-LR: 4.90% vs. SPEAR-TTS: 2.21%.

In conclusion, the combination of pretraining
and backtranslation allows SPEAR-TTS to syn-
thesize speech that adheres to the input transcript,
even with as little as 15 minutes of parallel data.

9.2 Prompted Generation

SPEAR-TTS is able to control the speaker voice
via example prompting, as described in § 9.2. We
evaluate SPEAR-TTS in a zero-shot scenario, in
which the voice used for prompting was never seen
by S1 or S2 at training and S2 has to reproduce
its characteristics from a single prompt example.
Specifically, we fix S1, using the model trained
on 15-minutes of LJSpeech and we consider all
40 speakers from LibriSpeech test-clean as target
speakers. For each speaker, we randomly select 5
speech prompts with duration of 3 seconds each
and transcripts from the same dataset. For each
speech prompt and text transcript, we repeat the
synthesis 5 times and average the metrics.

Table 4 reports the speaker accuracy, that is,
how often the same voice is detected in both the
prompt and the generated speech. We provide
details on the classifier’s architecture and train-
ing in Appendix C. We observe top-1 accuracy

Model Parallel training data Cosine similarity

YourTTS ∼ 600 h 0.34
VALL-E 60,000 h 0.58
SPEAR-TTS 15 min 0.56

Table 5: Comparing voice preservation with
baselines (cosine similarity). Results for Your-
TTS and VALL-E are taken from (Wang et al.,
2023, Table 2).

equal to 92.4% showing that the prompting al-
lows SPEAR-TTS to preserve the speaker voice.
Also, the synthesized voice is stable when re-
peating inference, as captured by a low value of
voice variability (0.41 bits). Moreover, we ob-
serve that with prompted generation SPEAR-TTS
achieves a CER equal to 1.92%, which is lower
than without prompting (2.21%). We believe that
this improvement is due to using cleaner record-
ings for prompts, which steers the S2 model to
produce cleaner speech and consequently reduce
ASR errors.

We also compare the voice preservation abili-
ties of SPEAR-TTS with those of VALL-E (Wang
et al., 2023). Following the methodology of Wang
et al. (2023) we compute the cosine similarity
between embeddings computed from the prompt
(encoded and decoded with SoundStream) and
from the generated speech, using a publicly avail-
able speaker verification system based on WavLM
(Chen et al., 2022). This is the same model as used
by Wang et al. (2023), which makes our measure-
ments directly comparable with scores reported in
their paper. From the results reported in Table 5,
we observe that SPEAR-TTS significantly out-
performs YourTTS (Casanova et al., 2022) and
almost matches the speaker similarity of VALL-E,
despite being trained with 240,000× less parallel
data.

10 Subjective Evaluation

Ultimately, we resort to subjective tests with hu-
man raters to compare the quality of SPEAR-TTS
with the baselines and with ground-truth natural
speech. We focus on the scenario with minimal su-
pervision and use the S1 model that is trained with
the 15 minute LJSpeech (Ito and Johnson, 2017)
subset. As baselines, we use the FastSpeech2-LR
models (Ren et al., 2020; Pine et al., 2022) trained
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FastSpeech2-LR SPEAR-TTS Ground-truth
Parallel training data 15 min 1 h 24 h 15 min –

MOS 1.72±0.04 2.08±0.04 2.11±0.04 4.96±0.02 4.92±0.04

Table 6: Mean Opinion Score (MOS) evaluation. All compared systems are trained on subsets of
LJSpeech (Ito and Johnson, 2017). ± indicates 95% CI obtained by bootstrap.

on 15 minutes, 1 hour, and 24 hour subsets of
LJSpeech.

To ensure that the evaluation sentences are
not part of the training set of SPEAR-TTS or
the FastSpeech2-LR models, we extract sentences
from an audiobook chapter released in 2022, read
by the same voice as in LJSpeech.6 This chapter
was published later than any of the datasets we
use. We extract 20 sentences from it, each with
duration between 3 and 11 seconds, for a total
of 133 seconds. We take transcripts for those
sentences in the text of the corresponding book.

The baselines are TTS systems trained to gen-
erate a single voice. To ensure a fair comparison,
we prompt S2 with utterances extracted from the
LJSpeech dataset, so that SPEAR-TTS generates
speech with the same voice. To this end, we
randomly select 3 second speech samples from
LJSpeech and filter out samples that have more
than 1 second of silence, using the remaining as
prompts.

We recruited raters using an internal crowd-
sourcing platform. The raters took an English
proficiency test. Samples are presented to raters
one-by-one, and raters are asked to judge the
overall quality on a scale from Poor (1) to Excel-
lent (5). Before starting, the raters were provided
with example utterances for each grade. Those
reference samples represent clean natural speech,
speech resynthesized by SoundStream, and speech
synthesized from partially corrupted SoundStream
token sequences. We additionally included some
examples representing speech degradations com-
mon in online communication. Each audio sam-
ple is evaluated by 20 raters. For each treatment,
we average all scores to compute the Mean Opin-
ion Score (MOS).

Table 6 reports the results of the subjective
tests. We observe that SPEAR-TTS achieves con-
siderably higher quality than the baselines, even
when the latter use more parallel data during

6https://librivox.org/predecessors-of
-cleopatra-by-leigh-north/, §10.

System VALL-E SPEAR-TTS (15 min)

MOS 3.35±0.12 4.75±0.06

Table 7: Mean Opinion Score (MOS) evalua-
tion for prompted generation. Prompts for both
systems and samples for VALL-E are taken from
the demo page of VALL-E. ± indicates 95% CI
obtained by bootstrap.

training. The MOS score achieved by SPEAR-
TTS (4.96) is comparable to the one obtained
for the ground-truth speech (4.92), confirming
the high quality of the generated speech, despite
the fact that the model was trained only on 15
minutes of parallel data.

We also compare SPEAR-TTS and VALL-E
(Wang et al., 2023) in a small-scale subjective test
using the examples provided on its demo page.7

These examples are generated by combining 8
transcripts with 3 prompts each, resulting in 24
speech utterances. Using the same instance of
SPEAR-TTS described above (with S1 trained
with 15 minutes of single-speaker LJSpeech), we
synthesize 24 utterances using the same transcripts
and prompts and conduct a subjective test with
the same protocol described above. Table 7 shows
that, on these examples, SPEAR-TTS achieves
considerably better naturalness and higher speech
quality (MOS 4.75) than VALL-E (3.35), de-
spite using considerably less supervision (15 min
of parallel data & 1 speaker vs. approximately
60,000 hours of parallel data spoken by over
7,000 speakers).

11 Limitations and Broader Impact

While our motivation is to enable high-quality,
diverse, and controllable TTS for under-served
languages, we started our investigations with En-
glish, which allowed us to address the problem

7https://www.microsoft.com/en-us/research
/project/vall-e-x/vall-e/, ‘‘More Samples’’.
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using a collection of well-studied datasets. This
leaves some unknowns on whether our proposed
approach would be applicable for languages suf-
ficiently different from English, e.g., for tonal
languages. For instance, would we be able to get
a useful discretized representation of speech for
such languages? Would they require a dramati-
cally larger token vocabulary size and would it al-
low effective speech modeling? However, we are
hopeful due to an increasing amount of progress
in related research. For example, it was demon-
strated that the underlying AudioLM framework
successfully works across many languages and
even for music (Borsos et al., 2023; Agostinelli
et al., 2023; Rubenstein et al., 2023). However,
this remains circumstantial evidence and a direct
investigation on SPEAR-TTS is in order.

Another potential caveat is that while training
the S2 does not require parallel text-audio data, it
still needs a considerable amount of data, in the
order of a few thousands hours (see Appendix A).
That can become a limitation for low-resource
languages. A similar problem can be faced when
training a w2v-BERT model. Here, a natural po-
tential solution would be leveraging cross-lingual
transfer, particularly from phonetically close lan-
guages, which was shown to work remarkably
well for some self-supervised models (Riviere
et al., 2020).

We also acknowledge that the ability to mimic
a voice can have numerous malicious applica-
tions, including bypassing biometric identification
and for the purpose of impersonation (Delgado
et al., 2021; Casanova et al., 2022). Thus it is cru-
cial to put in place safeguards against the misuse
and, as an initial step, we verify that speech pro-
duced by SPEAR-TTS can be reliably detected
by a classifier with an accuracy of 82.5% on
a balanced dataset, using the same protocol and
classifier as Borsos et al. (2023).

Due to the concerns about a potential mali-
cious use, we decided not to release checkpoints
and training code for our models publicly.

12 Conclusions & Future Work

We introduced SPEAR-TTS, a multi-speaker TTS
system that has two features setting it apart. First,
it only requires a minimal amount of parallel
data to be trained, i.e., it can synthesize speech
with high fidelity when trained on as little as 15

minutes of parallel data coming from a single
speaker. Second, SPEAR-TTS is able to synthe-
size speech maintaining voice characteristics of a
previously unseen speaker using a 3-second long
voice example.

These capabilities originate from harnessing
abundant audio-only data. The key component that
unlocks the usage of such data is the hierarchi-
cal discrete representation of speech that combines
high-level semantic tokens with low-level acoustic
tokens. Using these representations, SPEAR-TTS
casts the TTS problem as a composition of two
sequence-to-sequence tasks, ‘‘reading’’ (from to-
kenized text to semantic tokens) and ‘‘speaking’’
(from semantic tokens to acoustic tokens).

SPEAR-TTS uses audio-only data in three
ways: (a) to train the ‘‘speaking’’ model, such
that the hard task of speech generation benefits
from large-scale data, (b) as a domain for pretrain-
ing, and (c) to generate synthetic parallel data for
backtranslation.

Our experimental study on English data (§ 9)
shows that by combining audio-only data from
LibriTTS (Zen et al., 2019) with 15 minutes
of parallel data sampled from LJSpeech (Ito
and Johnson, 2017), SPEAR-TTS achieves in-
telligibility comparable to that of an adapted
FastSpeech2-LR (Pine et al., 2022) trained on
24 hours of LJSpeech.

Next, our experiments show that SPEAR-TTS
can maintain voice characteristics of a previously
unseen speaker, in a zero-shot manner, with high
accuracy. Indeed, our measurements indicate that
by taking a 3-second-long voice example for a
speaker from LibriSpeech test-clean, SPEAR-TTS
achieves 92.4% accuracy on maintaining the voice
when synthesizing held-out text transcripts, ac-
cording to our speaker classifier. Moreover, when
measuring speaker similarity between prompts
and generated speech, SPEAR-TTS obtains a co-
sine similarity close to the score reported for
VALL-E (Wang et al., 2023) and significantly
higher than the score of YourTTS (Casanova
et al., 2022).

Subjective evaluations of speech naturalness
show that SPEAR-TTS has significantly higher
quality than a strong single-voice baseline even
when trained with 96× less parallel data. More-
over, the MOS score of SPEAR-TTS is on par
with the natural speech. When comparing qual-
ity of the speech synthesized in a zero-shot voice
transfer task, SPEAR-TTS obtains a MOS that is

1714



considerably higher than VALL-E, with 240,000×
less data.

We believe that applying our findings to build-
ing a TTS system for truly low-resource languages
is the main direction for further work.
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Downsample factor 1 2 5 10

CER (%) 1.99 1.99 2.36 2.92

Table 8: CER of SPEAR-TTS on LibriSpeech
dev-clean vs. S2 training data size. We measure
how downsampling LibriLight (Kahn et al., 2020)
before training S2 affects the CER (%).

Appendices

A Influence of the Data Size on S2

In this experiment, we measure how sensitive S2

is to the amount of data used to train it. To this end,
we downsample LibriLight (Kahn et al., 2020) by
factors of 1, 2, 5, and 10 before training S2 mod-
els. All models share the same architecture and
are trained for the same number of updates and we
select the checkpoint with the highest validation
accuracy. Next, we combine the selected check-
points with S1 trained on LibriTTS (Zen et al.,
2019) (with pretraining) and measure intelligibil-
ity of SPEAR-TTS on LibriSpeech dev-clean. We
report results in Table 8. We notice that reducing
the data size 5x starts to affect the performance.

B Computational Cost

The cost of training SPEAR-TTS is dominated by
the pretraining phase: Fitting the pretrained model
took approximately 100 TPU-days with TPUv4
(Jouppi et al., 2023). For a comparison, the second
most computationally demanding job, finetuning
on the backtranslated data, required 20 TPU-hours.
At the same time, the high computational cost of
the pretraining can be offset by using the prepared
model for multiple tasks.

C Speaker Classifier

We use the same speaker classifier as Borsos
et al. (2023), which is a convolutional network
that takes log-mel spectrograms as its input. The
spectrograms are calculated with a window size of
25ms, a hop length of 10ms, and have 64 mel bins.
The network contains 6 blocks, each cascading
convolutions with kernels of 3×1 and 1×3. Each
block is followed by a ReLU non-linearity and
batch normalization (Ioffe and Szegedy, 2015).
The per-block numbers of channels are [64, 128,
256, 256, 512, 512]. The classifier has an input
span of 1 second and, to classify a longer utterance,
we run a sliding window with a hop length of 250
ms and average predictions across the windows.
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