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Abstract

Africa has a very poor doctor-to-patient ra-
tio. At very busy clinics, doctors could see
30+ patients per day—a heavy patient bur-
den compared with developed countries—but
productivity tools such as clinical automatic
speech recognition (ASR) are lacking for these
overworked clinicians. However, clinical ASR
is mature, even ubiquitous, in developed na-
tions, and clinician-reported performance of
commercial clinical ASR systems is generally
satisfactory. Furthermore, the recent perfor-
mance of general domain ASR is approaching
human accuracy. However, several gaps exist.
Several publications have highlighted racial
bias with speech-to-text algorithms and per-
formance on minority accents lags signifi-
cantly. To our knowledge, there is no publicly
available research or benchmark on accented
African clinical ASR, and speech data is non-
existent for the majority of African accents.
We release AfriSpeech, 200hrs of Pan-African
English speech, 67,577 clips from 2,463 unique
speakers across 120 indigenous accents from
13 countries for clinical and general domain
ASR, a benchmark test set, with publicly avail-
able pre-trained models with SOTA perfor-
mance on the AfriSpeech benchmark.

1 Introduction

The African continent and the nearby islands con-
stitute one-fourth of the land surface of the earth
(Lodhi, 1993). Approximately 1.3 billion people
live in Africa, which is about 18% of the world’s
population (Wikipedia contributors, 2023a). Of
the estimated 7,000+ languages and dialects in the
world, over 3,000 languages are found in Africa

†Corresponding Author: tobi@intron.io.

(Wikipedia contributors, 2023b; Heine and Nurse,
2000).

Despite its large and predominantly young pop-
ulation, Africa bears a significant proportion of
the global disease burden (de Graft Aikins et al.,
2010) with multiple socioeconomic factors con-
tributing to high mortality and morbidity rates
(Baingana and Bos, 2006). Healthcare systems are
overburdened and underfunded in many African
countries (Oleribe et al., 2019; Naicker et al.,
2009; Nkomazana et al., 2015), struggling to cope
with the increasing demand for services, while
at the same time facing significant shortages of
trained health workers (WHO, 2022; Ahmat et al.,
2022; Naicker et al., 2010; Nkomazana et al.,
2015; Kinfu et al., 2009; Etori et al., 2023). A
recent study conducted by Ahmat et al. (2022) in
47 African countries shows that the region has a
ratio of 1.55 health workers (physicians, nurses,
and midwives) per 1000 people—3x less than
the WHO-recommended density of 4.45 health
workers per 1000 people.

While technology can help mitigate some of
these problems, Bukachi and Pakenham-Walsh
(2007) and Manyati and Mutsau (2021) aptly
show that although Africa has enjoyed massive
growth in mobile technology, telecommunication,
and internet penetration over the past two de-
cades, healthcare technology lags significantly.

A 2019 systematic review on the use of Au-
tomatic Speech Recognition (ASR) for clinical
documentation in the US from 1990 to 2018 by
Blackley et al. (2019) and other similar studies
(Goss et al., 2019; Blackley et al., 2020; Ahlgrim
et al., 2016; Vogel et al., 2015) showed that the
use of speech recognition led to a 19-92% de-
crease in mean documentation time, 50.3-100%
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decrease in turnaround time, and 17% improve-
ment in documentation quality. However, in the
African context, the lack of training datasets for
many of the 3000+ languages and accents in the
continent remains an obstacle in developing and
adopting robust speech recognition systems for
the general domain and for clinical ASR in par-
ticular (Doumbouya et al., 2021; Siminyu et al.,
2021; Babirye et al., 2022; Ogayo et al., 2022).
While recent efforts have begun to turn this
tide for the majority of African languages like
Swahili, Kinyarwanda, and Yoruba (Gutkin et al.,
2020; Dossou and Emezue, 2021; Olaleye et al.,
2022), over a thousand African languages and
accents remain excluded from global speech re-
search advancements.

Recent single-digit word error rates (WER)
(Chen et al., 2022; Radford et al., 2022; Hsu
et al., 2021; Baevski et al., 2020b) in multiple
SOTA publications and benchmarks on Libri-
speech (Panayotov et al., 2015), TED-LIUM3
(Hernandez et al., 2018), and other datasets us-
ing architectures like Wav2vec2 (Baevski et al.,
2020b), Conformer (Gulati et al., 2020), Trans-
ducer, and Whisper (Radford et al., 2022) contrast
significantly with ASR performance for African
accented speech (Gutkin et al., 2020; Dossou and
Emezue, 2021) (see Figure 2). We explore whether
curating a large pan-African speech corpus might
unlock comparable single-digit performance on
African accents. We restrict this investigation to
accented speech in English because English is the
official language for the medical record in most
Anglophone African countries, expanding the util-
ity of this work to multiple Anglophone African
countries.

Our contributions are as follows:

• We present AfriSpeech-200,1 the first and
most diverse open-source pan-African ac-
cented English speech corpus for clinical and
general domain ASR, providing 200.70 hrs
of accented speech, 67,577 speech-transcript
pairs in 120 African accents across 13 coun-
tries, a benchmark dataset that paves the way
for out-of-distribution, few-shot and zero-
shot analyses on very-low-resource accents.2

1https://huggingface.co/datasets/tobiolatunji
/afrispeech-200.

2AfriSpeech-200 is licensed under a CC BY-NC-SA
4.0 license.

• We present a templating framework to aug-
ment existing corpora with native African
proper nouns and evaluate multiple SOTA
pre-trained models and leading commercial
ASR systems on our benchmark dataset. We
provide in-depth analysis of selected mod-
els to explain their failure modes and offer
helpful insights.

• We fine-tune the best-performing open-
source models and achieve SOTA perfor-
mance on the AfriSpeech benchmark dataset
(108 African accents) as well as show prom-
ising zero-shot performance on very low-
resource accents. We provide best models3

as publicly available pre-trained checkpoints.

2 Related Work

With the advent of large multilingual speech
datasets (Panayotov et al., 2015; Javed et al.,
2022; Chen et al., 2021; Ardila et al., 2020;
Valk and Alumäe, 2021), various research groups
have proposed large self-supervised speech mod-
els such as wav2vec (Schneider et al., 2019),
vq-wav2vec (Baevski et al., 2020a), wav2vec 2.0
(Baevski et al., 2020b), HuBERT (Hsu et al.,
2021), XLSR (Conneau et al., 2021), and XLS-R
(Babu et al., 2022). These models achieved state-
of-the-art performance on many downstream tasks
such as automatic speech recognition (ASR), au-
tomatic speech translation (AST), and language
identification. However, most existing systems
still perform poorly on accented speech (Javed
et al., 2022). Koenecke et al. (2020) further showed
that popular commercial ASR systems—like
Amazon, Apple, Google, IBM, and Microsoft—
exhibit substantial racial disparities in their speech
recognition capabilities. Most ASR systems work
best for native English speakers and their accu-
racy plummets dramatically with non-native En-
glish speakers (Hassan et al., 2022; Prasad and
Jyothi, 2020).

To enhance the performance of accented speech
recognition, various methods have been proposed,
which can be categorized into modeling and
dataset approaches. On the modeling front, there
have been efforts such as dialect-aware ASR mod-
els (Yadavalli et al., 2022), domain adversarial
training (DAT) (Sun et al., 2018), combining DAT

3https://huggingface.co/Seyfelislem/afrispeech
large A100.
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with transfer learning (Chen et al., 2020), us-
ing voice conversion (VC) (Zhang et al., 2022),
combining VC with speed perturbation (Zhang
et al., 2022), and accent pre-training (Acc-PT)
(Das et al., 2021). These efforts, however, pro-
duced marginal improvements and still exhibit
poor generalization capabilities.

Datasets have played a major role in improv-
ing ASR performance. The current SOTA in ASR
(Radford et al., 2022) demonstrated the superior
utility of large supervised datasets. Therefore, to
bridge the ASR performance gap for African ac-
cented speech, multiple dataset creation efforts
(Doumbouya et al., 2021; Siminyu et al., 2021;
Babirye et al., 2022; Ogayo et al., 2022; Gutkin
et al., 2020; Dossou and Emezue, 2021; Afonja
et al., 2021; Kamper and Niesler, 2011; Ibejih et al.,
2022) have been established. However, many
of these datasets are limited in size and diver-
sity. For example, Common Voice (Ardila et al.,
2020) contains less than 10 hours of African
English speech, Li et al. (2021) evaluate on 50
hrs of African accented English (not released),
Sanabria et al. (2023) provide 40 hrs of accented
English, less than 20% is African. Kamper and
Niesler (2011) and De Wet et al. (2007) are lim-
ited to a few South African accents, and Ibejih et
al. (2022) include less than 8 hours, while Afonja
et al. (2021) include less than 2 hours of accented
African English speech. Furthermore, there are
no available benchmarks for clinical ASR for Af-
rican languages, creating a need for evaluation
datasets that help identify areas of improvement
in this domain.

While previous works have primarily focused
on adapting Western accents to African accents,
to the best of our knowledge, there has been
limited research specifically addressing domain
adaptation from a general domain to the clinical
domain in the African context. In this regard,
our work is the first attempt to bridge this gap
and tackle the unique challenges associated with
adapting accented African English ASR systems
to the clinical domain.

3 AfriSpeech Dataset

We introduce AfriSpeech, a Pan-African accented
English speech dataset for clinical and general
domain ASR crowd-sourced from 2,463 African
speakers, 200.70 hrs with an average audio du-
ration of 10.7 seconds. Speaker, gender, age

Country Clips Speakers Hours
Nigeria 45875 1979 142.40

Kenya 8304 137 20.89

South Africa 7870 223 22.69

Ghana 2018 37 5.16

Botswana 1391 38 3.96

Uganda 1092 26 2.89

Rwanda 469 9 1.47

United States4 219 5 0.53

Turkey5 66 1 0.18

Zimbabwe 63 3 0.18

Malawi 60 1 0.15

Tanzania 51 2 0.18

Lesotho 7 1 0.02

Table 1: Contributions by country showing speak-
ers, number of clips, and speech duration in
seconds and hours.

group, and clip domain distributions are shown in
Table 2. In the following subsections, we describe
the dataset creation process.

3.1 Focus Languages
We conducted an investigation on 120 African
accents across 13 countries including the United
States and Turkey. These accents originate from
languages that belong to five language families,
as documented by Eberhard (Eberhard et al.,
2019): Afro-Asiatic, Indo-European, Khoe-Kwadi
(Hainum), Niger-Congo, and Nilo-Saharan. This
selection represents the diverse linguistic land-
scape across western, eastern, and southern Africa.
In Table 1, we provide an overview of the num-
ber of clips, speakers, and hours of data per
country, with Nigerian accents constituting 67%
of the dataset. Since some languages are spoken
across several countries (e.g., Swahili, isiZulu,
Hausa, and Luganda), accents are not unique to
countries.

3.2 Obtaining AfriSpeech Transcripts
Neural network models learn concepts from
training data. Where the training data is predom-
inantly Western (e.g., Common Voice [Ardila

4Although the self-reported country from the speakers is
the United States, their reported accents, namely, Yoruba and
Igbo, is mostly spoken in the western part of Africa.
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et al., 2019]), the resulting ASR systems fail to
capture important pan-African contexts. For ex-
ample, ASR systems fail woefully at transcrib-
ing African names like ‘‘Ogochukwu’’ (Igbo),
‘‘Malaika’’ (Swahili), or ‘‘Uwimana’’ (Rwandan),
while excellently transcribing Western names like
‘‘Lauren’’ and ‘‘Bryan’’—representative of the
bias in their training corpora. To solve the prob-
lem of scarce African-centric text in the general
and clinical domains, we created AfriSpeech us-
ing the following strategies.

3.2.1 Finding Available Transcripts
Our first task was to supplement existing large
multi-domain corpora with African-centric text.
Our first target was Wikitext-103 (Merity et al.,
2016), a collection of over 100 million tokens
extracted from the set of verified ‘‘good’’ and
‘‘featured’’ articles on Wikipedia curated by
Salesforce. We split this corpus on sentence
boundaries and randomly sampled sentences for
our transcript corpus. Our next strategy was web
scraping. We crawled and scraped major African
news websites across multiple African countries
on topics like politics, entertainment, sports, reli-
gion, education, etc. In contrast to Wiki-text, the
resulting corpus contained several African names,
cities, and highly relevant vocabulary applicable
to real-world use cases for downstream ASR. By
scraping health-focused websites and health sec-
tions of news websites, we were able to get con-
tent from the clinical domain, albeit very little.

To increase clinical content representation, we
focused on two multi-specialty biomedical da-
tasets: PubMed (Wheeler et al., 2007) and the
NCBI disease (Doğan et al., 2014). We split these
corpora on sentence boundaries and randomly
sampled sentences for our transcript corpus.

3.2.2 Finding African Entities
We sourced for African-centric entities in two
places: First, we leveraged an existing database of
over 90,000 African names from the transatlan-
tic slave trade between 1808 and 1863 (Anderson
et al., 2013), which increased our coverage of
African names, phonemes, and morphemes. We
then used Okagbue et al.’s (2017) dataset of 965
Igbo names collected to reflect the dialectal clas-
sification of Igbo people and supplemented it with
1,000 more Nigerian names from other cultures

5Even though the reported country is Turkey, the reported
Zulu accent is mostly spoken in the southern part of Africa.

such as Yoruba, Hausa, Fulani, Tiv, Efik, Ibibio,
etc. These names were obtained from freely avail-
able textbooks, online baby name websites, oral
interviews, published articles, and online forums
like Instagram and Twitter. Finally, we obtained a
list of African cities from Wikipedia (Wikipedia
contributors, 2023c).

3.2.3 AfriSpeech Templates
The web scraping corpus was highly relevant
but small. In the larger biomedical and Wiki-
text datasets, African content was sparse. We,
therefore, sought to increase the utility of the
curated corpora by creating ‘‘Africanized’’ ver-
sions. Several studies have demonstrated the
utility of ‘‘templates’’ as an effective way to
create richer, more expressive training datasets,
especially for Question-Answering and prompt
engineering (Pawar and Shrawankar, 2016; Brown
et al., 2020; Yao et al., 2022) and named entity
recognition (Davody et al., 2022). Inspired by this
approach, we augment our dataset by sampling
sentences from the corpora described above in
addition to template sentences contributed by pro-
fessional clinicians, hand-crafting a total of 140
template sentences. For each template sentence,
we masked proper nouns (first names, last names,
organizations, and cities), replacing them with
their corresponding NER tags [PER, ORG, LOC].
We then randomly replaced the masked tokens
with African-centric entities—African names and
cities, derived from section 3.2.2 above, as well as
common tropical diseases and medications. Each
template sentence was reused 200 times. A ran-
dom subset was sampled, sent as prompts for
recording, and included with this release. Tem-
plated sentences represent approximately 30% of
this corpus.

3.3 Audio Recording

Collection: Inspired by Common-Voice (Ardila
et al., 2019) and SautiDB (Afonja et al., 2021),
we developed and deployed a web-based ap-
plication in Python/Flask (Figure 1) to collect
crowd-sourced speech samples. The application
also facilitates tracking of completion status,
user demographics, reviews, and quality control.
The app presents randomly selected sentences
(prompts) to the speakers and prompts them to
record their voices while reading the text. The
speech recordings are persisted as mono-channel,
16-bit wav files, with a 48 kHz sampling rate.
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Figure 1: Intron Online Recording platform.

Speaker Gender Ratios - # Clip %
Female 57.11%

Male 42.41%

Other/Unknown 0.48%

Speaker Age Groups - # Clips
<18yrs 1,264 (1.87%)

19–25 36,728 (54.35%)

26–40 18,366 (27.18%)

41–55 10,374 (15.35%)

>56yrs 563 (0.83%)

Unknown 282 (0.42%)

Clip Domain - # Clips
Clinical 41,765 (61.80%)

General 25,812 (38.20%)

Table 2: Dataset statistics.

Post-processing tasks were performed on the au-
dio recordings to remove samples shorter than
2 seconds and longer than 17 seconds. Raw
unedited samples are provided as part of this
release. Speakers in this dataset have been de-
identified. Demographic information available in-
cludes gender, age group, accent, and country.

Annotation Instructions Recorder demograph-
ics are presented in Table 2. Instructions were
provided to crowd-sourced recorders as detailed
in Appendix A.2. Notably, the recorders were
instructed to read punctuation marks in full and
encouraged to use their natural accent.

3.4 Quality Control
Projects: Transcripts were bucketed into
projects to separate clinical from general domain
prompts. This approach maximized the time value
of clinician contributors focusing their efforts
more on medical prompts.

Reviewers: We hired a team of human re-
viewers who up-voted or down-voted clips to
indicate quality. Text feedback was also provided
to recorders in 30% of cases where negative feed-
back was indicated. The text feedback contained
the reason for the down-vote and was intended to
help recorders improve future recording quality.

Guest Clip Review: New recorders were admit-
ted as guests and allowed to record a maximum
of 200 clips before quality review. Ten to 30 clips
were reviewed per guest and those who passed
review were promoted to a ‘‘Paid’’ status.

Paid Clip Review: In the paid category, users
were allowed a maximum of 200 clips before a
temporary pause for quality check. During the
temporary suspension, reviewers randomly re-
viewed 10% of the speech samples provided and
positive, negative, or text feedback was provided.
Access was restored if quality remained satis-
factory, or users were blacklisted if over 30% of
clips reviewed were down-voted.

Delisting Problematic Sentences: Where an
audio clip receives a down-vote, the correspond-
ing sentence is released for re-recording by a
different user. If a clip recorded for the same
sentence receives a second down-vote, the tran-
script itself is blacklisted.

4 Experiments

4.1 Data
AfriSpeech-200 is a manually reviewed and
curated subset, representing 7% of the total
AfriSpeech dataset, intended as an initial public
release to stimulate research into African clinical
and general domain ASR for accents with little
or no representation in speech research. Table 1
shows the distribution of clips, unique speakers,
and hours by country.

As shown in Table 3, the train, test, and de-
velopment sets are bucketed such that any given
speaker may appear in only one. This ensures that
contributors seen at train time are not seen at test
time, which would skew the results.
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Item Train Dev Test
# Speakers 1466 247 750

# Hours 173.4 8.74 18.77

# Accents 71 45 108

Avg secs/speaker 425.80 127.32 90.08

clips/speaker 39.56 13.08 8.46

speakers/accent 20.65 5.49 6.94

secs/accent 8791.96 698.82 625.55

# general domain 21682 1407 2723

# clinical domain 36318 1824 3623

Table 3: Dataset splits showing speakers, number
of clips, and speech duration in Train/Dev/Test
splits.

4.2 Benchmarks

We compare SOTA open-source pre-trained ASR
models, Whisper (Radford et al., 2022), Wav2vec2
(Baevski et al., 2020b), XLSR (Babu et al., 2022),
Hubert (Hsu et al., 2021), WavLM (Chen et al.,
2022), Conformer (Gulati et al., 2020), and
CRDNN-RNNLM (Ravanelli et al., 2021), with
commercial clinical and non-clinical ASR sys-
tems. We refer readers to read the respective
papers for details on pretraining corpora, model ar-
chitecture, and hyperparameters. For each model,
we compare performance (WER) on Librispeech
test-clean partition (Panayotov et al., 2015) with
WER on the AfriSpeech dev and test sets.
Single-run results are provided.

4.3 Fine-tuning

Based on the benchmark results in Table 4
and GPU memory constraints, 2 top performing
open-source model architectures were selected
for fine-tuning. Although commercial ASR sys-
tems outperformed many open-source models,
they are excluded from fine-tuning experiments
because their model architectures and underlying
pre/post-processing logic are unknown.

Selected Model Architectures

1. wav2vec-large-xlsr-53 (Grosman, 2021): an
Encoder-decoder architecture with CNN-
based feature extractor, code book, and
transformer-based encoder, 378.9M parame-
ters; LR 1e-4.

2. whisper-medium (Radford et al., 2022): a
Decoder-only multi-task architecture, 789.9m
parameters; LR 2.5e4.

For each model, we fine-tuned with FP16,
AdamW (Loshchilov and Hutter, 2017), batch
size of 16, for 10 epochs, with a linear learning
rate decay to zero after a warmup over the first
10% of iterations. We fine-tune and evaluate on 3
domains: (1) general (25,812 clips), (2) clinical
(41,765 clips), and (3) both (67,577 clips). We
train on each domain and test across all 3 domains
to investigate the effect of out-of-domain data on
model performance. XLSR models were trained
on a single Tesla T4 GPU with 16GB GPU mem-
ory while Whisper and Conformer models were
trained on RTX8000 GPU with 48GB GPU mem-
ory. Fine-tuning took 24-48 hrs for all domains.

4.4 Model Vocabulary

Most pre-trained models define a limited vocab-
ulary of only Latin alphabets with no numbers
or punctuation (Baevski et al., 2020b). In stark
contrast, numbers are critical in healthcare, e.g.,
blood pressure 130/80 mmHg, or Lab results 0.428
mmol/L. Eliminating all numerical references in
clinical text is dangerous and counterproductive.
Post-processing to convert all numerical values
to long form is imperfect so we retain numbers
in their original form. For fine-tuning experi-
ments, we define an alphanumeric vocabulary
with semantically important punctuations, char-
acters, and symbols commonly used in medical
practice (colon, question mark, plus, etc.).

4.5 Evaluation

We report our results as WER on AfriSpeech dev
and test sets in addition to domain and accent-
specific performance. Results are compared with
Librispeech (Panayotov et al., 2015) test set per-
formance. We also report the zero-shot perfor-
mance of fine-tuned models on unseen accents in
the test set.

5 Results and Discussion

5.1 Africa-centric Fine-tuning
Improves Robustness

As shown in Table 4, compared with its pre-trained
version, xlsr-53 fine-tuned on general domain
speech (AfriSpeech-general) yields 53.4% relative
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Model Params Training/Fine-tuning
Corpora

ls-clean Dev (45 accents) Test (108 accents)

General Clinical Both General Clinical Both

Open-Source SOTA Models
openai/whisper-large 1550M Multi, 680k hrs 0.167 0.235 0.287 0.261 0.240 0.375 0.306

openai/whisper-medium 769M Multi, 680k hrs 0.166 0.246 0.300 0.273 0.276 0.392 0.332

openai/whisper-medium-en 769M Multi, 680k hrs 0.169 0.267 0.315 0.291 0.304 0.414 0.358

openai/whisper-small 244M Multi, 680k hrs 0.167 0.313 0.372 0.343 0.330 0.455 0.391

openai/whisper-small-en 244M Multi, 680k hrs 0.167 0.319 0.384 0.352 0.350 0.482 0.414

nvidia/stt-en-conformer-ctc-large 118M Multi, 10 0.210 0.410 0.486 0.448 − − −
nvidia/stt-en-conformer-transducer-large 139M Multi, 10 0.150 0.408 0.477 0.443 − − −
jonatasgrosman/wav2vec2-large-xlsr-53-english 317M Multi, 3 0.100 0.498 0.561 0.530 0.506 0.650 0.576

jonatasgrosman/wav2vec2-xls-r-1b-english 317M Multi, 4 0.087 0.502 0.571 0.537 0.521 0.670 0.594

facebook/wav2vec2-large-960h-lv60-self 317M Single, 2 0.051 0.512 0.587 0.550 0.533 0.694 0.611

facebook/hubert-xlarge-ls960-ft 1B Single, 1 0.052 0.531 0.610 0.571 0.562 0.725 0.641

patrickvonplaten/wavlm-libri-clean-100h-large 317M Single, 1 0.091 0.606 0.679 0.643 0.631 0.783 0.705

facebook/wav2vec2-large-960h 317M Single, 1 0.062 0.610 0.695 0.652 0.641 0.797 0.717

facebook/wav2vec2-large-robust-ft-swbd-300h 317M Single, 5 0.093 0.689 0.778 0.734 0.733 0.906 0.817

Commercial ASR APIs
Azure − − 0.438 0.468 0.453 0.340 0.444 0.391

AWS − − 0.332 0.437 0.385 0.354 0.536 0.442

GCP − − 0.132 0.494 0.565 0.530 0.534 0.624 0.578

Commercial Clinical ASR APIs
AWS [Medical] (Primary Care) − − 0.385 0.416 0.400 0.439 0.520 0.478

GCP [Medical] − − 0.550 0.475 0.512 0.567 0.537 0.552

Ours
facebook/wav2vec2-large-xlsr-53-english-general 317M + AfriSpeech-general 0.253 0.254 0.437 0.347 0.236 0.468 0.349

facebook/wav2vec2-large-xlsr-53-english-clinical 317M + AfriSpeech-clinical 0.415 0.437 0.312 0.374 0.424 0.308 0.368

facebook/wav2vec2-large-xlsr-53-english-all 317M + AfriSpeech 0.314 0.295 0.308 0.302 0.279 0.308 0.293

openai/whisper-medium-general 769M + AfriSpeech-general 0.351 0.205 0.486 0.347 0.186 0.525 0.351

openai/whisper-medium-clinical 769M + AfriSpeech-clinical 0.568 0.491 0.264 0.376 0.464 0.266 0.368

openai/whisper-medium-all 769M + AfriSpeech 0.418 0.213 0.241 0.227 0.192 0.242 0.216

Table 4: Results showing selected models, number of parameters, number of pre-training/fine-tuning
corpora [‘‘Multi’’ refers to multilingual or multi-task], Librispeech (Panayotov et al., 2015) test clean
WER and AfriSpeech dev and test set performance for open-source, commercial ASR models, and
fine-tuned models (Ours). Missing values indicate incomplete or failed experiments.

improvement. Xlsr-53 fine-tuned on clinical do-
main speech (AfriSpeech-clinical) yields 52.6%,
and xlsr-53 fine-tuned on the combined domains
(AfriSpeech-all) yields 49.1% relative improve-
ment. The trend is similar with pre-trained
Whisper-medium, yielding 32.6% relative im-
provement on the general domain, 32.1% on the
clinical domain, and 34.9% when finetuned on
combined domains.

5.2 Training Data Bias

In the Open-Source section of Table 4, AfriSpeech
dev and test set performance correlates with the
number and diversity of pre-training datasets. For
example, Wav2vec2 models trained exclusively
on Librispeech significantly underperform when
compared with those trained on multiple (Baevski
et al., 2020b) or multilingual corpora (Babu et al.,
2022). Models trained on multilingual or multi-
task corpora (Radford et al., 2022; Gulati et al.,
2020) learn more useful representations, are more
linguistically diverse, are more robust, and gen-
eralize better to accented speech.

5.3 Clinical ASR is Sensitive to
Model Vocabulary

As mentioned in Section 4.4, most ASR mod-
els tend to transcribe numbers in their extended
forms, which have a detrimental effect on their
WER as shown in Table 4, particularly in the
clinical domain where numerical values need
to be transcribed accurately (columns 6 & 9).
However, ASR models with a larger vocabulary,
such as Whisper, Commercial ASR models, and
our fine-tuned models, demonstrate superior per-
formance by effectively transcribing numbers in
clinical speech and converting them into correct
numeric representations.

5.4 Punctuation Prediction is Critical for
Clinically Useful ASR

Medical documents typically follow preset se-
quence and formatting, for example, patient
history, general examination, laboratory inves-
tigation, etc., separated by new lines, section
titles, or semi-colons. Punctuation commands such
as ‘‘Next line’’, ‘‘full stop’’ (.), ‘‘query’’ (?),
‘‘comma’’ (,), ‘‘colon’’ (:) are frequently used

1675



Accent Samples OpnSrc Commercial Ours

Whisper Azure GCP AWS Whisper

Niger-Congo
Ukwuani 119 0.364 0.393 0.677 0.484 0.244
Eggon 100 0.254 0.316 0.616 0.359 0.122
Bini 76 0.830 0.840 0.916 1.061 0.412
Yoruba, hausa 75 0.462 0.367 0.463 0.437 0.133
Ekpeye 70 0.376 0.406 0.582 0.539 0.190
Bajju 61 0.229 0.323 0.428 0.378 0.171
Ikulu 60 0.406 0.388 0.650 0.543 0.195
Jaba 59 0.462 0.475 0.798 0.529 0.268
Ekene 55 0.414 0.350 0.673 0.519 0.192
Agatu 54 0.734 0.725 0.903 0.793 0.387
Ijaw(nembe) 49 0.478 0.529 0.743 0.675 0.275
Delta 48 0.384 0.351 0.724 0.473 0.205
Igarra 45 0.591 0.539 0.839 0.687 0.258
Khana 45 0.539 0.584 0.761 0.785 0.318
Gbagyi 42 0.327 0.461 0.633 0.475 0.195
Jukun 42 0.182 0.234 0.415 0.244 0.122
Brass 39 0.147 0.269 0.357 0.309 0.131
Afro-Asiatic
Mada 78 0.485 0.560 0.684 0.634 0.236
Mwaghavul 67 0.444 0.513 0.690 0.613 0.235
Angas 58 0.605 0.580 0.862 0.653 0.343

Table 5: Zero shot (OOD) accents. Test set WER
on top 20 accents absent from the training set
for open-source (OpnSrc), commercial, and fine-
tuned ASR models (Ours).

in healthcare dictations to add structure to doc-
uments. ASR systems without support for such
commands force clinicians to review every line
of the ASR transcript to add/revise punctuations
and document structure, prolonging documenta-
tion time and patient wait time (Sunkara et al.,
2020). As a result, commercial clinical ASR sys-
tems supporting these commands are preferable
and outperform general-purpose models.

5.5 Commercial ASR APIs are Not So Global
The 3 large commercial ASR systems evaluated
in this study have global presence. Millions of
African Android users have access to Voice typing
through the Google keyboard and Microsoft Word
users have access to its ASR engine. Table 6
compares the performance of these ASR APIs
on majority African accents and we show that
despite their global presence, performance lags
significantly on some of Africa’s most populous
accents like Swahili and Yoruba.

5.6 Domain Adaptation
Pre-trained whisper models performed better
on general domain speech (AfriSpeech-general)
when compared with the clinical domain, demon-
strating the relative domain-driven difference in
difficulty despite the robust training data for
Whisper models (680k hours, 90 languages).
Cross-domain fine-tuning yields significant gains

helping to somewhat bridge this gap. Our results
agree with prior work on domain adaptation (Sun
et al., 2017; Abdelwahab and Busso, 2015) show-
ing that models trained exclusively on clinical
data improve when general domain data is added.
Whisper shows 9% relative improvement on the
clinical domain with the addition of general do-
main data. However, this trend is reversed with
general domain data. Adding speech from the clin-
ical domain leads to a 3% and 18.2% relative drop
for Whisper and xlsr-53, respectively. Domain
adaptation is no silver bullet. Care must be taken
to apply this approach where benefits outweigh
risks.

5.7 Accent-level Performance

Table 6 shows test set performance on the top
23 AfriSpeech accents grouped by their lan-
guage families. We report the results for open-
source, commercial, and fine-tuned ASR models.
Fine-tuned models (ours) average relative im-
provement is 26.7% over the open-source ASR
models and 36.5% over the commercial ASR
models. For several accents, we observe that the
whisper model fine-tuned with our AfriSpeech
dataset shows the best overall performance with
an average relative improvement of 16.2% across
all accents, except in 4 South African languages
(Zulu, isiZulu,6 Tswana, Afrikaans), Luo, and
Kinyarwanda, where the fine-tuned model under-
performs compared to the pretrained whisper
model and commercial Azure model performs
best on Luo accent. Although counter-intuitive, it
is possible these accents are highly represented
in Whisper pre-training data and require further
investigation.

5.8 Zero-Shot Performance

We further explore generalizability to unseen
accents, i.e., out-of-distribution (OOD) accents.
Table 5 shows the results for the top 20 OOD
accents in the test set. We observe an impressive
44.4% relative performance improvement across
all OOD accents with our fine-tuned Whisper

6We note that both Zulu and isiZulu are the same but they
are labeled differently in our dataset. We further discuss this
in the Limitations section.
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Accent Country Test Samples Train Samples Open Source Commercial Ours, Finetuned
xlsr-53 whisper Azure GCP AWS XLSR Whisper

Niger-Congo
Yoruba [NG] 575 14233 0.576 0.327 0.364 0.581 0.421 0.291 0.218
Swahili [KE, TZ, UG, ZA] 485 5484 0.448 0.192 0.307 0.436 0.305 0.244 0.181
Igbo [NG] 319 8068 0.564 0.338 0.393 0.563 0.441 0.273 0.197
Zulu [TR, LS, ZA] 156 1309 0.471 0.223 0.329 0.477 0.345 0.315 0.237

Setswana [BW, ZA] 96 1275 0.448 0.208 0.288 0.446 0.300 0.291 0.234

Isizulu [ZA] 88 779 0.457 0.182 0.254 0.406 0.292 0.265 0.206

Ijaw [NG] 77 2371 0.608 0.364 0.372 0.671 0.446 0.321 0.238
Luhya [KE] 69 426 0.538 0.310 0.548 0.489 0.427 0.296 0.245

Twi [GH] 54 1321 0.504 0.184 0.382 0.510 0.361 0.236 0.177
Idoma [NG] 53 1767 0.607 0.384 0.424 0.639 0.543 0.294 0.243
Luganda [KE, UG, BW] 44 529 0.525 0.320 0.362 0.526 0.378 0.381 0.277
Tswana [BW, ZA] 34 289 0.362 0.184 0.265 0.425 0.267 0.249 0.241

Akan (fante) [GH] 29 230 0.732 0.418 0.425 0.803 0.604 0.290 0.197
Kikuyu [KE] 24 163 0.406 0.160 0.275 0.387 0.300 0.221 0.126
Xhosa [ZA] 17 342 0.498 0.265 0.322 0.332 0.389 0.318 0.237
Sepedi [ZA] 17 176 0.651 0.373 0.394 0.659 0.458 0.414 0.285
Kiswahili [KE] 16 811 0.466 0.159 0.389 0.394 0.274 0.173 0.163

Urhobo [NG] 15 578 0.551 0.378 0.423 0.678 0.423 0.345 0.210
Nembe [NG] 14 546 0.571 0.352 0.449 0.556 0.449 0.372 0.296
Kinyarwanda [RW] 14 439 0.495 0.216 0.338 0.527 0.437 0.369 0.311

Afro-Asiatic
Hausa [NG] 168 5453 0.627 0.358 0.457 0.633 0.488 0.320 0.243
Indo-European
Afrikaans [ZA] 49 1911 0.373 0.142 0.202 0.443 0.209 0.283 0.211

Nilo-Saharan
Luo [UG, KE] 12 179 0.411 0.234 0.229 0.343 0.343 0.309 0.234

Table 6: Test set performance per accent for open-source, commercial, and fine-tuned ASR models.

model compared to the baselines and 49.8%
average relative improvement over the commer-
cial models (Azure, GCP, AWS). These results
demonstrate significant generalizability gains are
achievable with better training data diversity.

5.9 Take SOTA LibriSpeech Results with a
Grain of Salt

Figure 2 contrasts LibriSpeech and AfriSpeech
WER for several models. Many ASR leader-
boards rank ASR models based on single-digit
LibriSpeech (Panayotov et al., 2015) WER.
Pre-trained ASR models, therefore, overfit to
LibriSpeech at the expense of robust ASR per-
formance for all people. As seen in Table 4,
several models are 3-10x worse on African ac-
cented speech with the exception of multi-lingual
or multi-task models like Whisper, Conformer,
and XLSR.

6 Limitations and Future Work

Limited Clinical Subdomains: Although this
dataset includes a variety of clinical text, sev-
eral specialties are not represented. As a result,
ASR performance may vary between clinical
specialties.

Read Speech: All audio samples in this release
are read based on text prompts. Without appro-
priate augmentation, ASR Models trained on this
dataset may underperform with conversational or
spontaneous speech.

North-African Accents are not included in this
work. Because of the distinct nature of those
accents, performance on sub-Saharan accents may
not necessarily generalize to the Northern African
Region.

Self-reported Accents: Similar to Common-
Voice, recorders self-report their native tongue
in free-text making it difficult to map to ISO-3 in
all cases. Some users also reported their accents
as ‘‘French’’, ‘‘English’’, ‘‘South African En-
glish’’, or a combination of accents. Although we
attempted to clean and normalize the self-reported
languages, this process was by no means perfect.
As a result, accent names sometimes overlap (e.g.,
Zulu and IsiZulu). Further cleanup could be done
to consolidate these closely related accents. The
dataset release will therefore include a normal-
ized accent field for each sample.

Medical Abbreviations are Inconsistent:
Since crowd-sourced recorders had varying lev-
els of familiarity with the prompts, abbreviations
like ‘‘Breast CA’’ may be pronounced fully as
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Figure 2: WER on LibriSpeech vs AfriSpeech for selected pre-trained models and commercial ASR systems.

‘‘Breast Cancer’’ or ‘‘Breast see-A’’. Since ab-
breviations abound in medical text and WER is
not robust to such idiosyncrasies, models with
correct predictions, e.g., ‘‘Breast Cancer’’ are
sometimes wrongly penalized where the tran-
script reads ‘‘Breast CA’’.

Integrating ASR in Healthcare Settings is
Challenging: Cloud-based ASR presents some
well-known challenges in healthcare. Privacy is a
major concern as there is a risk of unauthorized
or malicious third-party access to confidential
patient information. Furthermore, the perceived
higher value of healthcare data among malefac-
tors also heightens security risks for hospitals
and ASR vendors. Additionally, Unethical ASR
vendors could misuse confidential data for model
training and development without proper consent.

7 Ethical Considerations

Clinical ASR models can improve productivity for
clinicians, they can also increase documentation
errors, especially through incorrect transcription
of numbers, fractions, dates, and proper nouns
which have legal, safety, and prognostic implica-
tions in healthcare. We caution clinicians to use
ASR with full discretion and review transcripts
carefully before final submission into the med-
ical record. We release AfriSpeech hoping that

it will be beneficial to clinical and non-clinical
use cases within and outside Africa, improving
ASR performance for accented speech and it may
contain biases due to publicly available datasets.
We do not have access to reviewers who are na-
tive speakers of most of the languages covered in
AfriSpeech who can provide a rigorous review of
self-reported accents. This hinders our ability to
investigate samples from all languages. We hope
that future users of the dataset will further inves-
tigate AfriSpeech’s utility and quality for their
languages.
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A Appendix

A.1 Transcript Preprocessing

Date and Time Replacement: Dates are a criti-
cal part of clinical documentation as they typically
contain several references to dates and times, for
example, date of admission, date of discharge,
time of death, and so on. Sampled subsets of sen-
tences containing data and time references from
the clinical and general domain were randomly
replaced with random dates and times in different
formats including ‘‘10/12/1999’’, ‘‘10th Decem-
ber, 1999’’, ‘‘10th Dec, 1999’’, ‘‘10-12-1999’’,
‘‘Mon 10 Dec, 1999’’, ‘‘Monday 10th December,
1999’’. Similar timestamp variations were added
to our templates.

Cleaning: Final corpus was pre-processed and
cleaned by splitting on sentence boundaries,
normalizing spaces, removing carriage return
characters, removing non-alphanumeric charac-
ters except those with important structural or
semantic meaning in the clinical domain such
as question marks, parenthesis, colon, a hyphen,
plus sign, and greater/lesser than sign. We re-
moved transcripts with less than 5 characters and
greater than 300 characters.

Privacy and Patient Information: Although
the clinical corpora used were already anonym-
ized, we re-examined several sentence samples
for inadvertent exposure of patient names.
Anonymized datasets with de-identification to-
kens like [NAME] and [DATE] were replaced
with African names and randomly generated dates
as described above.

A.2 Annotation Instructions

Recorders were provided with the following
instructions:

Accuracy It is very important that the recorded
words match the text in the script exactly. If
you accidentally deviate from the script, become
unsure, or lose track of your thought, please delete
and record the prompt again.

Punctuations All punctuations should be pro-
nounced in full, not just observed. That is, when
reading a text sample that contains punctuation,
you say ‘‘comma’’, ‘‘full stop’’, ‘‘semi-colon’’,
‘‘colon’’, ‘‘slash’’, ‘‘hyphen’’, ‘‘question mark’’,
‘‘exclamation mark’’, and so on as appropriate.
Brackets should be pronounced as ‘‘open bracket’’
or ‘‘close bracket’’.

Punctuation Exclusions/Exceptions to the
above rule: In measurements or units like
‘‘mg/dl’’, please say ‘‘milligram PER dl’’ NOT
‘‘milligram slash dl’’. In situations where ‘‘?’’ is
used to represent ‘‘query’’, please say ‘‘query’’
NOT ‘‘question mark’’.

Abbreviations Pronounce common short-hand
forms (such as r/o, prn, tds, PO, mg, W/O), dates,
times, and numbers as you would in a clinical
setting. For example, ‘‘r/o’’ should be pronounced
‘‘rule out’’ as usual not ‘‘arr slash ohh’’. Common
a Abbreviations SHOULD be pronounced in full.
‘‘CT’’ should be pronounced ‘‘see tee’’ as usual
NOT ‘‘Computed Tomography’’. ‘‘CXR’’ should
be pronounced ‘‘Chest Xray’’ as usual NOT ‘‘see
ex arr’’ ‘‘mmHg’’ should be pronounced in full
as ‘‘millimeters of mercury’’. Pronounce CA as
‘‘Carcinoma’’ NOT ‘‘See Ay’’.

Tone Also be sure to use your natural accent.
The goal is to build a speech-to-text system that
understands African accents. This tool is for us.
Be natural.

Speed Do not speak unrealistically fast. While
an increased reading speed is recommended, take
care to avoid vocal fatigue from rushing through
the phrases at lightning speed! This will only result
in a lower-quality voice. Record a maximum of 2
hours a day, taking a break every half hour.
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A.3 Annotator Management
Consent Recorders signed a Terms of Use
agreement and consented to the privacy policy
on the recording platform.

Payment Recorders were paid $5 to $10 per
hour depending on task difficulty and clinical
experience. Most recorders considered payment
satisfactory compared with task difficulty.

A.4 AfriSpeech Vocabulary
AfriSpeech models use a 50-character vocab in-
cluding numbers and punctuations and symbols
with important semantic roles in healthcare.

‘‘-’’, ‘‘w’’, ‘‘a’’, ‘‘7’’, ‘‘,’’, ‘‘0’’, ‘‘d’’, ‘‘i’’,
‘‘:’’, ‘‘p’’, ‘‘g’’, ‘‘u’’, ‘‘(’’, ‘‘5’’, ‘‘1’’, ‘‘e’’, ‘‘9’’,
‘‘j’’, ‘‘b’’, ‘‘3’’, ‘‘s’’, ‘‘’’’, ‘‘h’’, ‘‘o’’, ‘‘+’’, ‘‘l’’,
‘‘v’’, ‘‘y’’, ‘‘q’’, ‘‘n’’, ‘‘2’’, ‘‘r’’, ‘‘f’’, ‘‘m’’,
‘‘%’’, ‘‘t’’, ‘‘/’’, ‘‘6’’, ‘‘z’’, ‘‘?’’, ‘‘8’’, ‘‘)’’, ‘‘x’’,
‘‘.’’, ‘‘4’’, ‘‘c’’, ‘‘k’’, ‘‘|’’, ‘‘[UNK]’’, ‘‘[PAD]’’.
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