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Abstract

Natural language generation has witnessed sig-
nificant advancements due to the training of
large language models on vast internet-scale
datasets. Despite these advancements, there
exists a critical challenge: These models can
inadvertently generate content that is toxic, in-
accurate, and unhelpful, and existing automatic
evaluation metrics often fall short of identify-
ing these shortcomings. As models become
more capable, human feedback is an invalu-
able signal for evaluating and improving mod-
els. This survey aims to provide an overview
of recent research that has leveraged human
feedback to improve natural language genera-
tion. First, we introduce a taxonomy distilled
from existing research to categorize and orga-
nize the varied forms of feedback. Next, we
discuss how feedback can be described by its
format and objective, and cover the two ap-
proaches proposed to use feedback (either for
training or decoding): directly using feedback
or training feedback models. We also dis-
cuss existing datasets for human-feedback data
collection, and concerns surrounding feedback
collection. Finally, we provide an overview of
the nascent field of AI feedback, which uses
large language models to make judgments
based on a set of principles and minimize the
need for human intervention. We also re-
lease a website of this survey at feedback-gap
-survey.info.

1 Introduction

For generation systems to be widely useful, they
must generate text that is not only fluent and
high-quality, but also well-aligned with human
desires and specifications (Vamplew et al., 2018;
Hendrycks et al., 2020; Kenton et al., 2021;
Turner et al., 2022; Ngo, 2022). Achieving such

ambitious goals requires large language mod-
els (LLMs) to evolve beyond traditional training
methods. Recent improvements in this space have
centered on incorporating human feedback (Bai
et al., 2022b; Ouyang et al., 2022; OpenAI, 2023a),
intended to serve as a guiding force toward the
desired outcomes, much like feedback mecha-
nisms in physical machines (Åström and Murray,
2021).

Typically, state-of-the-art language generation
systems are obtained by training probabilistic,
autoregressive LLMs on massive amounts of
data using maximum likelihood estimation (MLE).
However, the data used to train these models is
generally scraped from the Internet, often con-
taining noise, social biases, and errors (Bolukbasi
et al., 2016; Dodge et al., 2021). This combination
may result in a misspecification of target behav-
ior (Kenton et al., 2021), and may lead to mod-
els that generate toxic, inaccurate, and unhelpful
content (Sheng et al., 2019; Bender et al., 2021).

The evaluation challenge is compounded as
these models are often assessed by automatic met-
rics that rely on superficial features such as word
overlap with reference text. However, these met-
rics often fail to correlate with human-perceived
text quality, particularly when models are overly
optimized for these metrics (Schluter, 2017;
Mathur et al., 2020; Gehrmann et al., 2022;
Paulus et al., 2017; Amrhein and Sennrich, 2022).1

Considering human-perceived quality can help
bridge the gap between machine and human
generated text and better align the system with de-
sired outcomes (Rosenblueth et al., 1943; Wiener,
1948).

1This is sometimes called Goodhart’s law: ‘‘when a
measure becomes a target, it ceases to be a good measure’’
(Goodhart, 1984).
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Feedback, as a concept, encompasses a wide
range of interpretations (Wiener, 1948); however,
some universal characteristics can be identified,
such as its format, its intended results, and the
ways it is utilized as a part of the model develop-
ment process. In this survey, we focus on the role
of human feedback for improving language gen-
eration. We start by formalizing human feedback,
creating a taxonomy of feedback types and uses
(§2). We characterize feedback by its format and
objective, relating to desired model behavior (§3).
We explore direct feedback optimization strate-
gies, such as reinforcement learning with human
reward functions (§4) and indirect approaches uti-
lizing trained feedback models as proxies (§5). We
look at human-feedback data datasets and their
collection, discussing their influence on models
(§6). Lastly, we cover recent work leveraging AI
feedback from LLMs for feedback reduction (§7).

2 A Taxonomy for Leveraging (Human)
Feedback for Generation

2.1 Background

Consider a model M : X → Y that, given an
input x ∈ X , outputs natural language ŷ ∈ Y .
This model encompasses various NLG tasks
including Summarization (X : documents, Y:
summaries), Machine Translation (X : source
language sentences,Y: target language sentences),
Dialogue Generation (X : dialogue histories, Y:
responses), and Image Captioning (X : images,
Y: captions).

These models are generally realized as a pa-
rameterized, conditional probability distribution
Pθ(y|x), where θ are the model parameters. This
distribution is often estimated autoregressively:
The probability of a sentence y given input x is
decomposed into the product of the probabilities
of each token in y, conditioned on the previ-
ous tokens. These models are trained by finding
θ� that maximizes the likelihood of some train-
ing data D = {(xi, yi)}Ni=1. At inference time,
given input x, an output ŷ is decoded from Pθ� .
This decoding can be done, for example, by ap-
proximating the most-likely sequence of tokens
(M(x) ≈ argmaxy Pθ�(y|x)) or by random
sampling (M(x) ∼ Pθ�(y|x)).

Evaluating the quality of generated text ŷ ∈ Y
can be challenging due to the complexity and
subjectivity of natural language. Although numer-

ous automated metrics have been proposed for
different domains, they typically rely on n-gram
matching or other rudimentary heuristics. These
measures often overlook complex linguistic phe-
nomena, such as paraphrasing or stylistic vari-
ations, ultimately failing to align with nuanced
human judgments (Sai et al., 2022; Gehrmann
et al., 2022). Therefore, for many of these tasks,
human feedback is considered the gold standard
for assessing the quality, and newer learned met-
rics often aim to approximate how humans pro-
vide feedback (see §5.1).

Formally, we consider human feedback to be
a family of functions H such that h ∈ H takes an
input2 x ∈ X and one or more outputs y1, · · · ,
yn ∈ Y and returns some feedback f ∈ F :

h : X × Y1 × · · · × Yn︸ ︷︷ ︸
n

→ F (1)

A simple example of a feedback function is ask-
ing humans to say if, given an input, a particular
output is good or bad (h : X × Y → {0, 1}).
However, more complex feedback functions, such
as rankings or natural language feedback, are also
commonly used (see §3.1).

We note that this framing is a simplification
of the real world: Often, different humans might
provide different (potentially contradicting) feed-
back for the same outputs, and a single function
may not be able to capture this variability (dis-
cussed further in §6). Finally, while our formali-
zation is flexible, it excludes other approaches
where models interact with humans to improve
learning, such as active learning and other human-
in-the-loop approaches.

2.2 Taxonomy

Having established a basic mathematical formula-
tion, we now identify four key axes along which
we can classify the uses of human feedback:
format, objective, use, and modeling. Figure 1
shows this taxonomy in detail, along with example
representative works and how they fit in it. In the
next sections we will describe each axis in more
detail.

2Although feedback can be provided independently of the
input (for example for fluency), we assume some (poten-
tially empty) input for simplicity of notation.
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Figure 1: Taxonomy of methods that leverage human-feedback, with some example representative works.

3 Describing Feedback

3.1 Format

An important decision to make when we want
to improve language generation systems through
human feedback is what format to collect this
feedback in. This choice has implications on the
expressivity of the feedback, the ease of its collec-
tion, and how we can use it to improve systems,
and the level of rationality of said feedback is
heavily impacted by this choice (Ghosal et al.,
2023). Feedback types are summarized in Table 1
with examples.

Numerical Numerical feedback, which takes an
input and output and returns a single score (X ×
Y → N ⊆ R), is one of the simplest feedback
formats to collect and use. Kreutzer et al. (2018)
studied using categorical feedback, in the form of
5 possible ‘‘stars’’ assigned to a translation, which
are averaged to produce a score (N = [1, 5]) to
improve the model. Liu et al. (2018) and Shi
et al. (2021) used even simpler feedback, by ask-

ing humans to choose if a given response is good
or not (N = {0, 1}). Numerical feedback has
also been widely used for evaluation, albeit not
with the explicit goal of improving generation.
For example, direct assessments (Graham et al.,
2013) in machine translation ask humans to rate
translations on a continuous scale. Some works
have attempted to use this data to train feedback
models (Sellam et al., 2020; Rei et al., 2020a)
and improve generation (Freitag et al., 2022a;
Fernandes et al., 2022).

Although easy to leverage, numerical feedback
has limitations: Reducing feedback to a single
score may be a hard and ill-defined task for hu-
mans, especially for complex tasks, leading to a
costly collection process and problems of subjec-
tivity and variance (see §6). Furthermore, it may
not distinguish well between outputs of similar
quality.

Ranking-based An alternative to asking humans
to assign a single score to a given input-output
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Input Output(s) Feedback Type

0.7 Score

A melhor comida do mundo é The worst food in the world ‘worst’: major/accuracy MQMa portuguesa. are Portuguese. ‘are’: minor/fluency

‘worst’ → ‘best’, ‘are’ → ‘is’ Post-Edition

Artificial intelligence has the potential
AI can change industries.

Fluency: 1 Multi-Aspectto revolutionize industries (. . . ) but Relevance: 0.7
ethical concerns need to be handled. ‘‘Misses the ethical concerns.’’ Natural Language

Explain the moon landing A: People went to the ... A > B Ranking
to a 6 year old B: The moon is a satellite...

Table 1: Example input and output for three tasks (machine translation, summarization, and instruction
following) and possible different (example) feedback that can be given.

pair is asking them to rank multiple possible
outputs:

h : X × Y1 × · · · × Yn → Sn

where Sn represents the set of all rankings of
n elements (optionally allowing ties). This has
been used extensively in evaluation (Chaganty
et al., 2018). Compared to numerical feedback, this
format tends to be easier to collect, and ranking-
based feedback is also used to improve model be-
havior in addition to evaluation (potentially since
the former tends to require more feedback data).
Ziegler et al. (2019) and Stiennon et al. (2020)
asked humans to rank alternative summaries of
the system they were trying to improve. Simi-
larly, Ouyang et al. (2022) collected rankings of
alternative responses to an instruction given to the
model. They used these rankings to enhance the
model’s instruction-following capabilities. Subse-
quent research has also employed ranking-based
feedback for the same task (Askell et al., 2021;
Bai et al., 2022a,b).

Natural Language Both numerical and
ranking-based feedback cannot capture detailed
information about problems with the output,
which can be crucial for improving generation
systems. Natural language feedback typically pro-
vides more detailed information, often by sug-
gesting specific shortcomings or revisions for the
current output. For example, Li et al. (2017) asked
humans to give natural language feedback to a
dialogue question answering model, including
positive or negative feedback, but also possibly
providing the correct answer to the model or a
hint. Tandon et al. (2022) and Madaan et al. (2022)
gather natural language feedback on errors in

model-generated graphs and the model’s interpre-
tation of a given instruction. Scheurer et al.
(2022, 2023) improve summarization capabilities
of language models by asking humans to provide
natural language feedback of the model’s sum-
maries. Li et al. (2022) collect natural language
feedback (in addition to numerical feedback) for
responses from a question answering system.

Others Besides these feedback types, other (po-
tentially domain-specific) types of feedback can
be used to improve model behavior. Commonly
humans are asked to provide multi-aspect feed-
back (X ×Y → R

d or Fd more generally), scoring
an output or ranking multiple outputs with re-
spect to multiple dimensions (Böhm et al., 2019;
Glaese et al., 2022; Madaan et al., 2023; Nguyen
et al., 2022). Post-editions ask humans to provide
corrections to the output in the form of small edits
(e.g., replace X by Y), and post-edition data has
been used to directly improve models (Denkowski
et al., 2014) or train automatic post edition sys-
tems that correct model mistakes (Pal et al., 2016;
Mehta and Goldwasser, 2019; Madaan et al.,
2021; Talmor et al., 2020; Elgohary et al., 2021).
There are other feedback types that haven’t been
fully leveraged to improve generation: e.g., Mul-
tidimensional Quality Metrics (MQM) (Lommel
et al., 2014), the standard for evaluating transla-
tion quality, asks professional translators to iden-
tify error spans in a translation, alongside severity
and type of error.

3.2 Objective

The purpose of collecting feedback is to align the
model’s behavior with some (often ill-defined)
goal behavior: For example, we might want our
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summarization model to generate summaries that
contain all core information, even if it means they
are longer. This alignment objective has been
studied extensively in the AI safety and alignment
literature (Bostrom, 2014; Amodei et al., 2016;
Bommasani et al., 2021; Kenton et al., 2021),
with Leike et al. (2018) proposing the use of feed-
back models to tackle the difficulty in specifying
objectives.

Bai et al. (2022a) explicitly divided the problem
of ‘‘aligning’’ a language model into improving
its helpfulness and increasing its harmlessness.
Most works implicitly consider either the use of
feedback that targets performance factors (such
as when targeting overall performance in a task
or ability to follow instructions) or harmlessness
factors (such as not producing toxic text or pro-
viding information that could lead to harm).3

Helpfulness Most often, feedback is collected
with some helpfulness objective in mind: A nec-
essary (but not sufficient) condition for a helpful
system is that it performs well, so feedback related
to task performance generally falls under this
umbrella. For example, most works in machine
translation leverage feedback related to trans-
lation quality (Kreutzer et al., 2018; Fernandes
et al., 2022), which is expected to be correlated
with its helpfulness in downstream applications.
Similarly, in summarization, most works lever-
age feedback related to aspects such as relevance,
consistency, and accuracy (Ziegler et al., 2019;
Stiennon et al., 2020). One particularly well-
studied feedback objective is the ability to fol-
low instructions (Ouyang et al., 2022), which
encompasses a wide range of tasks.

Harmlessness Another important alignment ob-
jective is harmlessness: we want our models not
to produce certain types of output or violate cer-
tain norms. Feedback collected in Ouyang et al.
(2022) considered aspects such as the toxicity of
text (besides the overall ability to follow instruc-
tions). Bai et al. (2022a) explored the interaction
between the helpfulness and harmlessness objec-
tives, showing a trade-off between both. Thoppilan
et al. (2022) collected feedback on whether their
model violates a set of safety objectives and used
it to finetune the model. Glaese et al. (2022) also

3We mostly ignore the proposed honesty aspect, as none
of these works tackle this directly.

asked humans to provide feedback on the harm-
lessness of their system, by defining a set of rules
and asking humans if the outputs violate these
rules. Bai et al. (2022b) showed that feedback
produced by LLMs could increase harmlessness
without reducing helpfulness.

4 Directly Leveraging Human Feedback

In an ideal scenario, we would directly leverage
human feedback to improve generation for both
training and decoding.

4.1 Optimizing for Human Feedback

Once human feedback has been collected, one way
to use it is by optimizing the model parameters
directly. However, this requires the feedback to
be ‘‘optimizable’’, i.e., possibly formulated as
an optimization problem based on which we can
obtain an improved model. For instance, if the
feedback is a numerical preferencesscore (f ∈ R),
we can create the following optimization problem:

θ� = argmax
θ

Ex∼D[h(x,Mθ(x))] (2)

where D is the distribution of possible inputs.
Various techniques have been suggested to op-
timize θ using the collected human feedback.
These can be divided into three main categories
based on the training mechanisms, which we
will call feedback-based imitation learning,
joint-feedback modeling, and reinforcement
learning (RL).

The feedback-based imitation learning ap-
proach involves using human feedback to optimize
the model by performing supervised learning
with a dataset composed of positively labeled
generations together with the corresponding in-
puts, D+. This can be achieved by minimizing
the loss:

θ� = argmin
θ

|D+|∑
i=1

L(i)(θ) (3)

L(i)(θ) = − log pθ

(
y(i) | x(i)

)
(4)

An instance of this approach can be found in
Li et al. (2017), in which the authors train a di-
alogue model by maximizing the likelihood of
the model’s answers labeled correct by humans.
Similarly, Kreutzer et al. (2018) trained a machine
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translation model on a set of positively labeled
translations, and Glaese et al. (2022) performed
supervised learning on the dialogues which com-
plied with their pre-defined rules (concerning
correctness, harmfulness, and helpfulness), ac-
cording to humans. A slightly different approach
was proposed by Hancock et al. (2019): Deploy-
ing a chit-chat dialogue model and using the hu-
man utterances as targets to fine-tune the model.
Scheurer et al. (2022, 2023) leverage the fact that
LLMs can follow instructions and start by collect-
ing natural language human feedback about the
model generations, which often describes what an
improved text would look like. Then, they ask
the LM to generate multiple refinements based
on the input, previous model generation, and the
corresponding feedback. The highest similarity
refinements for each generation are then used to
fine-tune the LLM. OpenAI’s text-davinci-
002 was trained with both human demonstra-
tions and model outputs with the highest possible
rating, an approach deemed FeedME (OpenAI,
2023b). A downside of these approaches is that
they disregard generations which do not receive
positive feedback, which may also contain useful
information.

On the other hand, joint-feedback modeling
leverages all the information collected by directly
using human feedback to optimize the model.
Also, as the feedback is modeled directly by
the model, this allows feedback in formats other
than numerical or ranking-based (e.g., natural lan-
guage). Having D as the dataset of inputs x,
generations y, and human feedback f collected,
this can be achieved by minimizing a loss of the
form

L(i)(θ) = − log pθ

(
y(i), f (i) | x(i)

)
(5)

over all examples in D. This equation can be fac-
torized as L(i)(θ) = − log pθ

(
f (i) | y(i), x(i)

)
+

log pθ
(
y(i) | x(i)

)
. Some works simply train the

model to predict the feedback given to each
generation (Weston, 2016, forward prediction),
disregarding the second term of the factorization.
One example is the work of Li et al. (2017), in
which the authors asked humans to give natural
language feedback (e.g., positive/negative feed-
back, providing the correct answer, or giving a
hint about the correct answer) to a dialogue ques-
tion answering model. Then, the model itself is

trained to predict this feedback. Hancock et al.
(2019) proposed having an auxiliary model pre-
dicting the satisfaction of the human speaking with
the model. If the satisfaction score is lower than a
pre-defined threshold, the model will ask the hu-
man for feedback. The model then leverages the
natural language feedback humans give by learn-
ing to predict it. Yuan et al. (2023); Rafailov et al.
(2023) showed that having summarization models
predict rankings of different summaries helps the
model generate better summaries, and may even
outperform more complicated approaches with
feedback models (§5).

Other works train the model to predict the
generations and the corresponding human feed-
back. Xu et al. (2022) proposed using the DIREC-
TOR model introduced by Arora et al. (2022) to
leverage human feedback. As this model has a
unified decoder-classifier architecture, Xu et al.
(2022) proposed using positively labeled exam-
ples to train its language modeling head (simi-
larly to feedback-based imitation learning) and
using both positive and negatively labeled exam-
ples to train a classifier head that directs the
model away from generating undesirable se-
quences. Thoppilan et al. (2022) follow this ap-
proach to enforce the model’s quality and safety:
Using collected dialogues between crowd-workers
and the model LaMDA, annotated with the crowd-
workers’ feedback on each response’s quality,
LaMDA is fine-tuned to predict the high-quality
responses alongside each response’s quality at-
tributes and safety.

Finally, this can also be achieved by training
the model to predict generation and conditioning
on the feedback. This corresponds to minimizing:

L(i)(θ) = − log pθ
(
yi | f i, xi

)
(6)

Liu et al. (2023) proposed prompt-based fine-
tuning, where they create prompts containing
previous generations rated by humans, in the
order of preference and insert language-based
feedback (e.g., ‘‘. . . is worse than ...’’) to the
prompt, between the generations. Then, the model
is fine-tuned on the preferred answers. In
Section 5.2.1, we discuss scnearios where the feed-
back f is sourced from a feedback model instead
of humans.

Finally, reinforcement learning (RL) offers
a more versatile approach, allowing for direct
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optimization of a model’s parameters based on
human feedback, regardless of the feedback’s dif-
ferentiability. A common RL algorithm used in
this context is REINFORCE (Williams, 1992),
which updates the policy parameters using the
following gradient:

∇θJ(θ) = Ex∼D,y∼pθ [h(x, y)∇θ log pθ(y | x)]
(7)

Here, D represents the set of inputs x, and pθ
is the policy. This flexibility enables RL to han-
dle various types of feedback h and better align
the generated output with human preferences.
For instance, Kreutzer et al. (2018) proposed us-
ing task-based implicit feedback from user queries
as a reward signal to train a machine translation
model using a word-level variant of minimum
risk training (Shen et al., 2016), while Jaques
et al. (2019) used implicit human reactions in chat
to improve open-domain dialog systems through
off-policy Q-learning (Watkins and Dayan, 1992).
Given that collecting human feedback can be ex-
pensive and time-consuming, learning is done
offline from logged data, which is typically more
favorable than on-policy settings that need feed-
back on the fly. Later in §5.2.1, we discuss several
works that attempt to optimize feedback models
using RL instead of directly optimizing human
feedback. In conjuction, these aproaches are com-
monly known as Reinforcement Learning from
Human Feedback (RLHF).

4.2 Decoding with Human Feedback

Directly adjusting model parameters might not
always be feasible, especially for LLMs. More-
over, during the training phase, consistent and
meaningful feedback may not always be readily
available. In such settings, leveraging human feed-
back during decoding becomes crucial. There are
two primary approaches in this realm: 1. Feed-
back Memory: This involves maintaining past
feedback and incorporating relevant aspects when
processing new inputs, guiding the model toward
preferential outputs.

To illustrate, imagine a scenario where the
model produces an output that is either biased
or factually incorrect. Upon receiving feedback
highlighting this flaw, a model without feedback
memory capabilities would still be prone to mak-
ing the same error on similar inputs. In contrast, a
model equipped with a robust feedback memory

mechanism can actively reference this feedback.
When faced with a comparable input or context
in the future, it can thus reduce the likelihood of
reproducing the same error. This feedback mem-
ory can be conceptualized as a repository or
‘‘bank’’ where past feedback is stored. Depend-
ing on the implementation, this could be in the
form of plain text entries (Madaan et al., 2022)
or dense vector representations (Tandon et al.,
2022). When processing new inputs, the model
first probes this memory bank to identify if a sim-
ilar input or context exists. If a match or a close
approximation is found, the model retrieves the
corresponding feedback. This feedback can then
be factored (e.g., by concatenating the feedback
to the prompt) in to produce a refined output.

While the notion of learning from past experi-
ences or feedback traces its roots to early cogni-
tive theories and computational models (Riesbeck,
1981; Schank, 1983), its effectiveness in fine-
tuning language models and few-shot learning
settings has been shown in recent work (Weston
et al., 2014; Wu et al., 2018; Tandon et al., 2022;
Madaan et al., 2022).

2. Iterative Output Refinement: This method
employs human feedback to refine the model’s
output iteratively. Users can provide feedback
on intermediate responses, enabling the model to
adjust its output until it meets the user’s satisfac-
tion. This process allows the model to better under-
stand user preferences and produce more suitable
outcomes (Reid and Neubig, 2022; Saunders et al.,
2022; Schick et al., 2022; Nijkamp et al., 2022).
Feedback can also be provided on model attri-
butes such as the decoding strategy (Passali et al.,
2021), rather than directly on its outputs.

5 Improving Generation using Human
Feedback Models

Directly using human feedback to improve model
behavior is not feasible in the general case: Ask-
ing humans to provide feedback for every model
output is both expensive and time-consuming.

5.1 Learning Models of Human Feedback

An alternate approach to obtaining human feed-
back is to develop models that can predict or
approximate it. Although they may not be per-
fect, they can provide feedback at a low cost after
training, enabling feedback-dependent techniques
at scale.
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More formally, given a feedback function
h : X × Y1 × · · · × Yn → F , we want to learn
a parametric (numerical) feedback model ĥφ :
X × Y → R (with parameters φ) that ‘‘agrees’’
with human feedback. This agreement is ex-
pressed through a loss which the model is trained
to minimize.

φ� = argmin
φ

Ex,y1,··· ,yn∼Df
[L(φ)] (8)

L(φ) = loss
(
ĥφ(x, y1), · · · , h(x, y1:n)

)
(9)

For example, if the feedback function we are try-
ing to model is also numerical (h : X × Y → R),
then this loss can just be any standard regression
loss, such as the squared difference between the
human feedback and model feedback L(φ) =(
ĥφ(x, y)− h(x, y)

)2

. Importantly, while the
feedback model is (generally) numerical, the hu-
man feedback can be in any other format, as
long as a suitable loss function can be specified.
Stiennon et al. (2020) train preference models4

ĥφ(x, yn) on ranking-based feedback, using a loss
of the form

L(φ) = log
(
σ
(
ĥφ(x, y+1)− ĥφ(x, y−1)

))
(10)

such that sample y+1 was preferred to y−1 for
the same input x: h(x, y−1, y+1) = (y−1 < y+1).
Variants of this loss have been used in subsequent
works (Ouyang et al., 2022; Askell et al., 2021;
Liu et al., 2022; Qin et al., 2022; Yuan et al.,
2023).

Feedback modeling has been studied exten-
sively in the context of metric learning for NLP.
In MT, Sellam et al. (2020) and Rei et al. (2020a)
trained BLEURT and COMET, respectively, to
regress on human translation quality assessments.
For summarization, Zopf (2018) leveraged an-
notated pairwise preferences to train a prefer-
ence model and Peyrard et al. (2017) learned a
summary-level metric from a set of human judge-
ments from older summarization datasets (e.g.,
TAC-2008). These metrics have been shown to
correlate much better with human judgments than
widely used lexical-metrics such as BLEU and
ROUGE (Freitag et al., 2022b). Notably, these re-
ward models were not trained with the intent of

4We specify the feedback model with respect to the hu-
man feedback format, i.e., reward and preference model for
numerical and ranking-based human feedback, respectively.

improving generation directly, though somewere
used for that purpose later (§5.2).

Recently, there has been interest in developing
feedback models directly for improving genera-
tion (Böhm et al., 2019; Ziegler et al., 2019).
Initialized from either the target LM to improve or
a smaller one from the same family, the feedback
model finetuned on (collected) human feedback.
This data is typically collected by asking anno-
tators to provide feedback on outputs from an
earlier version of the model being improved. It is
also possible to first finetune the feedback model
on naturally occurring implicit feedback, such
as user interactions on sites (e.g., Reddit, Stack-
Overflow), which greatly increases data size at
the cost of noisier data.

Nguyen et al. (2022) train a preference model
based on rankings on three human-designed ob-
jectives: whether the summary has an appropriate
topic, length, and quality, combining these three
into a single objective using a distance-based
ranking loss. Interestingly, automatic post-editing
(APE) systems in MT (e.g., Simard et al., 2007;
Correia and Martins, 2019) can also be seen as
feedback models (albeit non-numerical). Their
aim is to automatically correct the output of an
MT system and they are trained on human post-
editions.

5.2 Leveraging Feedback Models to
Improve Generation

After training a feedback model, we can use it
almost exactly as we would use human feedback:
either by leveraging this feedback model during
training of the generation model, or by incorpo-
rating the feedback model during decoding.

5.2.1 Optimizing for Feedback Models
Similar to optimizing for human feedback, one
way to use the feedback model is to optimize the
model with respect to the feedback it gives. If
the feedback model outputs numerical feedback
(ĥφ : X × Y → R) we can define an optimiza-
tion problem similar to Equation 2. However,
due feedback models being imperfect proxies,
typically a regularization term R is introduced
to avoid ‘‘overfitting’’ to the feedback model
(Ziegler et al., 2019):

θ� = argmax
θ

Ex∼D

[
ĥφ(x,Mθ(x))− βR(θ)

]

(11)
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Due to the similarities between both optimiza-
tion problems, approaches to tackle Equation 11
can be divided into two of the three categories
in §4.2: joint-feedback modeling and reinforce-
ment learning. Recall that in §4.2 we discuss
approaches for directly optimizing for human
feedback (h), while this section is focused on
cases where a model of human feedback (ĥ) is
used instead.

Unlike when using human feedback directly,
most works attempt to optimize feedback models
using reinforcement learning. Gao et al. (2018)
and Böhm et al. (2019) use the feedback collected
in other works to train reward and preference
models, and use reinforcement learning to opti-
mize against these models. They show that humans
preferred their summarization model to other su-
pervised and RL-trained baselines. Ziegler et al.
(2019) proposed a similar approach, but trained
preference models with feedback collected on
the model being improved, and introduced a KL
regularization term

R(θ) = log [Pθ(y|x)/PθSL(y|x)] (12)

to avoid the optimized model deviating too much
from the original (supervised) model with pa-
rameters θSL.5 Stiennon et al. (2020) extended
this work, by scaling both the summarization and
preference models, showing that their model was
highly preferred by humans, and generalized bet-
ter than supervised baselines. Ouyang et al. (2022)
also used reinforcement learning with preference
models to LLMs’ ability to follow instructions,
but combined the RL objective with the original
pretraining objective on public NLP benchmarks.
Other studies have also used reinforcement learn-
ing with preference models similarly (Askell
et al., 2021; Bai et al., 2022a; Wu et al., 2021;
Nguyen et al., 2022). In these methods, generally
the model is first trained with imitation-learning
on human demonstrations, improving performance
compared to using RL directly on the pretrained
policy. Glaese et al. (2022) compared doing
feedback-based imitation learning with human
feedback (§4.1) with doing reinforcement learning
with a feedback model, finding that the latter led
to a better preference rate and lower rule viola-
tion rate.

5Note that this KL term is different from other algorithm-
specific regularization terms, such as the KL terms in PPO
(Schulman et al., 2017).

In terms of the impact of the underlying RL
algorithm, PPO (Schulman et al., 2017) is by
far the most used algorithm, and the one where
tricks for its success are more widely known
(see Zheng et al., 2023). However, it is unclear
how important a role it plays in the success of
RLHF, and some have proposed alternative RL
algorithms that claim better performance (Donato
et al., 2022).

Casper et al. (2023) identify several intrinsic
limitations of RLHF, including human evalua-
tion inconsistencies, the potential for feedback
manipulation, trade-offs between feedback depth
and efficiency, difficulties in capturing diverse
human values in reward functions, and risks of
reward hacking and policy deployment short-
comings.

The joint-feedback modeling with feedback
models was explored by Korbak et al. (2023), who
study pre-training an LLMs with a loss similar
to Equation 6, based on feedback from a prefer-
ence model trained on ranking-based feedback for
toxicity. They showed that this leads to models
producing less toxic generations, when compared
to pretraining a model with vanilla MLE. Note
that this is different from techniques discussed
in 5.1, as the focus there was to train models
with real human feedback, not their model.

5.2.2 Decoding with Feedback Models
As mentioned, feedback models can be queried
cheaply for feedback once trained. Perhaps for this
reason, most approaches use feedback models by
sampling a large number of candidate generations,
and rerank them with the feedback model:

C = {ȳ1, · · ·, ȳS} where ȳi ∼ Pθ (y|x)
ŷ = argmax

ȳ∈C
ĥφ(x, ȳ)

where ĥφ is a trained (numerical) feedback model
and C is a set of candidate generations given by
the model (for example, by sampling multiple
times).

In machine translation, Fernandes et al. (2022)
and Freitag et al. (2022a) use feedback model
training, involving a two-stage process of can-
didate generation and scoring with quality met-
rics learned from human judgments (Rei et al.,
2020a,b). Top-rated candidates are selected using
reranking or MBR decoding (Kumar and Byrne,
2002). Similarly, Li et al. (2022) improves a QA
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system by gathering numerical and natural lan-
guage feedback, then refining a pretrained model
on this feedback to rerank predictions. Works like
Bhattacharyya et al. (2022) also demonstrate ef-
ficiency in enhancing machine translation outputs
via automatic post-editing systems.

Feedback Model Overoptimization One prob-
lem that arises when optimizing a system with a
feedback model is that the model is an imperfect
proxy for human feedback. Therefore, systems
may overoptimize for good model scores, but not
humans. This is known as the overoptimization
problem, and is the main reason for the regular-
ization term in Equation 11. Gao et al. (2022)
study the overoptimization problem in preference
models, by both optimizing against it with RL
(training) and reranking outputs with it (decod-
ing), finding that both lead to similar levels of
overoptimization.

5.3 Comparing the Effectiveness
of Approaches

While numerous approaches have been proposed
for incorporating human feedback, it is difficult
to directly compare their relative effectiveness, as
dealing with feedback introduces many additional
experimental variables (the quality of the original
generation model/policy, the feedback collection
process, etc). Nevertheless, a few studies compare
a subset of these approaches within a consistent
experimental setup, allowing for some high-level
conclusions to be drawn:

• Comparing approaches that leverage feed-
back to optimize the model, while RLHF
seems to be the predominant technique for
current SotA LLMs (Glaese et al., 2022;
OpenAI, 2023a; Touvron et al., 2023), some
works claim that simpler approaches (such as
joint-feedback modeling directly with human
preferences) can lead to better or compara-
ble performance (Yuan et al., 2023; Rafailov
et al., 2023).

• It is also not clear if optimizing the model
with the feedback (model) is necessary to ob-
tain the best performance, and instead using
the feedback model to rerank the outputs of
the model leads to comparable results (Gao
et al., 2022).

6 Collecting and Using Human Feedback

Collecting human feedback can be expensive and
may present issues for the inexperienced. We high-
light existing datasets, their collection methods,
and considerations for those creating their own
preference datasets. Annotator variability remains
largely unexplored (Plank, 2022; Gehrmann et al.,
2023), though evidence suggests well-constructed
annotation guidelines are necessary (Ziegler et al.,
2019; Parmar et al., 2023) to avoid systemic bias
away from the intended task.

In general, there is not much discussion in
the literature as to how choices made in the feed-
back collection process impact the final general-
ization ability of the model, as this has not been
studied in a controlled setting. However, there is
an appreciation for the importance of data qual-
ity in feedback collection, as researchers make
efforts to filter out annotators based on their agree-
ment with gold labels, as well as based on inter-
annotator agreement (Stiennon et al., 2020; Bai
et al., 2022a). However, Bai et al. (2022a) note
that judging data quality is difficult for more
open-ended forms of feedback such as dialogues.
Despite this, they were able to achieve good re-
sults without detailed data quality controls. The
impact of collection methods on final results may
be a direction for future research, but for now, we
present considerations for data collection along
different axes below that experimenters should
keep in mind, based on previous studies:

1. Annotator expertise: Depending on task and
training (Snow et al., 2008; Sheng et al.,
2008; Clark et al., 2021; Gillick and Liu,
2010; Freitag et al., 2021), annotators can
be domain experts to crowdworkers or even
models. Expert feedback is usually more re-
liable but considerably more expensive (due
to recruitment difficulty) (Kulkarni et al.,
2014). In many tasks like general-purpose
translation or summarization, using crowd-
workers and models can be sufficient and, if
given the correct instruction, they can even
help mimic expert opinions (Moore et al.,
2020).6

2. Length of engagement: Involves one-time
or long-term collaborations with annotators,

6In some cases, when data is collected from user inter-
action or mined from existing data sources, it may not be
possible to control for expertise of annotators.
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Task Dataset & their descriptions Collection method Platform Feedback Type
Language assistant HH-RLHF (Bai et al., 2022a; Perez et al., 2022a) Explicit Upwork, MTurk Ranking
Language assistant SHP (Ethayarajh et al., 2023) Implicit Scraped from Reddit Ranking/Score
Summarization summarize-from-feedback (Stiennon et al., 2020) Explicit Upwork Ranking
Question Answering FeedbackQA (Li et al., 2022) Explicit MTurk Score, NL

Question Answering StackExchange (Lambert et al., 2023) Implicit StackOverflow Ranking

Translation WMT Metrics Shared Task (Freitag et al., 2022b) Explicit Pro translation workflow MQM, DA

Table 2: Summary of existing human feedback datasets and their collection methods, which vary along
several dimensions. Refer to Table 1 for definitions of feedback types. A separation is drawn between
datasets explicly designed to capture human preferences for model improvement, and datasets de-
signed for evaluation, such as MQM/DA datasets in MT. N/A means we could not find information.

with preference datasets often involving ex-
tended partnerships (Stiennon et al., 2020;
Bai et al., 2022a; Freitag et al., 2021).

3. Type of feedback: Existing datasets gener-
ally use rankings or scores, but future work
may investigate the value of more detailed
feedback, which humans usually prefer to
provide (Stumpf et al., 2007; Amershi et al.,
2014; Ghai et al., 2021).

4. Collection method: Data can be gathered
explicitly through experiments or implic-
itly from online sources/user interactions,
with varying noise (Kreutzer et al., 2018;
Freitag et al., 2021). When explicitly anno-
tating, the choice of feedback type generally
influences the type of collection: surveys
generally are oriented toward more numer-
ical or ranking-based feedback, while user
studies or interviews are used to collect more
detailed, open-ended feedback.

5. Collection platform: Platforms include
Amazon Mechanical Turk, Upwork, Scale
AI, and — when the collection is implicit
— some discussion platforms where human
interactions and preferences emerge organ-
ically. Alternately, researchers may collect
their own feedback through online forms or
interfaces, and recruit participants from their
own institution.

6. Annotator demographics: Annotator iden-
tities can influence labeling; in some cases,
demographics are collected during data col-
lection. (Sap et al., 2022; Ding et al., 2022).

Note that some of these dimensions are shared
more broadly across various tasks that involve
humans in the loop, including human evaluation

(Gehrmann et al., 2023; Liao and Varshney, 2021),
interactive model debugging (Lertvittayakumjorn
and Toni, 2021), data collection (Suhr et al.,
2021), etc. For example the evaluation on text
generation can sometimes be viewed similar to
preference collection: hosted on crowdsourcing
platforms, acquired from non-experts, collected in
the form of ranking feedback (e.g., reads better bet-
ter than the text from a baseline generator). In our
enumeration above, we mostly focused on how
these dimensions are implemented specifically
in the context of feedback collection, and leave
cross-comparison with other human-in-the-loop
approaches to the reader (Wang et al., 2021).
Table 2 shows some existing human feedback
datasets.

Variance in Judgement Considering K anno-
tators with feedback functions hi

K
i=1, judgments

are given on data D = d1, . . . , dN . Inter-rater re-
liability metrics, such as Cohen’s Kappa, Fleiss’
Kappa, or Krippendorff’s alpha, can assess anno-
tator agreement (Hayes and Krippendorff, 2007;
Fleiss, 1971; Cohen, 1960). Low reliability may
result from unclear tasks or evaluation criteria
(Gehrmann et al., 2023; Thomson and Reiter,
2021), underqualified annotators, inherent subjec-
tivity, or multiple plausible interpretations (Plank,
2022; Nie et al., 2020; Gordon et al., 2022).
Mitigation strategies include viewing humans as
making noisily rational choices (Ghosal et al.,
2023), learning the reliability level of feedback
from multiple humans (Yamagata et al., 2021),
augmenting evaluation metrics like COMET with
confidence intervals (Glushkova et al., 2021;
Zerva et al., 2022), and requiring annotators to
justify their rankings (Ziegler et al., 2019).
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(In)experienced Annotators There is generally
a trade-off between the effort needed to create
the datasets and the reliability of judgments col-
lected. While some have claimed that a small
number of crowdworkers can replace a domain
expert in certain tasks such as affect recognition,
recognizing textual entailment, or word-sense dis-
ambiguation (Snow et al., 2008; Sheng et al.,
2008), this heavily depends on the task. Untrained
crowdworkers may rely on more surface heuris-
tics to evaluate text (Clark et al., 2021; Gillick
and Liu, 2010), and one comparison of MT model
evaluations performed by expert translators and
crowdworkers found low agreement between the
groups led to a completely different ranking of the
models, with crowdworker evaluation being less
reliable than automatic embedding-based metrics
(Freitag et al., 2021). Generally, high-stakes ap-
plications or applications dependent on specific
linguistic or specialized domain knowledge may
need to rely on feedback from human experts, and
extended partnerships with annotators can pro-
vide consistency of annotations. Crowdworkers
or AI feedback may be acceptable substitutes in
other situations; for general alignment with hu-
man preferences, it may instead be prudent to
recruit a large and diverse group of annotators
to avoid overfitting to the preferences of specific
annotators or demographics. As the difficulty of
tasks increases, it may become more difficult for
non-experts to provide feedback, and evaluation
of difficult tasks such as writing secure code may
require designing feedback methods that incor-
porate human-AI teams, or rigorous criteria for
evaluating feedback (Saunders et al., 2022; Perry
et al., 2022; Bowman et al., 2022).

Subjectivity in Judgment Some subjectivity in
annotator judgment can arise from differences in
cultural or social groups (Santurkar et al., 2023).
Several works observe that tuning with human
feedback increases the model’s alignment with
US liberal views on controversial topics (Perez
et al., 2022b; Hartmann et al., 2023). Annotators
with different backgrounds may disagree on what
qualifies as toxic content (Sap et al., 2022; Ding
et al., 2022). This is pronounced when annota-
tors are asked to make ethical judgments (Jiang
et al., 2022; Talat et al., 2022). Some work has
critiqued the idea of a unified human preference
(Prabhakaran et al., 2021; Casper et al., 2023),

suggesting that some variance in judgment is
both expected and potentially useful signal.

Biases in Judgement Presenting annotators
with isolated text can lead to oversight of su-
perior alternatives, mistakenly marking the text as
high-quality (Bansal et al., 2021). When gener-
ating text, anchoring bias can influence writing
style (Jakesch et al., 2023; Lehmann et al., 2022)
and the given suggestions or corrections. Funda-
mentally, there may be a difference between what
is correct and what humans want to hear, which
may lead models to imitate persuasive behavior,
which may influence humans to rate an output
more highly if it ‘‘feels familiar’’ (Hasher et al.,
1977; Griffin et al., 2023). Mitigation strategies
entail ranking diverse outputs and defining ex-
plicit evaluation criteria.

When giving feedback in traditional RL envi-
ronments, users tend to give much more positive
feedback than negative (a positivity bias), which
may lead the agent to avoid the goal they are
actually trying to reach (Amershi et al., 2014;
Knox and Stone, 2013; Thomaz and Breazeal,
2008).

Ethical Considerations Prolonged content
moderation tasks can be harmful (Steiger et al.,
2021). Tasks involving toxicity classification and
generation from open-ended inputs may partic-
ularly affect annotators (Shmueli et al., 2021).
Media attention has focused on fair pay for an-
notators, with one TIME article7 describing anno-
tators paid $2/hr or less to provide annotations
of toxic content for RLHF datasets. Research on
crowdsourcing (Shmueli et al., 2021; Rothschild
et al., 2022; Soratana et al., 2022; Toxtli et al.,
2021; Hornuf and Vrankar, 2022) cautions that
inadequate pay, especially in lower-resourced re-
gions, is a form of worker exploitation.

7 AI Feedback

Feedback models have been crucial in advancing
generation techniques by effectively leveraging
feedback. However, they are heavily reliant on
human input: For example, Gao et al. (2022)
found that across various preference model sizes,
utilizing fewer than 1,000 comparisons resulted

7https://time.com/6247678/openai-chatgpt
-kenya-workers/.
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in only chance improvements. Moreover, em-
ploying static feedback can make consistency
challenging, causing changes in the model’s
output distribution. AI-generated feedback, an
emerging research area, focuses on harnessing the
LLM’s own abilities to enhance the model with-
out human intervention. Two primary approaches
have emerged in this domain:

Self AI Feedback The first approach involves
using the same model to provide feedback and
improve its output. In this scenario, the model
engages in a continuous self-improvement pro-
cess, learning from its evaluations and refining
its capabilities accordingly. Examples of this ap-
proach include prompting models to generate
harmful responses and revising them for harmless-
ness (Bai et al., 2022b), or employing rule-based
reward models for RLHF fine-tuning (OpenAI,
2023a). Techniques such as iterative output re-
vision through few-shot prompting (Peng et al.,
2023; Shinn et al., 2023; Chen et al., 2023; Paul
et al., 2023; Madaan et al., 2023; Yang et al., 2022)
have been explored using LLMs like GPT-3.5
(Ouyang et al., 2022) and GPT-4 (OpenAI, 2023a).
Notably, these techniques demonstrate potential
when applied to LLMs trained to adhere to hu-
man instructions and align outputs with human
preferences. This suggests that incorporating hu-
man feedback during training equips AI models to
comprehend task requirements better, align out-
puts with directives, and function as dependable
feedback mechanisms, thereby minimizing human
intervention. The capacity to offer valuable AI
feedback may depend on the model being trained
with human feedback.

External AI Feedback This approach utilizes
a separate feedback model to critique the task
model’s outputs (Yasunaga and Liang, 2020;
Madaan et al., 2021; Welleck et al., 2022; Bai
et al., 2022b; Akyürek et al., 2023). A key ad-
vantage is that the feedback model need not be
large or general-purpose, making smaller feed-
back models an appealing option when abundant
feedback is available.

8 Conclusion

Recent developments in large language models
have emphasized the need for human feedback
to ensure models have desirable behaviour and

generate helpful and harmless text. We provide
an overview of a recent line of research on lever-
aging (human) feedback to improve natural lan-
guage generation. Despite the relative infancy of
this field, several important observations emerge
when considering existing works:

1. Current models often underutilize more ex-
pressive forms of feedback like natural lan-
guage, favouring ranking-based or numerical
feedback.

2. A trade-off exists between effort spent creat-
ing datasets and the reliability of judgments.
Enlisting expert and diverse annotators can
be beneficial for high-stakes applications.

3. The value of leveraging feedback lies pri-
marily in the feedback itself rather than
the specific method. While Reinforcement
Learning from Human Feedback (RLHF)
has been popular, other methods report no-
table improvements and might be simpler
to apply (Gao et al., 2022; Rafailov et al.,
2023; Zhou et al., 2023; Zhao et al., 2023).
However, large-scale comparative analysis
remains necessary.
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Javier Rando, Rachel Freedman, Tomasz
Korbak, David Lindner, Pedro Freire, Tony
Wang, Samuel Marks, Charbel-Raphaël
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William Agnew, Gabriel Ilharco, Dirk
Groeneveld, Margaret Mitchell, and Matt
Gardner. 2021. Documenting large webtext
corpora: A case study on the colossal clean
crawled corpus. In Proceedings of the 2021
Conference on Empirical Methods in Natu-
ral Language Processing, pages 1286–1305,
Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.
https://doi.org/10.18653/v1/2021
.emnlp-main.98

Domenic Donato, Lei Yu, Wang Ling, and Chris
Dyer. 2022. Mad for robust reinforcement learn-
ing in machine translation. https://doi
.org/10.48550/arXiv.2207.08583

Ahmed Elgohary, Christopher Meek, Matthew
Richardson, Adam Fourney, Gonzalo Ramos,
and Ahmed Hassan Awadallah. 2021. Nl-edit:
Correcting semantic parse errors through natu-
ral language interaction. arXiv preprint arXiv:
2103.14540. https://doi.org/10.18653
/v1/2021.naacl-main.444

Kawin Ethayarajh, Heidi Zhang, Yizhong Wang,
and Dan Jurafsky. 2023. Stanford human
preferences dataset.

Patrick Fernandes, António Farinhas, Ricardo Rei,
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Karina Nguyen, Edwin Chen, Scott Heiner,
Craig Pettit, Catherine Olsson, Sandipan
Kundu, Saurav Kadavath, Andy Jones, Anna
Chen, Ben Mann, Brian Israel, Bryan Seethor,
Cameron McKinnon, Christopher Olah, Da
Yan, Daniela Amodei, Dario Amodei, Dawn
Drain, Dustin Li, Eli Tran-Johnson, Guro
Khundadze, Jackson Kernion, James Landis,
Jamie Kerr, Jared Mueller, Jeeyoon Hyun,
Joshua Landau, Kamal Ndousse, Landon
Goldberg, Liane Lovitt, Martin Lucas, Michael
Sellitto, Miranda Zhang, Neerav Kingsland,
Nelson Elhage, Nicholas Joseph, Noemı́
Mercado, Nova DasSarma, Oliver Rausch,
Robin Larson, Sam McCandlish, Scott
Johnston, Shauna Kravec, Sheer El Showk,
Tamera Lanham, Timothy Telleen-Lawton,
Tom Brown, Tom Henighan, Tristan Hume,
Yuntao Bai, Zac Hatfield-Dodds, Jack Clark,
Samuel R. Bowman, Amanda Askell, Roger
Grosse, Danny Hernandez, Deep Ganguli,
Evan Hubinger, Nicholas Schiefer, and Jared
Kaplan. 2022b. Discovering language model
behaviors with model-written evaluations.
https://doi.org/10.18653/v1/2023
.findings-acl.847

Neil Perry, Megha Srivastava, Deepak Kumar, and
Dan Boneh. 2022. Do users write more insecure
code with AI assistants? https://doi.org
/10.48550/arXiv.2211.03622

Maxime Peyrard, Teresa Botschen, and Iryna
Gurevych. 2017. Learning to score system
summaries for better content selection eval-
uation. In Proceedings of the Workshop on
New Frontiers in Summarization, pages 74–84,
Copenhagen, Denmark. Association for Com-
putational Linguistics. https://doi.org
/10.18653/v1/W17-4510

Barbara Plank. 2022. The ‘problem’ of human
label variation: On ground truth in data, model-
ing and evaluation. https://doi.org/10
.18653/v1/2022.emnlp-main.731

Vinodkumar Prabhakaran, Aida Mostafazadeh
Davani, and Mark Diaz. 2021. On releasing
annotator-level labels and information in datasets.

1663

https://doi.org/10.48550/arXiv.2203.02155
https://doi.org/10.48550/arXiv.2203.02155
https://doi.org/10.18653/v1/P16-2046
https://doi.org/10.18653/v1/P16-2046
https://doi.org/10.18653/v1/2023.eacl-main.130
https://doi.org/10.18653/v1/2023.eacl-main.130
https://doi.org/10.48550/arXiv.1705.04304
https://doi.org/10.48550/arXiv.1705.04304
https://doi.org/10.18653/v1/2022.emnlp-main.225
https://doi.org/10.18653/v1/2022.emnlp-main.225
https://doi.org/10.18653/v1/2023.findings-acl.847
https://doi.org/10.18653/v1/2023.findings-acl.847
https://doi.org/10.48550/arXiv.2211.03622
https://doi.org/10.48550/arXiv.2211.03622
https://doi.org/10.18653/v1/W17-4510
https://doi.org/10.18653/v1/W17-4510
https://doi.org/10.18653/v1/2022.emnlp-main.731
https://doi.org/10.18653/v1/2022.emnlp-main.731


In Proceedings of the Joint 15th Linguistic
Annotation Workshop (LAW) and 3rd Design-
ing Meaning Representations (DMR) Work-
shop, pages 133–138, Punta Cana, Dominican
Republic. Association for Computational Lin-
guistics. https://doi.org/10.18653
/v1/2021.law-1.14

Yiwei Qin, Weizhe Yuan, Graham Neubig, and
Pengfei Liu. 2022. T5score: Discriminative
fine-tuning of generative evaluation metrics.
https://doi.org/10.48550/arXiv
.2212.05726

Rafael Rafailov, Archit Sharma, Eric Mitchell,
Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. 2023. Direct preference opti-
mization: Your language model is secretly a
reward model.

Ricardo Rei, Craig Stewart, Ana C. Farinha, and
Alon Lavie. 2020a. COMET: A neural frame-
work for MT evaluation. In Proceedings of
the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP),
pages 2685–2702, Online. Association for Com-
putational Linguistics. https://doi.org
/10.18653/v1/2020.emnlp-main.213

Ricardo Rei, Craig Stewart, Ana C. Farinha, and
Alon Lavie. 2020b. Unbabel’s participation
in the WMT(20 metrics shared task). In Pro-
ceedings of the Fifth Conference on Machine
Translation, pages 911–920, Online. Associa-
tion for Computational Linguistics. https://
doi.org/10.18653/v1/2020.emnlp
-main.213

Machel Reid and Graham Neubig. 2022. Learning
to model editing processes. arXiv preprint
arXiv:2205.12374. https://doi.org/10
.18653/v1/2022.findings-emnlp.280

Christopher Riesbeck. 1981. Failure-driven re-
minding for incremental learning. In IJCAI,
pages 115–120. Citeseer.

Arturo Rosenblueth, Norbert Wiener, and Julian
Bigelow. 1943. Behavior, purpose and tele-
ology. Philosophy of Science, 10(1):18–24.
https://doi.org/10.1086/286788

Annabel Rothschild, Justin Booker, Christa
Davoll, Jessica Hill, Venise Ivey, Carl DiSalvo,
Ben Rydal Shapiro, and Betsy DiSalvo. 2022.
Towards fair and pro-social employment of
digital pieceworkers for sourcing machine

learning training data. In CHI Conference on
Human Factors in Computing Systems Ex-
tended Abstracts, pages 1–9. https://doi
.org/10.1145/3491101.3516384

Ananya B. Sai, Akash Kumar Mohankumar, and
Mitesh M. Khapra. 2022. A survey of evaluation
metrics used for nlg systems. ACM Comput-
ing Surveys, 55(2). https://doi.org/10
.1145/3485766

Shibani Santurkar, Esin Durmus, Faisal Ladhak,
Cinoo Lee, Percy Liang, and Tatsunori
Hashimoto. 2023. Whose opinions do lan-
guage models reflect? https://doi.org
/10.48550/arXiv.2303.17548

Maarten Sap, Swabha Swayamdipta, Laura
Vianna, Xuhui Zhou, Yejin Choi, and Noah
A. Smith. 2022. Annotators with attitudes:
How annotator beliefs and identities bias toxic
language detection. https://doi.org/10
.18653/v1/2022.naacl-main.431

William Saunders, Catherine Yeh, Jeff Wu, Steven
Bills, Long Ouyang, Jonathan Ward, and Jan
Leike. 2022. Self-critiquing models for assist-
ing human evaluators. https://doi.org
/10.48550/arXiv.2206.05802

Roger C. Schank. 1983. Dynamic Memory: A
Theory of Reminding and Learning in Comput-
ers and People. Cambridge University Press.
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