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Abstract

Self-supervised sentence representation learn-
ing is the task of constructing an embedding
space for sentences without relying on hu-
man annotation efforts. One straightforward
approach is to finetune a pretrained lan-
guage model (PLM) with a representation
learning method such as contrastive learn-
ing. While this approach achieves impressive
performance on larger PLMs, the performance
rapidly degrades as the number of parame-
ters decreases. In this paper, we propose a
framework called Self-supervised Cross-View
Training (SCT) to narrow the performance
gap between large and small PLMs. To eval-
uate the effectiveness of SCT, we compare it
to 5 baseline and state-of-the-art competitors
on seven Semantic Textual Similarity (STS)
benchmarks using 5 PLMs with the number of
parameters ranging from 4M to 340M. The ex-
perimental results show that STC outperforms
the competitors for PLMs with less than 100M
parameters in 18 of 21 cases.!

1 Introduction

Self-supervised sentence representation learning
is the task of constructing an embedding space for
sentences without relying on human annotation
efforts. Recent advancements in self-supervised
sentence representation present promising results
on various downstream tasks such as Semantic
Textual Similarity (STS) and text classifica-
tion. For example, Gao et al. (2021) found
that self-supervised sentence embedding methods
could be on par with supervised methods (Reimers
and Gurevych, 2019) on various STS benchmarks.

*Corresponding author.
ICodes and Models: https://github.com/mrpeerat
/SCT.

A straightforward approach to self-supervised
sentence representation is to finetune a pre-trained
language model (PLM), i.e., BERT (Devlin
et al.,, 2019) and RoBERTa (Liu et al., 2019),
with a representation learning technique. One
popular method is contrastive learning. This learn-
ing method enables self-supervised representation
learning by creating a self-referencing mecha-
nism through data augmentation (Gao et al.,
2021; Zhang et al., 2022b; Zhou et al., 2022;
Klein and Nabi, 2022; Yan et al., 2021; Liu
et al., 2021; Kim et al., 2021; Cao et al., 2022).
These works have demonstrated improvements
over existing self-supervised techniques in sen-
tence embedding benchmark datasets (i.e., STS
and text classification).

Figure 2 shows how three existing methods—
Sim-CSE (Gao et al., 2021), DiffCSE (Chuang
et al., 2022), and DCLR (Zhou et al., 2022)—
perform on the BERT architecture as we varied the
number of parameters from 4M to 340M. While
these self-supervised techniques achieve impres-
sive performance on larger PLMs (i.e., those with
more than 100M parameters), the performance
rapidly degrades as the number of parameters de-
creases (Wu et al., 2021; Zhang et al., 2022b;
Limkonchotiwat et al., 2022). The figure also
shows how the data points organize themselves
into two distinct groups: LL and HH.

e High Cost, High Performance (HH). As
shown in Figure 2, all models in this group,
i.e., BERT-Base and BERT-Large, score
more than 75, with the inference times over
420.9 seconds regardless of the learning
method.

e Low Cost, Low Performance (LL). This
group contains all methods on models with
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Figure 1: (a) The overview of self-supervised contrastive learning for sentence embedding. Contrastive learning
is applied to directly compare the input = produced from the separate-view pipeline 7. (b) The Self-Supervised
Cross-View Training (SCT) pipeline. We calculate similarity score distributions between two networks (fy
and fir) from the cross-view pipeline and minimize them through similarity-score distribution. In addition, the
two networks do not require identical architecture nor share weights. They can be large and small networks

(distillation) or Siamese networks.

less than 100 parameters, i.e., BERT-Tiny,
BERT-Mini, and BERT-Small. All models in
this group score less than 70, with the infer-
ence times less than 84.7 seconds regardless
of the learning method.

Despite the apparent benefit of low compu-
tation costs, smaller models, i.e., BERT-Tiny,
BERT-Mini, and BERT-Small, are often ne-
glected. Greater emphasis should be placed on
exploring the potential to enhance the performance
of smaller models through novel learning methods
specifically tailored to their unique characteristics.

In this paper, we propose a framework called
Self-Supervised Cross-View Training (SCT) to
narrow the performance gaps between large and
small PLMs. Figure 1 displays the difference be-
tween the traditional contrastive learning approach
and ours. As shown in Figure 1a, the two views are
separated for contrastive learning, and the outputs
from h(-) are directly compared to each other.
Figure 1b highlights the key distinctions of SCT
based on two concepts: cross-view comparison
and similarity-score-distribution learning.

e Cross-view comparison: The ability to
self-reference is crucial to self-supervised
learning. We derive a novel mechanism for
two different augmented views to reference
each other.

o Similarity-score-distribution learning: The
way we quantify loss is critical to any learn-
ing process. Our method calculates the loss
by measuring the discrepancy between two
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Figure 2: Comparison between sentence representation
methods on different model sizes. We averaged Spear-
man’s rank correlation across seven STS datasets. LL
denotes the low-cost, low-performance group, and HH
denotes the high-cost, high-performance group.

similarity score distributions obtained from
cross-comparing two different views.

The combination of these two concepts provides
additional guidance which improves the effective-
ness of self-supervised sentence representation
learning on small PLMs.

To evaluate the effectiveness of SCT, we com-
pare it to state-of-the-art (SOTA) competitors on
STS, re-ranking, and natural language inference
(NLI) benchmarks. We also employ a distil-
lation setting using BERT-Large-SimCSE as a
teacher model. The experimental results on STS
demonstrated that our framework could address
the drastic performance degradation problems in
small PLMs by outperforming competitors in
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every case when the number of parameters is less
than 100M. For the smallest model (#parameter:
4 million), we improved the performance from
64.47 to 69.73 points compared to SimCSE. In
the case of large PLMs (i.e., those with more than
100M parameters), our model’s performance was
on par with the current SOTA model when tested
on BERT-Base and BERT-Large. For the distilla-
tion setting, we outperformed all distillation com-
petitors on all PLMs. For the re-ranking and NLI
tasks, we improved the downstream tasks’ per-
formance for nearly all settings.
The contributions of our work are as follows:

e We formulate a cross-view comparison
pipeline to provide a more robust self-
referencing mechanism for self-supervised
sentence representation learning on smaller
PLMs (those with less than 100M parame-
ters).

e Based on the cross-view comparison, we pro-
pose a method to measure the discrepancies
between the cross-view outputs by comparing
their respective similarity score distributions
rather than the direct outputs.

e We evaluate the effectiveness of SCT against
five competitors on three families of PLMs
using STS and downstream benchmark
datasets. In addition, we also provide an
in-depth analysis of different components
in the cross-view pipeline to assess their
effectiveness individually.

2 Related Work

Self-supervised learning is becoming more pop-
ular as a method to learn sentence representation
from pre-trained language models (PLMs) without
annotated information from training corpora. We
cover well-known self-supervised sentence rep-
resentation learning techniques in the following
subsections.

2.1 Contrastive Learning

Contrastive learning constructs an embedding
space by treating augmentations of an anchor
as positives and other samples as negatives. The
anisotropic problem is addressed by pulling a
positive sample and pushing a negative sample
with respect to an anchor sample. Gao et al.

(2021) showed that the way we obtain positive
and negative samples is critical to the perfor-
mance of the representation. Kim et al. (2021)
and Cao et al. (2022) utilized a different PLM to
generate positive and negative samples for each
anchor. Fang et al. (2020) derived a method us-
ing two back-translations to create two different
augmented views. Another popular approach is to
generate positive and negative pairs using feature
dimension dropouts (Gao et al., 2021; Yan et al.,
2021; Liu et al., 2021; Klein and Nabi, 2022).
The experimental results from these studies out-
performed the traditional self-supervised sentence
embedding methods.

A more advanced technique uses an additional
function to help distinguish positive from neg-
ative samples. For example, Zhou et al. (2022)
proposed an additional debias function by map-
ping negative samples to the Gaussian distribution
while individually assigning a weight to each con-
trastive negative sample. Zhang et al. (2022b)
proposed a virtual augmentation scheme by ap-
proximating the nearest neighborhood from the
neighboring samples to create the virtual nega-
tive samples. Chuang et al. (2022) introduced a
discriminator network to contrastive learning by
classifying whether each word in a sentence is
edited. Although these studies demonstrated good
performance, contrastive learning requires a judi-
cial consideration of negative sampling to prevent
false negatives.

2.2 Learning Without Negative Samples

A popular method to avoid false negatives is to
design a learning process that uses only posi-
tive samples. BSL (Zhang et al., 2021) adapted
BYOL’s learning algorithm (Grill et al., 2020),
which maximizes the similarity between two aug-
mented views of each sentence. In particular,
BSL created two augmented views from a PLM.
The method uses a weighted exponential mov-
ing average of embeddings as a self-referencing
mechanism. Klein and Nabi (2022) adapted a re-
dundancy representation learning algorithm from
Zbontar et al. (2021) and added a cosine similar-
ity to maximize the similarity between the two
samples formulated from high and low intense
feature-dropout rate models. While these methods
allow us to perform self-supervised learning with-
out negative samples, they are still outperformed
by contrastive learning.
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2.3 Sentence Representation Distillation

Distillation is a widely used technique for creat-
ing a small PLM (student) from an existing large
PLM (teacher) (Turc et al., 2019; Wang et al.,
2020). Several sentence representation studies
proposed self-supervised distillation frameworks.
For instance, Wu et al. (2021) proposed an self-
supervised contrastive distillation. They formu-
lated an anchor and other components (positives
and negatives) of contrastive learning using a small
and large PLMs, respectively. Limkonchotiwat
et al. (2022) proposed a distillation framework
based on the instance queue concept. A large
PLM formulated representations for an instance
queue, while the small PLM mimicked the rela-
tion between its representations and those in the
instance queue.

These methods have been shown to reduce
the performance gap between a small and large
PLMs effectively. However, none of the sentence
representation works present how to decrease the
gap without utilizing a large PLM. This research
question is an important problem that needs to be
addressed, especially since utilizing a large PLM
may not always be feasible in practice. Therefore,
itis crucial to propose techniques that can decrease
the gap with or without utilizing knowledge from
a large PLM.

2.4 Learning From Distribution

A recent approach from computer vision to mit-
igating the false negative problem is replacing
binary labels with a distribution of similarity
scores. The main idea is to compare samples «a
and p using similarity scores computed from the
same collection of instances D as soft labels.
In particular, the discrepancy between a and p
is expressed as the similarity score discrepancy.
Fang et al. (2021) proposed a knowledge distil-
lation method by training a student network to
imitate the similarity score distribution formu-
lated by a teacher network. Tejankar et al. (2021)
introduced a distribution learning paradigm using
a similarity distribution score inferred by a mo-
mentum encoder over a set of instances. Zheng
et al. (2021) proposed a representation learning
technique by modeling the relationship distribu-
tion between weak and contrastive augmentation
schemes. The experimental results from these
studies demonstrated higher performance than
contrastive learning and avoided false negatives.

2.5 Summary

As discussed in Section 2.1, the main drawback
of contrastive learning is the binary distinction
between positive and negative samples. Near
duplicates can be mistakenly used as negative sam-
ples. While there exist learning methods that use
only positive samples, they are still outperformed
by contrastive learning.

Based on various experimental studies, the
paradigm of learning from distribution shows
promising results compared to the other two
approaches. However, we have found that the
direct application of distribution learning to our
problem does not yield consistent performance
improvement (see Table 4 in Section 5.3.1). We
developed a self-referencing mechanism through
data augmentation, which is needed to improve the
distribution learning strategy for self-supervised
sentence representation learning. Moreover, our
framework also allows sentence representation
learning in a distillation manner. In particular, we
employ a larger model as the teacher model to let
a smaller model mimics the teacher’s property.

3 Proposed Method

One of the challenges of using small models is
the limited number of parameters. An empirical
study has shown that larger models have enough
parameters to solve complex problems with sim-
ple techniques, while smaller ones require more
guidance to solve complex problems (Brutzkus
and Globerson 2019; Wang et al., 2020). Based
on this observation, we design our proposed solu-
tion, Self-Supervised Cross-View Training (SCT),
to enhance the learning guidance for smaller mod-
els (those with less than 100M parameters) by
improving the self-referencing and discrepancy
measurement mechanisms.

Figure 3 illustrates the SCT pipeline and
highlights the two mechanisms we introduce to
improve the learning guidance: cross-view com-
parison pipeline and similarity-score-distribution
learning. In what follows, we describe how the
cross-view pipeline improves the robustness of
the self-referencing mechanism in Section 3.1.
Section 3.2 presents the mechanism we use to
measure the discrepancies between cross-view
outputs. We explain our proposed SCT loss
function in Section 3.3. Finally, we introduce sen-
tence representation distillation into our proposed
framework in Section 3.4.
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Figure 3: The overview of Self-Supervised Cross-View Training (SCT).

3.1 Cross-View Comparison Pipeline

As stated in the Introduction, we devise a
cross-view comparison pipeline to improve the
robustness of the self-referencing mechanism.
Figure 3 illustrates how the two augmented views
are fed to both online (updatable) fy(-) and refer-
ence (un-updatable) f.¢(-) networks and how their
outputs are compared in a cross-view pattern. In
this way, we use both views as references and do
not compare outputs originating from the same
view to each other.

Given a new sample z, two augmentations
T and 7' are created from two different
back-translations to produce two views z; =
T (z) and 29 = T'(z). Our framework allows
various data augmentation schemes, i.e., masked
language model (MLM) or synonym replacement.
We found that back-translation improves the per-
formance of downstream tasks the most, and
we used them to create cross-view inputs (see
Section 5.3.3 for design analysis).

Online Representations (z%). The views x; and
x9 are first encoded by an encoder fy(-) into a
sentence representation, which is then mapped by
the MLPs projector h(-) onto the representations

2 = h(fo(x1)) and 2§ = h(fo(x2)).

Reference Representations (z'*). The views
x1 and zy are again encoded by the fi(-) en-
coder to be used as references for the next step
2 = fop(w1) and 257 = fior(z2). Note that the
architecture and weights of the target network
fret(+) and the online network fy(-) are identical,
and all encoder outputs are normalized.

Instance Queues (D). We denote two in-
stance queues that are formulated from the cross-
view reference representations, 21 and 2K, as
D, = [d},...,d¥] and D, = [d}, ..., d%] where
k is the queue length and d is the sentence vec-
tor obtained from fir with df = 21 and d} =
2. These instance queues enable the dynamic
construction of a large and consistent negative
sample, facilitating distribution learning. (Fang
et al., 2021; Tejankar et al., 2021; Zheng et al.,
2021). At the beginning of each minibatch, we
enqueue and dequeue instance queues in a ‘ ‘first-

in-first-out’’ manner.

3.2 Similarity-Score Distribution

The next step is to calculate similarity score dis-
tributions for cross-view comparison. As shown
in Figure 3, we enforce the online representations
2% and 2§ to maintain the consistency of the refer-
ence representations 25t and zi°f through instance
queues Dy and Dy, respectively. When the online
network can match the reference representation in
a large number of negative samples, the online
network gains robustness to unseen inputs, which
is necessary for sentence embedding.

We formulate the cross-view and reference
distributions as follows:

e We formulate a cross-view distribution that
compares two augmented views called ¢f =
SR(2{, Dy, 7).

e Similarly, we derive another cross-view
distribution called ¢ = SR(z§, Dy, 7).

e We calculate the self-references with re-
spect to the previous online distributions
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as follows: ¢ = SR(zf, Dy, 7" and
= SR (25, Dy, 7).

We define the similarity score distribution func-
tion SR(+) as a dot product function between a
sentence representation and an instance queue:

SR (2,D,7) = [p1...ps],
esim(z,dj)/f (D)

Zd b esim(z,d)/T’

and 7 is the temperature scaling hyper-parameter
separately for the online and reference represen-
tations, and sim(-) is the dot product similarity
function.

where p; =

3.3 Self-Supervised Cross-View
Training Loss

This step computes the self-supervised cross-view
training Lsct loss function using cross-view and
reference distributions. In particular, the loss is
computed by minimizing the discrepancy be-
tween the ¢f and ' distributions. Moreover,
we minimize the difference between the ¢§ and

crff distributions. Lgct is defined as follows:

1
Lscr = §£KL(SG(C§ef)HC§))
; @
+§ﬁKL(SG(Cﬁef) 11c3).

given that L, is the KL-divergence loss function
that minimizes the discrepancy between online
and reference cross-view distributions. Using
stop-gradient SG(-) on the reference encoder is es-
sential in avoiding the anisotropic problem (every
input generates the same output). As demonstrated
in previous sentence embedding research (Li et al.,
2020; Yan et al., 2021), when directly adapting
BERT to STS tasks, the model tends to produce
high similarity scores for all sentences, as it maps
all sentences into a small region of the embed-
ding space, also known as a ‘‘collapse’’. Many
studies have offered explanations for why the
stop-gradient can help prevent the collapse issue
in self-supervised training. Zhang et al. (2022a)
demonstrated the advantages of stop-gradient is
in enhancing the gradient during the training pro-
cess, resulting in de-centering and de-correlation
effects. In addition, Chen and He (2021) and Tao
et al. (2022) also reported conforming results.
With the Lscr’s mechanism, cross-view com-
parison pipeline and similarity-score-distribution

learning, we circumvent the anisotropic prob-
lem that occurred in regular contrastive learning
methods.

3.4 Representation Distillation

As discussed in Section 2.3, distillation is a com-
mon technique for improving the performance of
the small PLMs by minimizing the discrepancy
between the teacher model (large PLM) and the
student model (small PLM). In this work, we in-
corporate the distillation approach into our novel
cross-view framework by replacing the reference
network frr(-) with a larger PLM fiaee(-) to en-
able the framework to perform the distillation.
We then design the distillation training objective
by combining a self-supervised loss (Lsct) and a
cross-view distillation loss (Lcp) as follows:

L= Lsct + Lcp ,
self-supervised  distillation

given the Lgcr loss is a self-supervised consis-
tency training loss based on the self-referencing
mechanism, the Lcp loss is a minimization ob-
jective between the large fiarge(-) and small fy(-)
PLMs using the cross-view training pipeline. This
loss aims to ensure that the small PLM can gen-
erate sentence representations similar to the large
PLM. We define L¢p as:

1 arge
Lcp = §EKL(SG(CIQ )1
4)

1
+§£KL(SG(Cllarge)||Cg),

We formulate ¢ from the small PLM (Sec-
tion 3.2). We define c/"* = SR(z"*°, Dy, ™)
and i = SR(24"%°, D,, 7). We produce 2!
from fiarge(-), Where the input of fiuee(-) is the
same x; and x5 from Section 3.1. In addition, we
apply the stop-gradient technique to prevent the
large network from mimicking the online network.

4 Experimental Settings

4.1 Implementation Details

Architecture. Our experiments cover five
BERT PLMs (Turc et al., 2019; Devlin et al.,
2019), while the number of parameters ranges
between 4M and 340M. To obtain sentence
representation vectors, we follow the practice of
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Model (#parameters) LR k ref ,0

BERT-Tiny (4M) S5E-04 131072 0.03 0.04
BERT-Mini (11M) 3E-04 131072 0.01 0.03
BERT-Small (29M) 3E-04 65536 0.02 0.03
BERT-Base  (110M) 5E-04 65536 0.04 0.05
BERT-Large (340M) 5E-04 16384 0.04 0.05

Table 1: Model parameters, including learning
rate, instance queue size k, and temperature scal-
ing for reference 7"f and online 7% networks.

average word pooling presented by Reimers and
Gurevych (2019). The projection head h(-) con-
tains three MLP layers. Each MLP layer has one
feed-forward with a ReLU activation function,
which is then fed into a linear feed-forward layer.
The size of the first and second feed-forward
layers are uw and u, respectively, where u is the
output vector dimension and w is the first-second
layer expansion factor. The default value of w is
set to 10.

Training Setup. For the training data, we
use unlabeled texts from two NLI datasets,
such as SNLI (Bowman et al., 2015) and
MultiNLI (Williams et al., 2018) datasets, fol-
lowing prior work (Li et al., 2020; Zhang
et al., 2020, 2021). For augmentation schemes,
we use English-German-English 7 and English-
French-English 7’ back-translations from Zhang
et al. (2021). We use AdamW (Loshchilov and
Hutter, 2019) as the optimizer, a linear learning
rate warm-up over 10% of the training data, and
a batch size of 128 for ten epochs. We tune the
learning rate, instance queue’s size k, and the
temperature scaling 77 and 7™f on the STS-B
development set. The best values of these param-
eters are shown in Table 1. Note that we evaluate
the STS-B development set every 64 training
steps, and the best checkpoint is used for the final
model. We also initialize the queues by randomly
generating vectors.

4.2 Competitive Methods

We compare our work with a comprehensive
range of self-supervised sentence representa-
tion methods representing well-known approaches
discussed in Section 2.

e SimCSE (Gao et al., 2021). A contrastive
learning technique using different random
dropout masks in the transformer architecture
as the data augmentation.

e DCLR (Zhou et al., 2022). A contrastive
learning method that weights negative sam-
ples according to the difficulty given by
another model.

o DIiffCSE (Chuang et al., 2022). A contrastive
learning technique that uses additional learn-
ing signals from a discriminator to make the
model more sensitive to small changes. For
the generator model used in this baseline, we
employ DistilBERT (Sanh et al., 2019) as
described in the original paper.

e CKD (Wu et al., 2021). A self-supervised
contrastive distillation method using a mem-
ory bank as large-negative samples.

e ConGen (Limkonchotiwat et al.,, 2022).
A self-supervised distillation method using
an instance queue for distilling sentence
embedding from large to small PLMs.

4.3 Evaluation Setup

We utilize Gao et al.’s (2021) evaluation settings
by evaluating the efficiency of our work on the
following STS benchmark datasets: STS-B (Cer
et al., 2017), SICK-R (Marelli et al., 2014), and
STS 2012-2016 (Agirre et al., 2012, 2013, 2014,
2015, 2016). These datasets contain pair-wise sen-
tences, where the similarity of each pair is labeled
with a number between 0 and 5, indicating the
degree to which the two sentences express the
same meaning.

We also evaluate our model on downstream
tasks, such as re-ranking (AskUbuntu [Lei et al.,
2016] and SciDocs [Cohan et al., 2020]) and NLI
(SICK-E [Marellietal.,2014] and SNLI [Bowman
et al., 2015] datasets). For re-ranking, we use the
experiment and evaluation settings from unsu-
pervised sentence embedding benchmark (Wang
et al., 2021). For NLI, we use all the datasets
from SentEval (Conneau and Kiela, 2018) and use
the experiment setting from previous sentence
embedding works (Conneau and Kiela, 2018;
Limkonchotiwat et al., 2022). In addition, we re-
port the average scores across three random seeds
for each experiment where the SD value is approx-
imately only ~0.30 points for the STS benchmark,
~1.02 points for NLI, and ~0.78 points for NLIL.

5 Experimental Results

This section presents results from five sets of
studies. Section 5.1 presents results from the
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Type Model Methods Semantic Textual Similarity (STS)
(#parameters) STS12 STS13 STS14 STS15S STS16 STS-B  SICK-R  Avg.
SimCSE 58.59 69.52 60.15 6993 67.85 61.77 60.27 64.47
BERT-Tiny  DCLR 52.39 6091 50.57  59.61 5649 4731 55.68 54.71
“4M) DiffCSE 59.40 7128 6121 7185 67.65 61.78 59.70 64.70
SCT 70.67 66.68 66.76 77.66  70.62  71.79 63.95 69.73
SimCSE 56.55 6577 5955 7226 7023  60.85 62.19 65.94
BERT-Mini DCLR 46.43 6044 5303 65.12 62.67 51.83 58.81 56.90
(11M) DiffCSE 58.84  68.61 62.12 7459 7234  64.84 62.74 66.30
SCT 69.68 6690 6535 7829 7248 6947 64.98 69.59
Fine-tuning SimCSE 60.34  73.84 6628 7631 7394  69.04 64.13 69.13
BERT-Small DCLR 56.81 70.57  60.12 7090 69.03  61.67 62.87 64.57
(29M) DiffCSE 5935 7095 6524 7657 73.21 67.86 64.82 68.29
SCT 7098 69.89 69.50 8143 7526 75.33 65.52 72.56
SimCSE 68.40 8241 7438  80.91 78.56  76.85 72.23 76.25
BERT-Base = DCLR 70.81 83.73 7511 7256 7844  78.31 71.59 77.22
(110M) DiffCSE 72.78 8443 7647 8390 80.54  80.59 71.23 78.49
SCT 78.83  78.02 7264 8242 76.12 7691 68.89 75.55
SimCSE 70.88  84.16 7643 84.50  79.76  79.26 73.88 78.41
BERT-L DCLR 71.87 84.83 7737 84770 79.81 79.55 74.19 78.90

arge )
(340M) DiffCSE 71.82 8439 7585 8497 79.20 79.55 73.42 78.46
(reproduce)
SCT 76.61 81.80 76.84 8434 77.15 78.85 71.55 78.16
. CKD 7176 8041  73.63 81.75 76.14  75.89 67.78 75.34
BERT-Tiny

(4 M) ConGen 7176 79.75 7347 8253  76.64  78.01 69.19 75.89
SCT 7346  80.14 7395 8297 7724 78.44 68.92 76.43
BERT-Mini CKD 7239 8198 7537 8283 7771  717.73 67.58 76.51
(11M) ConGen 7296  81.15 7446  83.11 77.07 79.46 69.48 76.81
Distillation SCT 7449  81.14 7553 84.18 77.83  80.04 69.84 77.58
BERT-Small CKD 7243  82.11 75.59  82.19 7773  77.21 68.05 76.47
(29M) ConGen 73.61 8237 7493 83.19 7777  79.54 69.73 77.31
SCT 7496  82.83 7589 84.08 7824  80.53 70.57 78.16
BERT-Base CKD 72.52 8437 76779 8297  79.01 78.21 69.26 77.58
(110M) ConGen 74.15 8424 7672 84776  79.11 80.78 71.31 78.72
SCT 76.60 84.72 77.63 8519 79.68  81.28 71.97 79.58

Table 2: Sentence embedding performance on STS tasks (Spearman’s rank correlation). For the
distillation setting, we used BERT-Large-SimCSE for all distillation techniques.

main experiments using 7 STS benchmark data-
sets described in the previous subsection. In
Section 5.2, we demonstrate the effectiveness of
our method on various downstream benchmark
datasets. In Section 5.3, we study the design de-
cisions of the key components, namely, (i) the
model architecture and loss function; (ii) instance
queues; and (iii) data augmentation strategy. Sec-
tion 5.4 demonstrates the design decision of the
distillation loss.

5.1 Main Results: STS Benchmark Datasets

Table 2 illustrates the effectiveness of our method
(SCT) in comparison to the five competitors: Sim-

CSE, CCLR, DiffCSE, CKD, and ConGen. We
separate the results into two groups: fine-tuning
(without a large PLM in the framework) and
distillation (using a large PLM in the framework).

Fine-tuning Results. For the average scores,
the experimental results show that our method
SCT outperforms all competitors for all PLMs
with less than 100M parameters. Let us first look
at the results from BERT-Tiny, the smallest one
from the BERT family. SCT outperforms Sim-
CSE and DCLR by 5.26 and 4.3 points regarding
Spearman’s rank correlation. As expected, SCT
is outperformed by competitors for models with
more than 100M parameters, i.e., BERT-Base and
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BERT-Large. For BERT-Base, SCT scores lower
than the best performer, DiffCSE, by 2.94 points.
For BERT-Large, SCT scores lower than DCLR,
which is the best performer, by 0.74 points. These
findings underscore the importance of incorporat-
ing SCT into PLM training, especially in scenarios
where computational resources are limited.

Distillation Results. The results presented in
Table 2 demonstrate that SCT outperforms com-
peting methods across all PLMs. Notably, SCT
shows superior performance compared to Con-
Gen, with improvements from 75.89 to 76.43 and
78.721t079.58 on BERT-Tiny and BERT-Base, re-
spectively. Furthermore, the SCT method outper-
forms the teacher model (BERT-Large-SimCSE)
when the number of parameters exceeds 100M,
achieving a Spearman’s rank correlation of 79.58
compared to 78.41. This success can be attributed
to the combination of the self-supervised loss
LSCT and the distillation loss LCD. The efficacy
of SCT is further demonstrated by comparing
fine-tuning and distillation methods using the
smallest PLM. The results show that the distilla-
tion method significantly improves the fine-tuning
performance, with a boost from 69.73 to 76.43
(SCT fine-tuning and distillation).

Summary of Results. As shown in Table 2,
the fine-tuning experiments demonstrate that SCT
outperforms its competitors 20 out of 35 times,
representing 57.1% of all cases. For models with
fewer than 100M parameters, SCT performs the
best in 18 out of 21 trials, i.e., 85.7%. In contrast,
for models with more than 100M parameters, SCT
is the top performer in only 2 out of 14 cases, i.e.,
14.3%. In the distillation setting, SCT outperforms
its competitors in 25 out of 28 experiments, i.e.,
89.3%, for all models. Moreover, when the num-
ber of parameters surpasses 29M, SCT is the best
performer in all 14 cases. In addition, the perfor-
mance of SCT-Distillation-BERT-Small (#param:
29M) is similar to the SOTA on BERT-Base, i.e.,
78.49 (DiffCSE) vs. 78.16 (SCT). These results
conform with the proposed benefit of SCT that
we aim to improve the performance of smaller
models.

5.2 Downstream Tasks

In this study, we demonstrate the effectiveness
of our method compared to DCLR and DiffCSE
(the top performers in Table 2) on re-ranking

Model Reranking NLI

Type Methods
(BERT) AskU SICK-E  SNLI  Avg.

SciDocs  Avg

DCLR 50.23 58.52 54.38 74.93 63.09  69.01
Tiny DiffCSE ~ 50.76 59.26 55.01 74.45 63.36 6891
SCT 51.26 59.32 55.29 78.18 65.60 71.89

DCLR 51.09 62.89 56.99 80.24 69.17 7471
Small  DiffCSE  51.56 63.02 57.29 80.29 69.02  74.66
SCT 51.76 65.41 58.59 80.37 71.02  75.70
DCLR 51.29 69.47 60.38 81.19 71.60  76.40
Base DiffCSE ~ 50.93 69.33 60.13 82.30 72.57 7744
SCT 52.40 69.54 60.97 82.30 73.56 7793
DCLR 53.79 72.36 63.08 81.83 71.99 7691
Large  DiffCSE  52.60 68.78 60.69 81.77 7229  71.03

Fine-tuning

SCT 53.35 72.68 63.02 83.54 75.56  79.55

CKD 55.40 65.04 60.22 82.46 72.36  77.41

Tiny ConGen 56.27 64.75 60.51 83.07 73.07  78.07

= SCT 56.76 65.52 61.14 83.16 73.90 78.53
‘% CKD 56.04 67.73 61.89 82.87 7427 1857
= Small ~ ConGen 54.99 67.93 61.46 83.17 7577 1947
é SCT 55.65 68.22 61.94 84.11 76.76  80.44
CKD 56.85 70.53 63.69 83.13 74.04  79.05

Base ConGen 56.70 71.25 63.98 83.48 76.28  79.88

SCT 57.40 71.85 64.63 84.73 77.82 8097

Table 3: Re-ranking and NLI results. We report
MAP scores for re-ranking and accuracy for NLI.

(AskUbuntu and SciDocs) and natural language
inference (SICK-E and SNLI). We report the
Mean Average Precision (MAP) for re-ranking
and accuracy score for NLI. In addition, we also
separate the results into two groups just like in the
previous section.

Fine-tuning Results. Table 3 demonstrates that
while SCT’s performance on STS is lower than
that of its competitors when the parameter count is
less than 100M, it outperforms all competitors in
re-ranking and NLI for 26 out of 28 cases (92.8%).
For example, on BERT-large, SCT surpasses Dif-
fCSE and DCLR by 2.52 and 2.64 points in the
NLI average case, respectively. The gap between
our method and competitive methods is wider
on NLI datasets compared to STS benchmark
datasets. For re-ranking, we found that SCT con-
sistently outperforms competitive methods except
for AskUbuntu on BERT-Large. These results
demonstrate that SCT improves the robustness of
any PLMs on downstream tasks with cross-view
and self-referencing mechanisms.

Distillation Results. The results indicate that
SCT outperforms all competing distillation meth-
ods. Furthermore, our distillation method performs
better than the fine-tuning method in comparable
setups. For instance, when applied to the smallest
PLM (BERT-Tiny), our distillation method im-
proved the performance of NLI datasets from
71.89 to 78.53, outperforming the fine-tuning
method. Moreover, SCT-Distillation-BERT-Base
surpasses SOTA BERT-Large-finetuning for the
average case. These findings highlight the efficacy
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Method | BERT-Tiny | BERT-Small
SCT | 6973 |  72.56
Model & loss studies
Distribution — Contrastive 15.30 110.52
Cross-view—Identical-view 17.82 13.69
fref — a momentum encoder 11.29 11.06
KL — CE 10.20 10.32
No MLPs J1.77 13.67
Instance queue studies
Only one instance queue 12.85 }1.21
No update queues 13.85 12.76
No instance queue 13.38 12.29
Data augmentation studies
Masked language model 13.82 11.87
Synonym replacement 17.95 }3.15
Dropout mask 15.42 13.11
Using the same BT (7 = T") 15.66 12.47

Table 4: Ablation studies on model & loss, in-
stance queue studies, and data augmentation stud-
ies. We evaluate the performance of these studies
on the average score across seven STS datasets.

of SCT in improving PLM performance, whether
the teacher model is available or not.

5.3 Design Analysis

In this subsection, we analyze the key components
of SCT as follows. Section 5.3.1 provides an
ablation study on the model and loss function.
Section 5.3.2 presents an analysis of the instance
queue. Section 5.3.3 explores how different data
augmentation schemes affect the performance of
our method. In Section 5.3.4, we provide the sum-
mary of results from the design analysis studies.

5.3.1 Model and Loss Function

Table 4 presents the results from the proposed
SCT (fine-tuning) setup compared to the following
variants. For brevity, we focus on models with less
than 100M parameters.

The results show that the default version of SCT
is the best performer. We can see that changing
from distribution learning to contrastive learning
incurs performance penalties ranging from 3.24 to
10.52 points. Similarly, changing the view com-
parison setting from cross-view to identical-view
also results in performance penalties ranging from
3.69 to 13.06 points. In contrast, the momentum
encoder, cross-entropy, and removing MLPs mod-
ifications result in smaller impacts. The results
suggest that all design components are crucial to
our method’s performance, and the penalties for
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Instance queue size

Figure 4: The comparison between various queue sizes,
such as 128, 1024, 16384, 65536, 131072, and 262144.
We average Spearman’s rank correlation across the
seven STS benchmarks and test on small PLMs, i.e.,
BERT-Tiny and BERT-Small.

removing the distribution learning and cross-view
parts are the most drastic ones.

5.3.2 Instance Queue

We study the impact of the following instance
queue modifications: (i) combining two instance
queues into one, (ii) keeping the negative samples
unchanged, (iii) replacing the queues with in-batch
negatives. As shown in Table 4, any modification
from the default SCT results in a performance
drop for all models. We can also see that keeping
the negative samples unchanged suffers the worst
impact. For instance, the performance of using
the same negative sample (no queue updates)
decreases the performance from 69.73 to 65.88 on
BERT-Tiny. These results imply that the coverage
of negative samples is crucial to the performance.

Let us now consider the impact of instance
queue size on BERT-Tiny and BERT-Small. In
this study, we vary the number of negative sam-
ples in the queue from 128 to 262,144 samples (the
largest that our hardware supports). As shown in
Figure 4, the performance improves as the queue
size grows from 128 to 16,384 samples for all
cases. However, the optimal queue size varies ac-
cording to the model architecture, i.e., 131,072 for
BERT-Tiny and 65,536 for BERT-Small. These
results suggest we should tune the queue size
separately for each model architecture.

5.3.3 Data Augmentation Choice

This experiment evaluates the effect of different
augmentation schemes widely used in sentence
representation learning: (i) two back-translations
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(default), (ii)) mask language model 15%, (iii)
synonym replacement (one-word replacement),
(iv) dropout mask, and (v) using the same
back-translation (7 = 7'). We evaluate Spear-
man’s rank correlation on seven STS benchmark
datasets. The experimental results are shown in
Table 4 (data augmentation studies).

As expected, changing back-translation to other
augmentation schemes decreases the performance
in all cases. For instance, the performance of
BERT-Tiny drops from 69.73 to 64.07 when
we change from two back-translations to only
one back-translation. This is because the two
back-translation schemes generate high-quality
synonym text pairs (different syntax but same
meaning), which help sentence representation to
distinguish positive and negative samples in the
embedding space. In contrast, other augmenta-
tion techniques produce either incorrect or similar
pair texts, which are not useful for sentence
representation learning.

Data Augmentation Analysis. To validate our
data augmentation strategy, we assess the syntax
and semantic scores on our augmented datasets.
We utilized the edit distance metric to evaluate
the syntax changes (dissimilarity) in the aug-
mented datasets compared to the original dataset.
Additionally, we employed cosine similarity to
evaluate the semantic consistency between the
original and augmented embeddings. Our base en-
coders in this analysis were BERT-Tiny-SCT and
BERT-Tiny-DiffCSE.

The results, as presented in Table 5, revealed
that although MLM produced the highest string
dissimilarity, it failed to preserve semantic from
the original texts, resulting in significant changes
to syntax and semantic. In contrast, the synonym
augment scheme exhibited higher embedding sim-
ilarity than MLM, as it maintained the original
texts to a greater extent, resulting in minimal
changes to syntax and semantic. Interestingly,
back-translation produced favorable results in
both string and embedding similarity. While the
syntax was altered, the semantic remained un-
changed, indicating reasonable performance in
maintaining the core semantic meaning. While
the string dissimilarity of back-translation was
slightly lower than that of MLM (with only one
character difference on average), back-translation
achieved higher similarities in the base encoders’
embeddings.

Method  String Dissim. Embedding Sim.
SCT DiffCSE
Synonym 6.59 £430 094 0.97
MLM 13.37 £7.67 0.85 0.94
BT 1232 +£9.31 098 0.97

Table 5: We evaluate the string dissimilarity and
embedding similarity on our training and augmen-
tation datasets. For the string dissimilarity, we use
edit distance to evaluate the changes in the aug-
mentation dataset. For the embedding similarity,
we use cosine similarity to evaluate the identical
of the original and augmentation dataset.

These findings corroborate the results of our
data augmentation choices, as shown in Table 4,
where we emphasize that data augmentation meth-
ods with desirable properties exhibit high string
dissimilarity and embedding similarity. The effi-
cacy of back-translation, in particular, highlights
its potential as a suitable data augmentation tech-
nique for preserving both syntax and semantic
consistency, making it a promising technique for
enhancing the performance of embedding space.

5.3.4 Summary of Design Analysis

As shown in Table 4, we present the desired
components in the SCT framework. We found
that applying a technique from computer vision
requires careful consideration of the architecture
and data augmentation schemes. The experimental
results from the model and loss studies demon-
strate that using contrastive learning similar to
SimCSE (Gao et al., 2021) or using a momen-
tum encoder similar to MoCo (He et al., 2020;
Chen et al., 2020) produce poorer performance
than our setting (small PLMs). This is because
of the fact that small PLMs necessitate more
guidance, as discussed in Section 3. Thus, the
similarity-score-distribution learning paradigm
employed in our framework demonstrates prom-
ising results in enhancing the performance of
small PLMs. However, it is worth noting that
applying the similarity-score-distribution learning
paradigm from Fang et al. (2021) without mak-
ing any adjustments adversely affects the model’s
performance more than any other setting, i.e., the
performance of BERT-Tiny decreased by 7.82
points when we changed from cross-view (our
work) to identical-view (computer vision).
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Method BERT-Tiny BERT-Small Method BERT-Tiny BERT-Small
SCT-distillation 76.43 78.16 »CCD 71.93 74.41
Model & loss studies Lcp + Lser 76.43 1450 78.16 13.75
Distribution — Contrastive 16.03 13.26
Cross-view — Identical-view 13.97 11.43 Lyise 71.42 73.16
fref — a momentum encoder 13.62 10.97 Lwmse + Lscr 7470 13.28 76.11 12.95
KL — CE 13.43 10.98
No MLPs 14.14 12.46 LconGen 75.89 77.31
LconGen + Lscr  76.36  10.47  77.87 10.56
Table 6: Ablation studies on model & loss of our
distillation method. We evaluate the performance Lekp 75.34 76.47
Lcxp + Lscr 76.06 10.72 7694 10.46

of these studies on the average score across seven
STS datasets.

Regarding the data augmentation studies (Sec-
tion 5.3.3), we found that using two-back
translations produced the most effective aug-
mented sentences compared to MLM or synonym
replacement. With these findings, we require to
adjust architectures, loss, and data augmentation
from previous works, which achieved SOTA per-
formance in small PLMs. These insightful findings
necessitate the adaptation of architectures, loss
functions, and data augmentation approaches from
prior works. By carefully considering these adjust-
ments, we can further enhance the capabilities and
efficiency of small PLMs in various NLP tasks.

5.4 Distillation Studies

In this subsection, we study the components of our
distillation method as follows. In Section 5.4.1,
we provide an ablation study on the model and
loss function. Section 5.4.2 presents an analysis
of the distillation loss.

5.4.1 Distillation Design

This study illustrates the efficacy of SCT within
distillation settings. An ablation study has been
meticulously conducted to elucidate that all con-
stituent elements of SCT contribute to the overall
performance. In particular, we demonstrate the
ablation study of the self-supervised loss Lgcr in
distillation settings using the setup from Table 4.

The findings in Table 6 highlight the importance
of adhering to the default SCT configuration, as
any departure from it incurs a notable perfor-
mance decrement. The analysis distinctly reveals
that the most substantial penalties arise from the al-
terations involving Distribution—Contrastive and
Cross-view—Identical-view adjustments. These

Table 7: We evaluate the performance of these
studies on the average score across seven STS
datasets.

results emphasize all components of SCT con-
tribute to performance improvement. Any devi-
ation from the default SCT setting results in a
performance penalty.

5.4.2 Distillation Loss

This experiment demonstrates the efficacy of our
novel approach involving self-supervised and dis-
tillation losses. We investigate the impact of using
adistillation loss alone and the benefits of integrat-
ing both distillation and self-supervised losses. In
particular, we explore the utility of our SCT loss
as a bootstrapping mechanism for existing distil-
lation methods. We also demonstrate a common
distillation loss by minimizing the discrepancy
between 2'#° and 2? with Mean Square Error
(Lmsk)-

Table 7 presents the experimental results for two
scenarios: (i) using only a distillation loss and (ii)
incorporating both self-supervised and distillation
losses. In addition, we highlight the improve-
ment with the up arrow (). Our experimental
findings consistently demonstrate that including
the SCT loss significantly enhances the perfor-
mance of existing distillation methods across the
board. For example, the SCT loss yields sub-
stantial performance boosts of 3.28 and 4.50 for
Lcp and Lysg methods on BERT-Tiny, respec-
tively. Moreover, we improve the performance
of ConGen and CKD methods to a level compa-
rable with Lcp + Lscr. We do this using SCT
as the bootstrapping loss. These results under-
score the advantages of combining distillation and
self-supervised losses to achieve enhanced perfor-
mance in small PLMs. Furthermore, our SCT loss
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demonstrates its efficacy as a reliable bootstrap-
ping loss for distillation methods, highlighting
its potential as a valuable tool for improving the
performance of distillation-based approaches.

6 Conclusion

We propose a self-supervised sentence repre-
sentation learning method called Self-Supervised
Cross-View Training (SCT). The observation
inspires our work that smaller models, when
constructed in a self-supervised setting, tend to
perform poorly or collapse altogether. We hy-
pothesize that this problem can be addressed
by providing additional learning guidance to fa-
cilitate the self-referencing mechanism in the
self-supervised learning pipeline.

Our work consists of three key contributions.
First, at the framework level, we formulate a
cross-view comparison pipeline to improve the
self-referencing mechanism by enabling cross-
comparison between two input views. In addi-
tion, our framework allows using two input views
formulated from the same or different PLMs. Sec-
ond, to facilitate the learning process, we also
design a new technique to measure the discrep-
ancy between two cross-view outputs. Instead of
comparing them directly, we use similarity score
distributions. Third, we conducted extensive sets
of experimental studies to compare our method
against existing competitors and to analyze our
design decisions.

The experimental results on the STS tasks show
that our method dominates all competitors in the
cases of PLMs with less than 100M parameters.
With the help of the distillation loss, our method
improves the performance of small PLMs better
than that of large PLMs. Moreover, our method
outperforms competitive methods for all PLMs
on the downstream tasks. Furthermore, the re-
sults also confirm that the cross-view comparison
pipeline and similarity score distribution com-
parison are crucial to performance improvement.
These findings imply that smaller PLMs bene-
fit from our judiciously designed guidance in a
self-supervised setting.
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