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Abstract

Hallucinated translations can severely under-
mine and raise safety issues when machine
translation systems are deployed in the wild.
Previous research on the topic focused on small
bilingual models trained on high-resource lan-
guages, leaving a gap in our understanding of
hallucinations in multilingual models across
diverse translation scenarios. In this work, we
fill this gap by conducting a comprehensive
analysis—over 100 language pairs across var-
ious resource levels and going beyond English-
centric directions—on both the M2M neural
machine translation (NMT) models and GPT
large language models (LLMs). Among sev-
eral insights, we highlight that models struggle
with hallucinations primarily in low-resource
directions and when translating out of English,
where, critically, they may reveal toxic pat-
terns that can be traced back to the training
data. We also find that LLMs produce qualita-
tively different hallucinations to those of NMT
models. Finally, we show that hallucinations
are hard to reverse by merely scaling models
trained with the same data. However, employ-
ing more diverse models, trained on different
data or with different procedures, as fallback
systems can improve translation quality and
virtually eliminate certain pathologies.

1 Introduction

Recent advancements in large-scale multilingual
machine translation have brought us closer to
realizing a universal translation system, capable
of handling numerous languages and translation
directions (Aharoni et al., 2019; Arivazhagan
et al., 2019; Fan et al., 2020; Zhang et al., 2020;
Wenzek et al., 2021; Goyal et al., 2022; NLLB
Team et al., 2022). Concurrently, large language
models (LLMs) have shown remarkable general-
ization to new tasks, including translation, where

they are becoming increasingly stronger (Brown
et al., 2020; Chowdhery et al., 2022; Hendy et al.,
2023). Compared to traditional bilingual models,
these systems can offer significant performance
improvements and greatly simplify engineering
efforts, as a single model can be used for all lan-
guage pairs (Arivazhagan et al., 2019). As a re-
sult, they are an increasingly attractive choice for
real-world applications. However, when deployed
in the wild, these models may generate halluci-
nations: highly pathological translations detached
from the source that can severely damage user
trust and pose safety concerns (Perez et al., 2022).

The problem of hallucinations has long been
recognized by researchers (Ji et al., 2022), and
recent studies have contributed towards better
understanding, detection and mitigation of these
pathological translations. However, these studies
have been conducted on small bilingual models
(<100M parameters) trained on a single English-
centric high-resource language pair (Raunak et al.,
2021; Guerreiro et al., 2023b,a; Dale et al., 2023;
Xu et al., 2023). This leaves a knowledge gap
regarding the prevalence and properties of hallu-
cinations in large-scale translation models across
different translation directions, domains and data
conditions.

In this work, we aim to fill this gap by inves-
tigating hallucinations on two different classes of
models. The first and main class in our analysis is
the de facto standard approach of massively mul-
tilingual supervised models: We use the M2M-
100 family of multilingual NMT models (Fan
et al., 2020), which includes the largest open-
source multilingual NMT model with 12B param-
eters. The second class is the novel and promising
approach of leveraging generative LLMs for trans-
lation. Contrary to conventional NMT models,
these models are trained on massive amounts of
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monolingual data in many languages, with a strong
bias towards English, and do not require parallel
data. In our analysis, we use ChatGPT and GPT-4,
as thay have been shown to achieve high transla-
tion quality over a wide range of language pairs
(Hendy et al., 2023; Peng et al., 2023).

We organize our study by analyzing the two
prevalent types of hallucinations in NMT consid-
ered in the literature: hallucinations under per-
turbation and natural hallucinations (Lee et al.,
2018; Raunak et al., 2021; Guerreiro et al., 2023b).
Firstly, we study hallucinations under perturbation
and evaluate whether these translation systems
are robust to source-side artificial perturbations.
While previous studies have found that these per-
turbations (e.g., spelling errors and capitalization
mistakes) can reliably induce hallucinations (Lee
et al., 2018; Raunak et al., 2021), it is not clear
whether those conclusions hold for large multi-
lingual models. Secondly, we comprehensively
investigate natural hallucinations, and evaluate
their properties in the outputs of the massively
multilingual M2M models on a vast range of
conditions, spanning from English-centric to non-
English-centric language pairs, translation di-
rections with little supervision, and specialized
medical domain data where hallucinations can
have devastating impact. Finally, we study a hy-
brid setup where other models can be requested
as fallback systems when an original system hal-
lucinates, with the aim of mitigating hallucina-
tions and improving translation quality on-the-fly.

We provide several key insights on properties
of hallucinations, including:

e models predominantly struggle with halluci-
nations in low-resource language pairs and
translating out of English; critically, these
hallucinations may contain toxic patterns that
can be traced back to the training data;

e smaller distilled models can, surprisingly,
hallucinate less than large-scale models; we
hypothesize that this is due to modeling
choices that discourage hallucinations (e.g.,
leveraging less potent shallow decoders that
rely more on the encoder representations);

e LL.Ms produce hallucinations that are quali-
tatively different from those of conventional
translation models, mostly consisting of off-
target translations, overgeneration, and even
failed attempts to translate;

e hallucinations are sticky and hard to reverse
with models that share the same training data,
whereas employing more diverse fallback
systems can substantially improve overall
translation quality and eliminate pathologies
such as oscillatory hallucinations.

We release all our code and make available
over a million translations in more than 100 trans-
lation directions to spur future research.!

2 Background

2.1 Large Multilingual Language Models

Massively multilingual neural machine translation
has emerged as a powerful paradigm for build-
ing machine translation systems that can han-
dle numerous languages (Akhbardeh et al., 2021;
Wenzek et al.,, 2021; NLLB Team et al., 2022;
Bapnaetal., 2022; Chowdhery et al., 2022). These
systems translate directly in multiple translation
directions without relying on a pivot language.

The dominant strategy for achieving these sys-
tems is training large multilingual models on vast
amounts of parallel data often obtained through a
combination of data mining and data augmenta-
tion strategies, such as backtranslation (Sennrich
et al., 2016; Edunov et al., 2018). Compared to
traditional bilingual models, these systems bring
significant improvements, particularly for low-
resource and non-English-centric language pairs,
as these benefit the most from multilingual transfer
(Arivazhagan et al., 2019; Fan et al., 2020).

As an alternative, a novel strategy is to leverage
LLMs. These systems are pretrained on massive
nonparallel corpora and can be prompted to solve
arbitrary tasks (Radford et al., 2019; Brown et al.,
2020). In fact, this approach has led to impres-
sive results across a wide variety of NLP tasks
(Chowdhery et al., 2022; Zhang et al., 2022).
Translation is no exception: LLMs can produce
translations that are competitive with those of su-
pervised translation models (Vilar et al., 2023;
Peng et al., 2023; Hendy et al., 2023; Bawden and
Yvon, 2023).

2.2 Hallucinations in Machine Translation

Hallucinations lie at the extreme end of translation
pathologies and present a critical challenge in

TAll resources are available in https://github.com
/deep-spin/lmt_hallucinations.
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machine translation, as they can compromise the
safety and reliability of real-world applications.

Importantly, hallucinations in machine trans-
lation are unlike hallucinations in other natural
language generation tasks (e.g., abstractive sum-
marization) (Ji et al., 2022). Whereas, for these
other tasks, models often produce hallucinated
outputs (Falke et al., 2019; Cao et al., 2022;
Manakul et al., 2023), hallucinations in machine
translation, possibly due to the more closed-ended
nature of the task, are substantially rarer and
hard to observe in clean, unperturbed data. This
has led several previous studies to examine their
properties by creating artificial scenarios where
hallucinations are more likely to occur (e.g., in-
troducing perturbations in the source text (Lee
et al., 2018) or noise in the training data (Raunak
et al., 2021)). To distinguish these two scenar-
10s, hallucinations in machine translation are cat-
egorized into two types (Raunak et al., 2021):
hallucinations under perturbation and natural
hallucinations.

Hallucinations under Perturbation. A model
generates a hallucination under perturbation when
it produces a significantly lower quality transla-
tion for a slightly perturbed input compared to the
original input (Lee et al., 2018). Hallucinations
under perturbation explicitly reveal the lack of
robustness of translation systems to perturbations
in the source by finding translations that undergo
significant negative shifts in quality due to these
changes.

Natural Hallucinations. These translations oc-
cur naturally, without any perturbation. In this
work, we follow the taxonomy introduced in
Raunak et al. (2021) and extended in Guerreiro
et al. (2023b). Under this taxonomy, hallucina-
tions are translations that contain content that is
detached from the source, and are further cat-
egorized as fluent detached hallucinations or
oscillatory hallucinations. The former refers to
translations that bear minimal or no relation at all
to the source, while the latter refers to inadequate
translations that contain erroneous repetitions of
words and phrases.

While recent research has contributed towards
understanding, detection, and mitigation of hallu-
cinations (Guerreiro et al., 2023a,b; Dale et al.,
2023; Xu et al., 2023), the scope of these stud-
ies has been restricted to small models (<100M

parameters) trained on a single, high-resource lan-
guage pair. In this work, we expand upon this
prior research by studying hallucinations in large
multilingual models across various translation di-
rections, domains, and data conditions, thereby
addressing an important gap in the literature.

3 Experimental Suite

3.1 Models

For supervised multilingual NMT models, we
use the transformer-based (Vaswani et al., 2017)
M2M-100 family of models (Fan et al., 2020):
M2M (S) with 418M parameters, M2M (M) with
1.2B parameters, and M2M (L) with 12B param-
eters. These models were trained on a many-
to-many parallel dataset of 7.5B sentences, and
support 100 languages and thousands of lan-
guage pairs (LPs). We also evaluate SMaLL100
(Mohammadshahi et al., 2022), a model with
330M parameters obtained via distillation of
M2M (L). SMaLL100 was trained on a smaller
training set obtained via uniform sampling across
all language pairs to reduce the bias towards
high-resource languages: only 100k parallel sen-
tences from the M2M training data were used for
each LP, for a total of 456M parallel sentences.
For decoding, we run beam search with a beam
size of 4.

As for the alternative strategy using LLMs,
we use two GPT models: ChatGPT (gpt-3.5-
turbo) and GPT-4.? These models are upgraded
versions of GPT-3.5—a 175B GPT (Radford and
Narasimhan, 2018; Radford et al., 2019; Brown
et al.,, 2020) LLM—that has been fine-tuned
with human feedback in the style of InstructGPT
(Ouyang et al., 2022). In particular, ChatGPT
has been shown to achieve impressive results
for multiple multilingual tasks, including trans-
lation (Kocmi and Federmann, 2023; Fu et al.,
2023; Hendy et al., 2023). Crucially, GPT mod-
els, unlike the majority of existing LLMs, exhibit
extensive and strong capabilities across multiple
language pairs, a prerequisite for carrying out the
research in this work. To generate translations, we
use the zero-shot prompt template used in Hendy
et al. (2023) and the default API parameters.

Zhttps://platform.openai.com/docs/models/;
we used ChatGPT (gpt-3.5-turbo) and GPT-4
(gpt—4) in March, April, and June 2023.

1502


https://platform.openai.com/docs/models/

3.2 Datasets

We chose datasets familiar to researchers and
practitioners, ensuring no train/test overlap for the
M2M models. To this end, we selected premier
translation benchmarks: FLores-101 (Goyal et al.,
2022), TICO (Anastasopoulos et al., 2020), and
WMT. FrLores-101 is a multi-parallel dataset that
consists of Wikipedia text in 101 languages; we
join the dev and devtest sets. TICO is a spe-
cialized medical-domain multilingual benchmark
with COVID-19 related data, such as medical pa-
pers and news articles; we join the dev and test
sets. Additionally, we use (i) WMT benchmarks
from the M2M paper evaluation suite, as they
were removed from the training data of M2M
models;’ and (i) WMT 2022 benchmarks (Kocmi
et al., 2022), as they were created after the cut-
off date of training data of all tested models.

3.3 Evaluation Metrics

Our main lexical metric is spBLEU (Goyal et al.,
2022), as it has been widely employed in works
on massively multilingual translation (Fan et al.,
2020; Wenzek et al., 2021; NLLB Team et al.,
2022).* Moreover, we also adopt neural reference-
based and reference-free COMET variants:
COMET-22 and CometKiwi (Rei et al., 2022a,b).
Lastly, we use the cross-lingual encoder LaBSE
(Feng et al., 2022) to obtain sentence similar-
ity scores, as these have been successfully used
in prior research on detection of hallucinations
(Guerreiro et al., 2023a; Dale et al., 2023).

4 Hallucinations under Perturbation

We start our analysis by focusing on artifi-
cially created hallucinations. We first provide an
in-depth overview of our evaluation setting, focus-
ing on the construction of the perturbed data and
detection approach. Then, we present our results
and analyze the properties of these hallucinations.

4.1 Evaluation Setting

Translation Directions. We use the FLORES
dataset for these experiments, and focus specif-
ically on translation out of English.> We select

3These WMT benchmarks serve as our validation set
for tuning thresholds as needed.

4Signature: nrefs:1|case:mixed|eff:yes|
tok:floresl0l|smooth:exp|version:2.3.1.

SThe training data—up to September 2021—of GPT mod-
els is not publicly available. As such, we cannot guarantee
that they have not seen the data we use in this analysis.

all M2M bridge languages, as well as additional
low-resource languages that were underrepre-
sented among bridge languages.® Overall, we
generate translations for 31 different LP.” Ad-
ditionally, we report results for the WMT 2022
benchmarks in Appendix A.3 to ensure evaluation
on data that was released after the cutoff date of
the training data of GPT models.®

Perturbations. We employ the same minimal
perturbations used in Xu et al. (2023) to construct
perturbed source sequences: misspelling errors, in-
sertion of frequent tokens in the beginning of the
sequence, and capitalization errors. Previous work
has shown that these perturbations can trigger se-
vere output errors (Lee et al., 2018; Karpukhin
et al., 2019; Berard et al., 2019; Raunak et al.,
2021). Additionally, we also experiment with the
cascade approach in speech translation (Bentivogli
et al., 2021), providing a real-world scenario
where translation models have to deal with noisy
inputs. In this approach, the audio (for consis-
tency, we use the FLEURs dataset [Conneau et al.,
2022], which consists of audio recordings of the
sentences in the FLoRES dataset) is first transcribed
by an automatic speech recognition (ASR) system
(we use a Whisper model [Radford et al., 2022]°)
and then translated by a translation system.

Detection. Our detection approach is inspired
by previous work on hallucinations under per-
turbation (Lee et al., 2018; Raunak et al., 2021;
Ferrando et al., 2022; Xu et al., 2023). The al-
gorithm is a simple 2-rule process: we fix (i) a
minimum threshold quality score for the original
translations, and (ii) an extremely low maximum
quality score for the perturbed translations. A
model generates a hallucination under perturba-
tion when both translations meet the thresholds.

SFan et al. (2020) divide the 100 languages into 14 re-
lated groups (e.g., Romance, Slavic) and mine languages
within a group against each other. Then they define 1-3
“‘bridge’” languages per group (often those with most re-
sources) and mine them against each other to connect the
groups.

7af ar ast bn cs cydeel es fa fi fr he hi hr
huidjakoltnlocplptrusvswtltrvizh.

8The results and trends on the WMT 2022 test sets follow
largely those reported in the main text on the FLOREs dataset.

We used the openai/whisper-base.en model
from the HuggingFace hub. Transcriptions with word er-
ror rate over 100 (~ 3% of samples) were discarded, as these
represent significant, rather than minimal, perturbations.
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Low RESOURCE

MID RESOURCE

HIGH RESOURCE

MODEL
LP Fraction Rate (%) LP Fraction Rate (%) LP Fraction Rate (%)

SMaLL100 /7 0.216 /19 Er— 0.027 VY o — 0.012

M2M (S) /7 0.392 /19 0.172 /5 0.000

M2M (M) /7 0.108 /19 0.047 /5 0.000

M2M (L) T v — 0.327 /19 BE— 0.020 /5 0.000
ChatGPT S /7 ::I ....... 0082 ................ / | 9:[] ......... 0202 ................. /s :| ...... 0000 .......
GPT-4 1 T s — 0.019 /19 mEr— 0.057 /5 0.000

Table 1: Fraction of languages for which models produces at least one hallucination under perturbation,
and average hallucination rate (and median, in subscript) among candidate translations across all
languages at each resource level. {GPT models may have been exposed to the test samples.

Low Resource

Medium Resource

High Resource

SMalLL100 Y §
M2M (S) - Y %,
M2M (M) ;
M2M (L) - 7
ChatGPT - %

GPT-4 -

Model

- 1.0

- 0.5

Hallucination Rate (%)

oc -
af -
bs —
tl
hr —

ast —

v1i

hu -
tr o
sv

nl —
1t
hi -
de -
fr -
es -
pt
ru

Language

Figure 1: Hallucination rates among candidate translations for each model in the languages considered. Pattern-
filled cells indicate at least one hallucination for a given model-language pair.

Crucially, rule (i) ensures that low-quality transla-
tions for unperturbed sources are not considered as
candidates for hallucinations under perturbation.
We adapt rule (i) to ensure consistency across
multiple models and LPs. We first obtain source
sentences for which all models produce trans-
lations that meet a minimum quality threshold
(spBLEU > 9), sort them by average quality
across models, and select the top 20% as can-
didates. Finally, we apply rule (ii) and set the
threshold to spBLEU < 3.! We selected these
thresholds based on those used in previous works
(Raunak et al., 2021; Ferrando et al., 2022; Xu
et al., 2023). In Appendix A.l1, we validate our
detection method with human annotation on over
200 translations for 10 different language pairs.'!

10This approach ensures a fixed sample size across differ-
ent LPs, and that the sentences for each LP are consistent
across all models. The downside is that a system’s hallu-
cination rate depends on the systems it is being compared
against.

"'We found that over 85% of the detected hallucinations
under perturbation were annotated as containing content
detached from the source text.

4.2 Results

Overall, we find that perturbations have the po-
tential to trigger hallucinations, even in larger
models. In what follows, we present several key
insights.

Average hallucination rates for NMT mod-
els generally decrease with increasing resource
levels. Table 1 shows that all NMT models ex-
hibit lower hallucination rates as resource levels
increase. This is expected and suggests that these
models are better equipped to handle source-side
perturbations for language pairs with more paral-
lel data during training. In fact, hallucinations un-
der perturbation for high-resource languages are
almost non-existent. However, Figure 1 reveals
variability across languages, and even within the
models in the same family that share the same train-
ing data. For instance, when translating to Astu-
rian (ast), M2M (L) and the distilled SMaL.L.100
show significantly higher hallucination rates than
M2M (3). This suggests that hallucinations emerge
in non-trivial ways unrelated to the training data.
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SMaLL100 exhibits lower hallucination rates
than its teacher model M2M (L). Recall that
SMaLL100 was trained using uniform sampling
across all language pairs to reduce bias towards
high-resource languages. The results in Table 1
may reflect a positive outcome from this approach:
despite being much smaller than M2M (L),
SMaLL100 hallucinates less and for fewer direc-
tions on low- and mid-resource language pairs.

Hallucinations under perturbation are not cor-
related with the quality of original translations.
The approach for detection of hallucinations un-
der perturbation raises an interesting question: Are
the original source sentences for which models
produce higher quality translations less likely to
lead to hallucinations when perturbed? Our anal-
ysis found a weak Pearson correlation'? between
hallucinations under perturbation and spBLEU
scores for the original unperturbed sources across
all models. This indicates that the perturbations
that we introduce in the source can cause models
to undergo significant shifts in translation quality.

LLMs exhibit different hallucination patterns
from conventional NMT models. Contrary to
NMT models, the GPT models generate more
hallucinations for mid-resource languages than
for low-resource languages (Table 1). When com-
pared to all other models, the results show that
ChatGPT produces more hallucinations for mid-
resource languages, while GPT—-4 exhibits fewer
hallucinations in low-resource directions and
across fewer languages. Additionally, hallucina-
tions from LLMs are qualitatively different from
those of other models: They often consist of off-
target translations, overgeneration, or even failed
attempts to translate (e.g., ‘“This is an English
sentence, so there is no way to translate it to Viet-
namese’’). This further demonstrates that trans-
lation errors, even critical ones, obtained with
LLMs are different from those produced by NMT
models (Vilar et al., 2023; Hendy et al., 2023).
Interestingly, we also found that almost all hal-
lucinations can be reversed with additional sam-
pling from the model. This aligns with findings
in Guerreiro et al. (2023b) and Manakul et al.
(2023): As with traditional NMT models, LLM

12The point-biserial Pearson correlation between the hal-
lucination assignments and the original sentence spBLEU
scores is in the range [—0.03, —0.01] for all models.

hallucinations may not necessarily imply model
defect or inability to generate adequate transla-
tions, but could just stem from ‘‘bad luck’” during
generation.

5 Natural Hallucinations

We now turn to investigating natural halluci-
nations.'> We first provide an overview of our
evaluation setting, focusing on the scenarios and
detection approach. Then, we present a thor-
ough analysis exploring various properties of
hallucinations.

5.1 Evaluation Setting

Evaluation Scenarios. Analyzing multilingual
translation models opens up several research sce-
narios that have not been explored in previous
studies conducted on bilingual models. We will
investigate three different multilingual scenarios,
comprising over 100 translation directions.

We begin with an English-centric scenario,
pairing 32 languages with English for a total of
64 translation directions.'* Then, we study a non-
English-centric scenario inspired by Fan et al.
(2020), exploring 25 language pairs correspond-
ing to real-world use cases of translation not involv-
ing English.!> Finally, we examine hallucinations
in medical data, where they can have severely
compromising effects. We pair 9 languages'® with
English for a total of 18 directions. We report re-
sults for the first two setups using the FLOREs
dataset. For the final setup, we use the TICO
dataset.

Detection. We integrate key findings from recent
research on detection of hallucinations and em-
ploy two main detectors: ALTI+ (Ferrando et al.,
2022) for detached hallucinations, and top n-gram
(TNG) (Raunak et al., 2021, 2022; Guerreiro et al.,
2023b) for oscillatory hallucinations.

ALTI+ assesses the relative contributions of
source and target prefixes to model predictions.
As hallucinations are translations detached from

BFrom now on, we use the terms natural hallucina-
tions (both detached and oscillatory hallucinations) and
hallucinations interchangeably.

Y4ar ast azbncs cydeel es fafifr hehihr
huidjakoltnlocplpsptrusvswtatrvizh.

Bhi-bn it-fr de-hu it-de cs—-sk nl—fr fr-sw
ro-ru ro-uk de-hr hr-sr be-ru hr-hu hr-cs
el-tr hr-sk nl-de af-zu ro-hu hi-mr ro-tr
uk-ruro-hy ar-fr ro-de.

05y frhi id ps pt rusw zh.
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Low RESOURCE

MID RESOURCE

HIGH RESOURCE

MODEL

LP Fraction Rate (%) LP Fraction Rate (%) LP Fraction Rate (%)
SMalLL100 /16 2.3520.57 /38 Emr] 0.055 .02 /10 m— 0.005 (.00
M2M (S) /16 15.202 86 /38 ] 0.254 .05 /10 mEr— 0.025 .00
M2M (M) /16 12.53 1 42 /38 mE—] 0.1100.00 /10 m— 0.0100.00
M2M (L) /16 11.225 19 /38 mE—— 0.034 .00 /10 C— 0.000 .00

Table 2: Fraction of LPs on the English-centric setup for which models produce at least one hallucina-
tion, and average hallucination rate (and median, in subscript) across all LPs at each resource level.

the source sequence, ALTI+ can be leveraged to
detect them by identifying sentences with minimal
source contribution. Notably, it faithfully reflects
model behavior and explicitly signals model de-
tachment from the source in any translation di-
rection (Ferrando et al., 2022). This method has
been successfully employed to detect hallucinated
toxicity in a multilingual context in NLLB Team
et al. (2022), and validated on human-annotated
hallucinations in Dale et al. (2023), where it was
shown that ALTI+ scores easily separate detached
hallucinations from other translations.!”

TNG, on the other hand, is a simple, light-
weight black-box heuristic targeting oscillatory
hallucinations. It compares the count of the top
repeated translation n-gram to the count of the
top repeated source n-gram, ensuring a minimum
difference of ¢. This method has been validated
on human-annotated hallucinations and found to
identify oscillatory hallucinations with perfect
precision (Guerreiro et al., 2023b). Following pre-
vious work, weusen = 4andt = 2 (Raunaketal.,
2021; Guerreiro et al., 2023b) and exclude trans-
lations that meet the minimum quality threshold
from Section 4.1.13

Remark on Model Selection. We use ALTI+,
a model-based detector, for reliable detection of

7We followed the recommendations in Guerreiro et al.
(2023b) and set model-based ALTI+ thresholds based on
validation data where the models are expected to perform
well. Specifically, we obtained the lowest 0.02%—in line
with natural hallucination rates reported in the literature
(Raunak et al., 2022)—of the ALTI+ score distributions
for high-resource WMT benchmarks. Additionally, to en-
sure further trustworthy, high-precision measurements, we
excluded detected candidates with LaBSE or CometKiwi
scores—as these have been also been validated for detec-
tion of human-annotated detached hallucinations (Dale et al.,
2023; Guerreiro et al., 2023a)—exceeding the top 10% of
scores on translations from the same WMT benchmarks.

8Note that oscillatory hallucinations can be simultane-
ously detected with ALTI+ and TNG.

detached hallucinations. Since we lack access to
internal features from the GPT models, we ex-
clude them from our model selection to ensure
consistency in our analysis. Importantly, using al-
ternative detectors could lead to misleading re-
sults and create discrepancies in our evaluation
setup.

5.2 English-Centric Translation

We start by studying hallucinations on English-
centric language pairs. We reveal key insights on
how properties of hallucinations change across
resource levels, models and translation directions.

Hallucinations in low-resource language pairs
are not only more frequent, but also distinct.
Table 2 shows that hallucinations occur fre-
quently for low-resource directions, with all M2M
models exhibiting average hallucination rates
over 10%. Moreover, all models generate halluci-
nations for almost all low-resource language pairs.
Regarding the type of hallucinations, Figure 2
shows that in low-resource directions, in contrast
to mid- and high-resource ones, oscillatory hallu-
cinations are less prevalent, while detached hal-
lucinations occur more frequently. These findings
suggest that, although massive multilingual
models have significantly improved translation
quality for low-resource languages, there is
considerable room for improvement, and also
highlight potential safety issues arising from
translations in these directions.

SMaLL100 consistently relies more on the
source than other models. Despite being the
smallest model, SMaLL100 shows remarkable
hallucination rates across low- and mid-resource
directions, hallucinating significantly less than its
larger counterparts in low-resource ones. We hy-
pothesize that these improved rates may be attrib-
uted not only to the uniform sampling of language
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Figure 3: Distribution of SMaLL100 and M2M (L)
ALTI+ scores for en—xx and xx—en directions.

pairs during training, but also to its architec-
ture. While SMaLL100 shares a 12-layer encoder
with the other models to obtain source representa-
tions, it diverges by employing a shallow 3-layer
decoder—instead of a 12-layer decoder—and plac-
ing the target language code on the encoder side.
This design may encourage greater reliance on
the more complex encoder representations, reduc-
ing detachment from the source. In fact, distinct
patterns in ALTI+ scores support this hypoth-
esis: SMaLL100 has higher scores and similar
patterns across all resource levels (see Figure 3).
In contrast, the M2M models tend to rely less
on the source, especially in low-resource en—xx
LPs. Importantly, however, SMaLL100’s lower
hallucination rates do not necessarily imply su-
perior translation quality compared to the M2M
models: We found a strong correlation between
M2M models’ COMET-22 scores and their re-
spective hallucination rates for low-resource LPs,
whereas, contrastingly, the correlation is weak
for SMaLL100." This suggests that, despite re-
lying more on the source, SMaLL100’s transla-
tions may not necessarily be of higher quality
than those of the M2M models.

Scaling up models within the same family re-
duces hallucination rates. Table 2 shows that
increasing the size of the M2M models results
in consistent reductions in hallucination rates.
Relative improvements are more pronounced for
mid- and high-resource language pairs, with M2M

19pearson correlation scores: SMaLL100 (—0.39), M2M
(S) (—0.82), M2M (M) (—0.80), M2M (L) (—0.85).

LPs SMaLL100 M2M (S) M2M (M) M2M (L)
XX—en 0.221 1.756 2.290 2.483
en—-xx 1.022 6.152 4.110 3.169

Table 3: Average hallucination rates (%) across
all LPs at each direction (into or out of English).

(L) exhibiting fewer hallucinations and halluci-
nating for fewer languages than all other models.

Hallucinations are more frequent when trans-
lating out of English. Table 3 demonstrates
that models are consistently more prone to hal-
lucinate when translating out of English. In fact,
models tend to detach more from the source text
in these directions. This is evidenced by ALTI+
source contributions (see Figure 3) being lower
across all en—-xx language pairs compared to
translating into English, which aligns with obser-
vations in Ferrando et al. (2022). Interestingly,
we also discovered that the translation direction
can influence the properties of hallucinations: (i)
over 90% of off-target hallucinations occur when
translating out of English, and (ii) nearly all hallu-
cinations into English for mid- and high-resource
language pairs are oscillatory (see Figure 2).

Toxic hallucinations can be traced back to the
training data. To assess the prevalence of toxic
text in detected hallucinations, we utilized the
toxicity wordlists provided by NLLB Team et al.
(2022). We found that toxic text predominantly
appears in translations out of English and almost
exclusively for low-resource directions. For in-
stance, over 1 in 8 hallucinations in Tamil contain
toxic text. Interestingly, these hallucinations ex-
hibit high lexical overlap among them and are
repeated across models for multiple unique source
sentences. Moreover, they are not necessarily re-
duced by scaling up the model size. These obser-
vations suggest that these hallucinations are likely
to be traced back to the training data, aligning
with observations in Raunak et al. (2021) and
Guerreiro et al. (2023b). In fact, upon inspecting
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Low RESOURCE

MID RESOURCE

HIGH RESOURCE

MODEL

LP Fraction Rate (%) LP Fraction Rate (%) LP Fraction Rate (%)
SMalLL100 /10 2.1600.02 /13 B 0.054 .00 /2 0.0250.02
M2M (S) /10 12.61 1 79 /13 0.467 .05 /2 BT 0.0750.07
M2M (M) /10 ] 12.225 44 /13 mmmr—] 0.1720.05 /2 C—/ 0.0000.00
M2M (L) /10 - 6.5802 02 /13 mE— 0.077 .00 /2 0.000.00

Table 4: Fraction of LPs on the non-English-centric setup for which models produce at least one hallu-
cination, and average hallucination rate (and median, in subscript) across all LPs at each resource level.

the corpora that were used to create the train-
ing data, we found reference translations that
exactly match the toxic hallucinations. Addition-
ally, we found that these hallucinations can prop-
agate through model distillation, as evidenced by
SMaLL100 generating copies of its teacher
model’s toxic hallucinations. This highlights the
necessity of rigorously filtering training data to
ensure safe use of these models.

5.3 Beyond English-Centric Translation

We shift our focus to translation directions that
do not involve English, typically corresponding to
directions with less supervision during training.

Trends are largely similar to English-centric
directions. Table 4 reveals trends that largely
mirror those observed in the English-centric
setup: (1) hallucinations are more frequent in low-
resource directions;? (ii) SMaLL100 significantly
outperforms the M2M models in low-resource
language pairs; and (iii) scaling up to M2M (L)
consistently yields substantial improvements over
the smaller M2M models in low- and mid-resource
directions. Additionally, the trends related to hal-
lucination types are also similar: Detached hal-
lucinations are more prevalent in low-resource
directions, while oscillatory hallucinations over-
whelmingly dominate in mid- and high-resource
ones.

Less supervised language pairs exhibit ex-
tremely high hallucination rates. As expected,
models struggle more with hallucinations for di-
rections with less or even no supervision during
training, such as ro-hy and af-zu. For in-
stance, M2M (M) hallucinates for nearly half of
the translations in these directions.

20We considered the resource level of the language pair to
be the smallest resource level between the two languages.

Resource SMaLL100 M2M (S) M2M (M) M2M (L)
Low —0.019 —1.516 —1.317 —0.412
Mid 0.021 0.080 0.095 —0.013
High —0.008 0.007 0.000 0.000

Table 5: Delta average hallucination rate at each
resource level for FLores and TICO medical data.
Positive values indicate higher rates for TICO.

5.4 Translation on Specialized Domains

We now study hallucinations in medical data us-
ing the TICO dataset. We compare hallucination
rates with the FLOREs dataset in 18 directions.

Hallucinations are not exacerbated under
medical domain data. Table 5 reveals that
hallucination rates for the TICO data are not con-
sistently higher than those observed for the FLORES
data. This finding diverges from previous work
that investigated hallucinations in specialized do-
main data (Wang and Sennrich, 2020; Miiller
et al., 2020). We hypothesize that, unlike the
smaller models typically trained on limited data-
sets from a single domain used in those works, the
concept of ‘‘domain shift’” is not as pronounced
for M2M models. These models are not only much
larger but, crucially, they are trained on a massive
dataset containing over 7B sentences from var-
ious domains. This vast training set potentially
mitigates the impact of domain shift and, conse-
quently, reduces its influence on hallucinations.

6 Mitigation of Hallucinations through
Fallback Systems

We now explore the potential of mitigating hallu-
cinations and improving overall translation quality
by employing a simple hybrid setup that can take
advantage of multiple systems with possible com-
plementary strengths. Put simply, we leverage an
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Figure 4: Reversal rates for oscillatory (Osc.) and
detached (Det . ) hallucinations when same-family sys-
tems (dots) are used as fallback to an original model
(labeled above subplots).

alternative system as a fallback when the original
model produces hallucinations.?' Our analysis is
focused on the broader English-centric evaluation
setup studied in Section 5.2.

6.1 Employing Models of the Same Family as
Fallback Systems

We begin by analyzing the performance of
same-family models when employed as fallback
systems for one another (e.g., using SMaLL100,
M2M (M), and M2M (L) as fallbacks for
M2M (S)).2?

Detached hallucinations are particularly sticky
across M2M models. Figure 4 reveals that
when employing M2M models as fallback sys-
tems, reversal rates—percentage of hallucinations
from the original system that are reversed by
the fallback system—are consistently higher for
oscillatory hallucinations than for detached hal-
lucinations. These findings not only align with
those in Guerreiro et al. (2023b), where oscilla-
tory hallucinations were found to be less related
to model defects, but also further highlight the
close connection between detached hallucinations
and the training data. This connection can help
explain their stickiness: Since the M2M mod-
els share the same training data, reversing these
hallucinations using other M2M variants as fall-
backs is more challenging. Interestingly, we also
observethatM2M (L) particularly struggles to re-
verse the detached hallucinations generated by its

21For consistency, we use the same detection approach
described in Section 5.1.

22For simplicity, we consider the distilled SMaLL100
as a model from the M2M family.

distilled counterpart SMaLL100, suggesting that
model defects can persist and be shared during
distillation.

Scaling up within the model family is not an
effective strategy for mitigating hallucinations.
In line with our findings in Section 5.2, Figure 4
shows that reversal rates using SMaLL100 as a
fallback system are higher for detached hallucina-
tions than for oscillatory hallucinations. Although
SMaLL100 is a distilled M2M model, its training
data, training procedure, and architecture differ
from those of the M2M models. This distinction
may make it a more complementary fallback sys-
tem to other M2M models than simply scaling up
within the same model family. This suggests that
merely increasing the scale of models within the
same family is not an effective strategy for mit-
igating hallucinations, and exploring alternative
models with different training procedure and data
may yield further improvements. We will analyze
this alternative strategy in the next section.

6.2 Employing Diverse Fallback Systems

Building on the findings from the previous sec-
tion, we will investigate how models outside the
M2M family can be employed to mitigate hal-
lucinations and improve translation quality. We
will test this approach with two different models:
(1) we will prompt the GPT models as detailed in
Section 3,* and (ii) we will use a high-quality
3.3B parameter model from the NLLB family of
NMT models (NLLB) (NLLB Team et al., 2022).

Diverse fallback systems can significantly im-
prove translation quality. Figure 5a shows that
diverse fallback systems can significantly enhance
translation quality of originally hallucinated trans-
lations compared to same-family models. This
improvement is most pronounced for low-resource
directions, where both the LLMs and NLLB
consistently boost translation quality. Moreover,
NLLB generally outperforms the GPT models for
low- and mid-resource language pairs, aligning
with previous work that found that these models
lag behind supervised models in these direc-
tions (Hendy et al., 2023). Nonetheless, even for
these language pairs, GPT models exhibit superior
performance to the dedicated M2M translation

ZWe remark again that GPT models may have been
exposed to the evaluation data.
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Figure 5: We analyze overall translation quality improvements on the original model hallucinated translations
(represented with dashed lines) across different resource levels via COMET-22 scores in (a), and overall preva-
lence of oscillatory hallucinations among the fallback translations in (b).

systems, further underscoring the limitations of
relying on same-family models as fallbacks.

Oscillatory hallucinations are practically non-
existent when employing diverse fallbacks.
Figure 5b demonstrates another benefit of using
diverse fallback systems: oscillatory hallucina-
tions are almost completely eliminated. Consis-
tent with our findings in Section 4, we observe
that LLMs produce very few, if any, oscillations,
slightly improving the rates obtained with NLLB.
This provides further evidence that hallucinations
obtained with LLMs exhibit different properties
and surface forms. Investigating these differences
is a relevant research direction for future work.

7 Conclusion

We have comprehensively investigated halluci-
nations in massively multilingual translation mod-
els, exploring a wide range of translation scenarios
that remained overlooked in previous work.

Our analysis provided several key insights on
the prevalence and properties of hallucinations
across models of different scales and architec-
tures, translation directions, and data conditions,
including: the prevalence of hallucinations in low-
resource languages and when translating out of
English; the emergence of toxicity in halluci-
nations, which can be directly traced back to the
training data; how model distillation may bring
reduced hallucination rates compared to larger
models; how scaling up within the same model

family generally decreases the rate of halluci-
nations; and how LLMs produce qualitatively
different hallucinations compared to conventional
NMT models. Finally, we also examined how
fallback systems can be employed to mitigate hal-
lucinations. We found that hallucinations can be
sticky and difficult to reverse when using models
of the same family. However, diverse fallbacks
with different training procedure and data can
significantly improve translation quality and vir-
tually eliminate pathologies such as oscillatory
hallucinations.
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A Appendix

A.1 Human Validation of Detection of
Hallucinations under Perturbation

Detection of hallucinations under perturbation
with the method that we adopted in our work (see
Section 4.1) has been consistently used in all pre-
vious research (Lee et al., 2018; Raunak et al.,
2021; Xu et al., 2023). However, as it has not been
appropriately validated in previous works, we ran
a human evaluation study to assess its outputs.

We collected annotations for over 200 transla-
tions across 10 languages.?* Table 6 shows that
the vast majority of detected translations (~ 87%)
were indeed confirmed as hallucinations, contain-
ing content that is detached from the source text.
Interestingly, this number is very aligned with
the percentage of hallucinations under perturba-
tion that would be detected with our detection
approach for natural hallucinations (~ 85%; see
Section 5.1). Moreover, we found that 9% of the
flagged translations contained other errors, such
as mistranslations, or more severe issues (e.g.,
undergeneration (Stahlberg and Byrne, 2019)).
These findings validate the adopted detection
method for hallucinations under perturbation in
Section 4.

2*We hired annotators for each of the 10 languages (bn,
el, tr, hi, tl, sw, ast, vi, he from FLORES; and ha
from WMT). Overall, we annotated 223 samples, which
amounts to more than half of all the detected translations.
We adapted the guidelines for human annotation of hallu-
cinations used in Dale et al. (2023), and will make them
publicly available with all other resources. Annotators were
sourced from Upwork, receiving compensation between $20
and $30 per hour.

Hallucination All
194 (87 %) 223

Incorrect

19 (9%)

Correct

10 (4%)

Table 6: Human annotations on translations
flagged by our detection method. Hallucinations
are flagged by annotators when the translation
contains text that is detached from the source.

A.2 Extractability of FLorREs Samples with
GPT Models

We want to analyze the extent to which GPT
models may be able to extract the samples from
the FLORES dataset used in Section 4. We use the
definition of extractability proposed in Carlini
et al. (2023) and later studied in Chowdhery et al.
(2022) and Biderman et al. (2023). Under this
definition, a string s is extractable with %k to-
kens of context from a model f if there exists a
(length-k) string p, such that the concatenation
[p||s] is contained in the training data for f, and
f produces s when prompted with p using greedy
decoding.?> We follow the setup of Carlini et al.
(2023), and set k to L — 10, where L is the length
of the test sequence (with L > 10).2°

We use XGLM (Lin et al., 2022), a 7.5B LLM
trained on data predating the creation of FLORES
as a baseline model that has not seen the transla-
tions in the target languages.?’

Table 7 shows that GPT models can only ex-
tract a maximum of 2 (~ 1 in 1000) samples in
the target languages, with most languages yield-
ing zero extracted sentences. Rates are higher for
English (source) sentences, which is to be ex-
pected: The English sentences from the FLORES
dataset originate from Wikipedia, a regular source
of training data for language models, whereas
the target sentences were created specifically for
the benchmark. Importantly, when compared to
XGLM, the GPT models could only extract, at

2In the studies of Carlini et al. (2023), Chowdhery et al.
(2022), and Biderman et al. (2023), the authors have access
to the training data. We will assume that the samples from
the FLOREs dataset are included in the training data of GPT
models.

2In Carlini et al. (2023), the model is required to emit
training sequences, often documents, by generating signifi-
cantly more tokens. For example, they set k to L — 50.

Y’ This is important, as some test examples may be ex-
tracted, not because they have been memorized, but because
they may be very similar to other training set examples
(Chowdhery et al., 2022). We selected target languages from
different resource levels that are supported by XGLM.
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SOURCE TARGET
MODEL
en SW vi id nl es pt
XGLM 1 (0.05%) 0 1 (0.05%) 0 0 1(0.05%) 0
ChatGPT 6 (0.30%) 0 2(0.10%) 0 0 2(0.10%) 0
GPT-4 9 (0.45%) 0 2(0.10%) 0 0 2(0.10%) 1(0.05%)

Table 7: Counts and rate, in percentage, of extractable samples from the FLORES dataset.

Low MID HIGH

MODEL
ha T hr cs isf ja uk zh ru

SMaLL10@  0.000 0.000 0.000 0.000 0.087 0.000 0.000 0.000
M2M (S) 6.878 0.223 0.000 0.505 0.175 0.087 0.087 0.087
M2M (M) 1.058 0.111 0.000 0.000 1.400 0.000 0.000 0.087
M2M (L) 0.529 0.000 0.000 0.000 0.175 0.175 0.000 0.000
ChatGPT ~ 1.587 0.334 0.000 0.168 0.000 0.087 0.000 0.262
GPT-4 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 8: Average hallucination rate, in percentage, for each language pair on the WMT 2022 benchmarks.

the most, one additional sentence for some target
languages.

Notably, even if minor train-test overlap exists,
their influence on BLEU scoring differences on
translations obtained with LLMs has been found
to be small, or almost negligible, when translat-
ing out of English (Vilar et al., 2023; Chowdhery
et al., 2022). Alongside the results in Table 7,
we are confident that our analysis with the GPT
models in Section 4 is valuable and valid, irre-
spective of any hypothetical, albeit small, train-
test overlap. Nevertheless, in the next section,
we experiment on benchmarks created after the
training data cutoff of these LLMs.?® Crucially,
the trends in the results closely follow those re-
ported in Section 4.

A.3 Hallucinations under Perturbation on
WMT 2022 Benchmarks

We now investigate hallucinations under pertur-
bation for WMT 2022 benchmarks (Kocmi et al.,
2022) created after the cutoff data of the train-
ing data of GPT models. Additionally, to include

2This chronology suggests that the train-test overlap risk
is reduced. However, as the training data is not available,
we cannot entirely rule out overlap with the test data.

more languages to our analysis, we also experi-
ment with WMT 2021 benchmarks (Akhbardeh
et al., 2021) (for Hausa, ha, and Icelandic, is), as
they are less likely to overlap with the training data
of GPT models. We apply the same perturbations
and detection method detailed in Section 4.1.%°

Trends with GPT models largely mirror those
reported on the FLORES dataset. Table 8 re-
veals trends that align closely with those from
Section 4: (i) SMaLL100 consistently exhibits
lower hallucination rates compared to other NMT
models, including its teacher model, M2M (L);
(i1) GPT-4 shows impressive performance across
the board, with no instances of hallucinations
across all language pairs; and (iii) Chat GPT may
hallucinate more than NMT models for some
language pairs, generating hallucinations that are
qualitatively different from those produced by
these models, often consisting of failed attempts
to translate (e.g., “‘Sorry, but my language module
cannot translate English text into Russian.’’).

2We do not introduce perturbations coming from a speech
recognition system, as audio recordings of these test sets are
not available. We also advise against comparing absolute
hallucination rates between two language pairs, as the test
sets—and thus, the set of hallucination candidates—for each
language pair have distinct sizes.
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