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Abstract

Surprisal theory posits that less-predictable
words should take more time to process, with
word predictability quantified as surprisal, i.e.,
negative log probability in context. While ev-
idence supporting the predictions of surprisal
theory has been replicated widely, much of it
has focused on a very narrow slice of data:
native English speakers reading English texts.
Indeed, no comprehensive multilingual analy-
sis exists. We address this gap in the current
literature by investigating the relationship be-
tween surprisal and reading times in eleven
different languages, distributed across five
language families. Deriving estimates from
language models trained on monolingual and
multilingual corpora, we test three predictions
associated with surprisal theory: (i) whether
surprisal is predictive of reading times, (ii)
whether expected surprisal, i.e., contextual en-
tropy, is predictive of reading times, and (iii)
whether the linking function between surprisal
and reading times is linear. We find that all
three predictions are borne out crosslinguisti-
cally. By focusing on a more diverse set of
languages, we argue that these results offer the
most robust link to date between information
theory and incremental language processing
across languages.

1 Introduction

Language processing is incremental and dynamic:
When a reader encounters a word, they allocate
a certain amount of time to process it before
moving on to the next one. One influential the-
ory for the mechanism underlying this process is
surprisal theory (Hale, 2001; Levy, 2008), which
states that the time required to successfully com-
prehend a word is based on its predictability.
Notably, predictability is often quantified as sur-
prisal (negative log-probability given preceding
context), from which the theory’s name is de-
rived. Suprisal theory is supported, empirically,

by a number of studies which have found that
surprisal is strongly correlated with psychometric
measurements in large naturalistic reading corpora
(Demberg and Keller, 2008; Wilcox et al., 2020;
Shain, 2019, 2021; Meister et al., 2021; Pimentel
et al., 2023; Hoover et al., 2022, inter alia). Put
differently, a word’s surprisal is a strong correlate
of its processing effort, operationalized as read-
ing time.

However, there is one serious limitation with
most previous studies: While making general
claims about human language processing, they
predominantly investigate reading times in En-
glish. And, while a few studies have investigated
surprisal effects in languages other than English,
e.g., Meister et al. (2021) in Dutch and Kuribayashi
et al. (2021, 2022) in Japanese, no systematic,
crosslinguistic analysis has been performed. As
multiple sentence processing phenomena exhibit
significant crosslinguistic variation (Hillert, 1998),
the extent to which surprisal theory generalizes
crosslinguistically is a nontrivial limitation of the
current state of the literature.

In addition, two recent contributions have
posited several extensions to surprisal theory—
most influentially, (a) that contextual entropy,
i.e., expected surprisal, also correlates with read-
ing times, and (b) that the relationship between
surprisal and reading time is linear (Smith and
Levy, 2013; Wilcox et al., 2020; Shain et al.,
2022). Regarding (a), Pimentel et al. (2023) and
Cevoli et al. (2022) have argued for what may
be considered an expanded version of surprisal
theory where processing difficulty is still deter-
mined by surprisal, but where people’s reading
behavior is additionally sensitive to expected sur-
prisal (contextual entropy). Building off prior
work that has investigated the role of entropy
in language processing (Hale, 2003; Roark et al.,
2009; Linzen and Jaeger, 2016; van Schijndel and
Schuler, 2017), these recent studies suggest that
readers may allocate reading times in advance
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of encountering a word, based on their expecta-
tions of how difficult the word will be to process.
Regarding (b), a number of studies have found
evidence that the linking function between read-
ing times and surprisal is linear (Smith and Levy,
2013; Wilcox et al., 2020; Shain et al., 2022).
However, these results have been challenged re-
cently, with different studies coming to different
conclusions about the most appropriate linking
function. In the past two years, for example, in-
vestigations have concluded that this function is
sublinear (Brothers and Kuperberg, 2021), linear
(Shain et al., 2022), and superlinear (Meister et al.,
2021; Hoover et al., 2022). Here, we will use the
term surprisal theory to refer to both the core
hypothesis that reading times are correlated with
surprisal, as well as the two extensions—(a) and
(b)—described above.

We address a gap in the current literature by
investigating the predictions of surprisal theory,
on eleven languages distributed across five lan-
guage families.1 We enumerate these three pre-
dictions as hypotheses below.

Hypothesis 1 (Surprisal Hypothesis). Surprisal
is predictive of reading times.

Hypothesis 2 (Contextual Entropy Hypothesis).
Contextual entropy is predictive of reading times.

Hypothesis 3 (Linear Link Hypothesis). The
linking function between surprisal and reading
times is linear.

We facilitate crosslinguistic comparison by us-
ing the MECO dataset (Siegelman et al., 2022),
which presents eye-tracking data on reading
materials with the same content in each language.
We estimate surprisal and contextual entropy from
two types of autoregressive language models—
a single, large, multilingual model (mGPT;
Shliazhko et al. 2022), as well as monolingual
models trained on large and small datasets, where
the small dataset is the same size across lan-
guages (≈ 30 million words). We quantify the
psychometric predictive power of surprisal and
contextual entropy (i.e., how well each predicts
reading times) by including them as variables in
linear regression models. These models are then
trained to predict by-word reading times; if the

1Our languages (and families) are: Korean (Koreanic),
Turkish (Turkic), Hebrew (Semitic), Finnish (Uralic), Dutch,
English, German, Greek, Italian, Russian, and Spanish (Indo-
European).

log-likelihood of the regression improves after in-
cluding these variables, we take this as evidence
that those variables have psychometric predictive
power (Frank and Bod, 2011; Fossum and Levy,
2012; Goodkind and Bicknell, 2018).

We find that, in all languages tested, regres-
sion models that include surprisal are significantly
better predictors of reading times over baselines
which do not include surprisal, confirming the
surprisal hypothesis. Additionally, we find that
models which include contextual entropy are even
better predictors of reading times in most lan-
guages tested, confirming the contextual entropy
hypothesis. Finally, compatible with the linear link
hypothesis, we find that models constrained to a
linear relationship between surprisal and reading
times are just as good as those that can express
more complex relationships. Overall, our results
provide the largest crosslinguistic analysis of the
relationship between reading and word-level in-
formation theoretic properties to-date.

2 Psycholinguistic Predictive Power

Our behavior of interest is how long readers
spend visually attending to a given word wt in
its linguistic context, i.e., wt’s reading time. This
quantity offers a window into the psychological
processes that underlie language comprehension
and is typically taken as a direct reflection of the
word’s processing difficulty (Rayner, 1998). A
word’s reading time can be measured via multi-
ple experimental modalities, including self-paced
reading (Just et al., 1982; Jegerski, 2013) and
the maze task (Forster et al., 2009; Boyce et al.,
2020). In this work, we focus on eye-tracking
measurements. These measurements have high
temporal resolution and exhibit smaller spillover
effects than self-paced reading (Smith and Levy,
2013), where spillover is the effect of a word’s
properties on later words’ reading behavior.

Following previous work investigating reading,
we ask what factors associated with each word
are helpful for predicting its reading times. In
the following section, we use the following no-
tation. With w, we denote a word taken from an
alphabet Σ. With w ∈ Σ∗, we denote a string
of words over the alphabet Σ. We write wt for
the word at index t in a string w = w1 · · ·wT

with 1 ≤ t ≤ T . Additionally, let EOS �∈ Σ be a
distinguished end-of-string symbol not in Σ and
let Σ def

= Σ ∪ {EOS} be an augmented alphabet that
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includes EOS. With each word wt in a context
w<t, we associate a real column vector of pre-
dictor variables xt that we believe may impact
reading times. Many of these predictors are at-
tributes of wt itself, e.g., wt’s length. We use xt

as predictors in a regression model fφ with pa-
rameters φ. The regression model is estimated to
predict wt’s reading time from data. In symbols,
we write that

y(wt,w<t) ∼ fφ(· | xt) (1)

where y(wt,w<t) is the reading time of word
wt in context w<t. To be explicit, in our for-
mulation we treat reading times as a continuous
quantity and, thus, fφ is a probability density.

In order to contrast different theories of lan-
guage processing, we compare regression models
with different vectors of predictor variables x and
with different architectures fφ, each of which is
taken to instantiate a different hypothesis about
what underlying factors determine reading times.
We fit each regression model on a portion of
our dataset and evaluate it by measuring the
log-likelihood that it assigns to held-out data.
Models that lead to higher log-likelihood can be
said to have better predictive power or psycho-
logical accuracy for human reading—and their
associated theories are then taken to be better
models of the underlying psycholinguistic pro-
cesses (Frank and Bod, 2011; Fossum and Levy,
2012).

Typically, for each experiment we will define
a target regression model, which is trained to
predict the reading times of individual words from
a set of baseline predictors plus a predictor of
interest (e.g., surprisal or contextual entropy). For
a specific index t, we will refer to these predic-
tors as our target predictors and denote them as
xtgt
t . We also define a baseline regression model

that includes only the baseline predictors, which
are a subvector of the target predictors, denoted
as xbase

t for a specific t. We denote baseline and
target regression models symbolically as fφ(· |
xtgt
t ) and fφ(· | xbase

t ), respectively. Unless oth-
erwise specified, the regression models that we
use in this study are all linear. The choice to
use linear linking functions, and whether this as-
sumption is warranted, is addressed directly in
Section 5. In order to assess whether the target
predictors have contributed to better predictive
power, we will inspect the (average) by-word

difference in log-likelihood assigned by the two
regression models to a held-out dataset (Goodkind
and Bicknell, 2018; Wilcox et al., 2020). Follow-
ing previous studies, we refer to this metric as
the delta log-likelihood Δ, which is defined, for
a specific index t, as

Δt = logfφ
(
y(wt,w<t) | xtgt

t

)

− log fφ
(
y(wt,w<t) | xbase

t

) (2)

where y(wt,w<t) is the observed reading time
of word wt in context w<t. The complete metric
Δ is the average of Δt over all word indices.
A positive Δ means that the target predictors
contribute to psycholinguistic predictive power
above the baseline predictor, whereas a Δ of zero
indicates that the added predictors either lack a
robust relationship with reading times or that their
functional relationship cannot be approximated
by the class of models fφ we employ.2 Below,
we briefly introduce the two target predictors
associated with the theories that we wish to test:
surprisal and contextual entropy.

2.1 Surprisal

The surprisal (Shannon, 1948) of a word wt mea-
sures the information content it conveys in the
context in which it appears. Using Shannon’s for-
mulation of entropy, we can define surprisal as

st(wt)
def
= − log2 p(wt | w<t) (3)

where p(· | w<t) is the true distribution over
words w ∈ Σ in context w<t, which we omit
from the notation for brevity. We focus here
on reading, where the relevant context to com-
pute surprisal is the wt’s preceding words w<t.
However, in our studies, we do not have access
to the true distribution p(· | w<t) and instead es-
timate it using an autoregressive language model,
as is common in previous studies (Smith and Levy,
2013; Goodkind and Bicknell, 2018; Wilcox et al.,
2020).

2.2 Contextual Entropy

The contextual entropy of a Σ-valued random
variable Wt at index t is the expected value of
its surprisal, which can be expressed as

2In practice, negative values of Δ are also possible;
they indicate overfitting, and imply the same theoretical
conclusion as a Δ of 0.
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H(Wt | W<t = w<t)
def
= E

w∼p(·|w<t)
[st(w)] (4)

= −
∑

w∈Σ

p(w | w<t) log2 p(w | w<t)

Again, as we do not have access to the true
distribution p, so we resort to estimating the con-
textual entropy using an autoregressive language
model.

Prior work has investigated the relationship be-
tween contextual entropy and reading behavior:
A number of studies have investigated entropy
reduction, or the extent to which wt reduces un-
certainty over possible next words (Frank, 2010,
2013) or the possible incremental parses that can
be assigned to a sentence prefix (Hale, 2003,
2006). Other researchers have investigated the
effect of successor entropy, i.e., the entropy of
Wt+1, on predicting the current-word reading
times (Roark et al., 2009; Linzen and Jaeger,
2016; van Schijndel and Schuler, 2017).3 In con-
trast, we look at the effect of Wt’s contextual
entropy on prediction, following Pimentel et al.
(2023) and Cevoli et al. (2022). As discussed in
Pimentel et al. (2023), investigating contextual
entropy separately from surprisal can uncover to
what extent reading behavior is responsive (i.e.,
driven by surprisal) or anticipatory (i.e., driven
by expected surprisal). Pimentel et al. (2023) spe-
cifically found that contextual entropy is a signif-
icant predictor of reading times on 3 out of 4 of
their tested English eye-tracking and self-paced
reading datasets.

3 Experimental Setup

3.1 Dataset

We use the Multilingual Eye Movement Cor-
pus (MECO; Siegelman et al., 2022). MECO
contains eye-tracking data from L1 speakers (be-
tween 29 and 54 per language) for 12 simplified
Wikipedia-style articles in thirteen languages;
these languages are from five different language
families. Articles in the MECO corpus went
through an iterative translation process by sep-
arate teams of translators to ensure that article
content was the same across languages and range
from a minimum 1,487 total words (Finnish) to
a maximum 3,021 total words (Russian). The

3When computing Wt+1, it is common to treat Wt = wt

as observed.

eleven languages we include in our analysis are:
Korean (Koreanic), Turkish (Turkic), Hebrew
(Semitic), Finnish (Uralic), Dutch, English, Ger-
man, Greek, Italian, Russian, and Spanish (Indo-
European).4 While this sample is still biased
towards Indo-European languages, it is more di-
verse than other previous studies, which have
tended to focus exclusively on a single language.

The following pre-processing steps were taken:
Words that were skipped on the first pass were
given a reading-time of zero and included in the
analysis. Eye-tracking datasets report multiple
different word-based measurements of reading
times, of which we use three (Rayner, 1998): The
first fixation is the duration of the first fixation
on a word during its first pass. Gaze duration
is the sum of all first-pass fixations on a word.
And total fixation time is the sum of all fixations
on a word during the trial. While we report re-
sults for all three for the sake of completeness,
our discussion will focus on results for gaze du-
ration as has been done in previous studies, e.g.,
Wilcox et al., 2020. First fixation times are typi-
cally associated word identification (Clifton et al.,
2007) and are expected to not reflect strong con-
textual influences. Total reading durations can be
influenced by material from the right context (i.e.,
regressive saccades). Thus, for studies that fo-
cused on progressive movement through a text,
such as ours, gaze duration is expected to be most
strongly associated with first-pass processing dif-
ficulty, which is our cognitive process of interest.
For each of these metrics, we fit a regression
model on averages of the reading time measures
taken across subjects, as has been done in previ-
ous work (Smith and Levy, 2013; Wilcox et al.,
2020). This step was performed to mitigate the
potentially high by-participant variance present
in eye-tracking data.

3.2 Language Models

We derive surprisal and contextual entropy es-
timates from both monolingual and multilin-
gual models, which we describe in greater detail
below.

Monolingual Models We train monolingual
transformer models using the Wiki40B dataset
(Guo et al., 2020), from which we rely on the

4The dataset also includes Norwegian and Estonian,
however these are not supported by our multilingual lan-
guage model and therefore excluded.
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Language Code # Training Tokens (mil)

Dutch du 171
English en 1,966
Finnish fi 89
German ge 883
Greek gr 57
Hebrew he 112
Italian it 376
Korean ko 75
Russian ru 488
Spanish sp 508
Turkish tr 48

Table 1: Training data information for our mono-
lingual transformer models, noted as monoT(all).

training and validation splits from the original
paper for each of our analyzed languages. We
first fit language-specific UnigramLM tokenizers
(Kudo, 2018) with a vocabulary size of 32k on
the training portion of this dataset, which we then
use to tokenize both the Wiki40B and MECO text
into subword units. We then train two models
per language, with different amounts of training
data: For the monoT(all) variant, we train the
model on the total amount of data in Wiki40B
for each language; for the monoT(30m) variant,
we subsample ≈ 30 million tokens from each
language. For a list of the training dataset sizes
for the monoT(all) models, see Table 1. We train
all our models using fairseq (Ott et al., 2019),
following their recommended language model-
ing training hyper-parameters. We use a standard
decoder-only transformer with 6 layers, a context
window size of 512 tokens, and shared input–
output embeddings. We train our models using
Adam (Kingma and Ba, 2015), with a learning
rate of 5e−4, 4000 warm-up updates, and dropout
of 0.1. For both of our monolingual models, as
well as the multilingual model described below,
per-word surprisals are computed by summing
over subword unit surprisals, which is the ap-
propriate procedure since surprisal decomposes
additively over the units compromising a sig-
nal. Because of spurious ambiguity inherent in
the tokenization scheme, an efficient algorithm
to estimate contextual entropy over full words
is unavailable to us; such an algorithm requires
summing over an infinite number of sub-word

combinations. Instead, we simplify this compu-
tation by estimating contextual entropy over one
single step of sub-word tokens as suggested in
Pimentel et al. (2023). Techniques similar to this
have been employed previously in studies of en-
tropy (Frank, 2010), e.g., to account for clitics
and contractions.

Multilingual Model We use mGPT (Shliazhko
et al., 2022), a multilingual autoregressive lan-
guage model, which was trained with the GPT-3
architecture on 60GB of text5 from a combi-
nation of Wikipedia and the Cleaned Common
Crawl Corpus (Raffel et al., 2020).

Context Length One recent study has hypoth-
esized that, when deriving surprisal estimates for
psycholinguistic modeling, the size of the con-
text window can bias estimates (Hoover et al.,
2022). The reasoning is that short context win-
dows could shift probability mass away from
very low-frequency words, which would be bet-
ter predicted from longer contexts. Therefore, we
estimate surprisal and contextual entropy from
mGPT in two contexts: In short contexts the
model is given only the current sentence (up un-
til the current word); in long contexts we use the
model’s full input window size of 512 charac-
ters. We use long contexts for our first analysis,
and use both contexts for our second analysis,
which investigates both the shape of the reading
times–surprisal linking function and the influence
of context length on these results.

Psychological Plausibility Increasingly, re-
searchers that use language models for cognitive
modeling have considered their psychological
plausibility as estimates of humans’ internal no-
tions of word predictability. In particular, some
researchers have compared the size of the mod-
els’ training data to the amount of linguistic expe-
rience of the average human child (Zhang et al.,
2021). Assuming that children are typically ex-
posed to ≈ 11 million words per year as an upper
limit (Hart and Risley, 1995), then the mGPT
model is trained on multiple human lifetimes’
worth of language data. The monoT(all) models
are trained on data scales equivalent to or less

5Shliazhko et al. (2022) report that their combined da-
taset contains 489 billion characters. Assuming a crosslin-
guistic average of ≈ 5 characters per word, this puts their
training set at slightly under 100 billion words.
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than one human lifetime,6 and the monoT(30m)
models are trained on data equivalent to the
linguistic exposure of a young child. However,
we argue that the psychological plausibility of a
model’s next-word predictions is not completely
determined by whether that model’s training data
is the same size as the amount of data a human
learner is exposed to. Indeed, there is a body
of evidence suggesting that, beyond a certain
minimal amount of data, the more data a model
is trained on, the more human-like that model’s
next-word predictions become (Goodkind and
Bicknell, 2018; Wilcox et al., 2020). All of our
models are trained on an amount of data within
this range. However, at the other end of the
scale, the relationship flips: Models trained on an
extremely large amount of data seem to be slightly
worse predictors of human reading (Shain et al.,
2022; Oh and Schuler, 2023). For our models,
training datasets are uni-modal (i.e., language
only) and learning is with arguably weaker priors
for language-like structure, whereas humans learn
from multi-modal data with potentially much
stronger priors for linguistic structures. Likely,
more data makes up for the lack of multi-modal
data and uninformative priors.

3.3 Regression Models

All of our regression models are fit to predict
the reading time y(wt,w<t) of a word wt in
a context w<t from the predictor vector xt. In
addition to looking at the word wt, our predic-
tor includes quantities derived from the previous
two words wt−1, wt−2 to control for potential
spillover effects. We will refer to the three words
wt, wt−1, wt−2 as our regressor words. Follow-
ing previous work in this area, all regression
models include the word length and log-unigram
frequency, as estimated by Speer (2022), for all
regressor words in a predictor xt for a specific in-
dex t. The predictors above constitute our (context
invariant) baseline predictors. Regression models
are trained and evaluated using 10-fold cross val-
idation. For more information on the regressions
used in each of our experiments, see Appendix A.
The significance of the observed Δ values be-
tween target and baseline models is assessed via

6The only exception is English, which at ≈ 2 billion
words is about two lifetime’s worth of linguistic data, assum-
ing the 11-million word per year estimate of Hart and Risley
(1995).

a paired permutation test that checks whether Δ
is significantly different from zero. We use per-
mutation tests for our comparisons because they
make no assumption about the distribution of the
test statistic. Instead, the test uses the empirical
distribution of differences in likelihoods, as esti-
mated using averages computed over permutations
of likelihoods, in order to compute p-values.

4 Results

4.1 Surprisal

To test the surprisal hypothesis, we fit a target re-
gression model whose predictors includes the sur-
prisals of our regressor words plus our baseline
predictors described above. We compare this to
a baseline that does not include the surprisal pre-
dictors. For this and subsequent tests, we cal-
culate results for each language individually, as
well as for the combined data from all languages.
Results can be seen in Figure 1 broken down by
language, model, and each of our three word-
based measurements of reading time. We observe
a clear pattern in the results across the languages:
Positive Δ in nearly every test for gaze duration
and total fixation, and less consistently positive
Δ for first fixation, where, as noted before, we
would not necessarily expect surprisal effects to
show up. Looking at the results for each model,
we observe the most robust results for mGPT,
where Δ is significantly greater than zero in ev-
ery language for gaze duration and total fixation.
For the monolingual models, we observe more
robust effects for the monoT(all) model over the
monoT(30m) model, which is sensible given the
latter’s limited training data size.

For an aggregate test of the effects of sur-
prisal, we fit an additional regression model on
the combined data from all languages to predict
gaze duration with random by-language effects.
We use a fully maximal random effect structure,
as advocated in Barr et al. (2013). We find that
the model with surprisal leads to significantly
greater than zero Δ in all cases (p < 0.001).
Although surprisal leads to a positive Δ across
languages, we do observe some variation in the
magnitude of this effect, or the predictive power
obtained by regression model. For both mGPT
and monoT(all) we observe the highest predic-
tive power in Russian and Dutch, with lower pre-
dictive power in Spanish, English, and Hebrew.
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Figure 1: Predictive Power of Surprisal Across Languages: Positive values mean surprisal contributes to
predicting the reading times over a baseline where surprisal is removed. Error bars indicate 95% confidence
intervals. Asterisks indicate the significance of a paired permutation test. We find a consistent significant effect of
surprisal across languages for language models that are both multilingual (top row) and monolingual (bottom two
rows), and for both progressive gaze duration and total fixation.

One natural question to ask is whether imbal-
ances in the model’s training data leads to some
of this variation—do models make better predic-
tions for language where they have seen more
data? However, there are converging pieces of
evidence from our data suggesting that differ-
ences in dataset size is not the main cause
of the by-language variation. First, both mGPT
and monoT(all) show relatively lower predic-
tive power for some large-data languages such
as Spanish and English. Second, and quite in-
terestingly, similar patterns of predictive power
can be observed for our monoT(30m) models,
where training dataset size is controlled across lan-
guages. Here, as with the other models, we ob-
serve larger values of Δ in Dutch and Russian
and smaller values of Δ in English, Spanish, and
Hebrew. These results pose a puzzle, as the lan-
guages for which the models obtain higher Δ are
not obviously different from those for which the
models obtain lower Δ, in terms of their linguis-
tic features. For example, English (lower Δ) and
Dutch (higher Δ) are both Western Germanic.
Further investigation is needed to determine if
these patterns hold up for other crosslinguistic
reading time datasets.

4.2 Contextual Entropy

To test the contextual entropy hypothesis we first
fit a single baseline regression model. Our base-

line regression model includes the surprisal of
all regressor words, plus baseline predictors. We
then evaluate target regression models in two
variants: For the replace regression model, we
replace surprisal with contextual entropy for all
regressor words. For the add regression model,
we add an additional term of contextual entropy
for all regressor words. As results do not change
much between our monolingual language mod-
els, we present results for monoT(all).

Results can be seen in Figure 2, where the
replace regression is indicated with a triangle
and the add regression is indicated with a circle.
First, we find that replacing surprisal with entropy
tends to hurt predictive power in most cases. For
example, for mGPT and gaze duration, Δ is neg-
ative in 6/11 languages and significantly so in
two, Dutch (p < 0.05) and Italian (p < 0.05),
implying overfitting. Negative effects are even
stronger for the monoT(all) model, where we
find negative gaze duration Δ in every language
(results are significant in 5/11). Adding entropy
as an additional predictor, on the other hand,
generally improves the model’s predictive power.
For example, for mGPT and gaze duration, Δ
from the add regression is positive in 8/11 lan-
guages, and significantly so in 5 (English, Greek,
Korean, Russian, and Turkish). In addition, Δ is
significantly positive for the add regression for all
three reading time measures when data is com-
bined across languages, as shown in the ‘All’
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Figure 2: Psychometric Predictive Power of Contextual Entropy Across Languages: Positive values mean
contextual entropy contributes to predicting the reading times of wt. Error bars are 95% confidence intervals
across the 10 folds of held-out data. Asterisks indicate the significance of a paired permutation test. We find that
replacing surprisal with entropy tends to hurt predictive power, while adding entropy tends to help.

column at the left of Figure 2. Results are less
strong for monoT(all), where positive Δ shows
up predominantly for first fixation. As before, we
run an aggregate test with data from all languages
including by-language random effects.7 For gaze
duration, we find that adding contextual en-
tropy leads to positive Δ (mGPT, p < 0.001;
monoT(all), p < 0.01) and that replacement leads
to negative Δ (mGPT, p < 0.01; monoT(all),
p < 0.001). Overall, we take these results as
being in line with those reported in Pimentel et al.
(2023). Our findings suggest that contextual en-
tropy has a weak—albeit consistent—effect on
reading times across languages, and therefore that
participants may be pre-planning their process-
ing times based on the expected surprisal of up-
coming words.

4.3 Variation Across Languages
The crosslinguistic relationship between Δ and
language model quality is relevant to current de-
bates about about whether language models can
plausibly be used to understand psycholinguistic
processes. As mentioned in Section 3.2, it has
been observed that, within English, models with
lower perplexity tend to exhibit better predic-

7Following the same methodology as the previous test,
we look at the effect of adding or replacing surprisal across
all regressor words.

tive power (Goodkind and Bicknell, 2018; Wilcox
et al., 2020). However, studies on Japanese have
failed to replicate these results, suggesting that
the relationship does not hold for all languages
(Kuribayashi et al., 2021). Further, Oh and Schuler
(2023) and Shain et al. (2022) show that this re-
lationship may not hold even in English for the
most recent language models. To investigate this,
we compute, for mGPT, the Pearson’s correlation
between Δ and test set perplexity, as reported in
Shliazhko et al. 2022, both across languages, as
well as across language families.8 For this anal-
ysis we show results only for mGPT and leave
a full analysis, comparing different monolingual
models, for future work.

The correlations can be seen in Figure 4. We
do find a relatively strong negative correlation
across languages, however it is not significant
(ρ = −0.497, p = 0.1). We do not find any
evidence of correlation in the language family
data. Although the negative by-language corre-
lation suggests that, for languages where mGPT
has lower perplexity, it may be a better model of
psycholinguistic behavior, the lack of significance
is in line with the negative results from Japanese.

8For language families, Δ and perplexities are within-
family averages.
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Figure 3: Model Coefficients: Coefficients for a linear model that includes surprisal, entropy, frequency, and
length. Coefficients are shown for each regressor word individually. Zero is indicated with a black line and scales
differ for each row. Error bars indicate 95% CIs across folds of data.

Figure 4: Test Perplexity versus Δ (mGPT): We do
not find a significant correlation between the Δ and
mGPT’s perplexity for a language or language family.

Notably, there are important differences be-
tween this analysis and the studies cited above,
which train a number of different language mod-
els within a single language and a single shared
vocabulary, as opposed to comparing the outputs
of a single multilingual language model across
languages as we do here. Additionally, although
mGPT does share a single vocabulary across lan-
guages, different languages might be a priori
harder or easier to language-model (Cotterell
et al., 2018; Mielke et al., 2019), and quality of
the tokenization might vary across languages as
well. Thus, more fine-grained linguistic controls
are necessary before making strong conclusions

about the relationship between perplexity and
psychometric predictive power across languages.

4.4 Model Coefficients
How do surprisal, entropy, frequency, and length
individually affect reading times? Figure 3 shows
the estimates from regression models for each
of our predictor variables, estimated across 10
folds of data. Unlike the figures presented above,
effects are broken down by the coefficients for
each of our regressor words from wt (on the left
of each facet) to wt−2 (on the right of each facet).
Note that effect size here does not correspond to
the predictive power of the model as a whole,
but rather the impact of word-level properties on
reading times. Because predictor variables are not
normalized, units are different across rows. The
top two rows indicates the estimated slowdown in
milliseconds for each additional bit (of surprisal
or entropy). The second row indicates slowdown
for each additional occurrence per billion words
of text (on a log scale). And the bottom row
indicates slowdown for each additional character
in the word.

We find a consistent effect of surprisal for
wt of between 2-4 ms/bit. There is some inter-
language variability, with the smallest effect for
Hebrew, and larger effects for Dutch, Russian,
Greek, and Italian. We find smaller effects for
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wt−1, ranging from between 0-2 ms/bit. There is
no obvious effect of surprisal for wt−2. Overall,
these results differ slightly from those reported in
Smith and Levy (2013), who investigate reading
times on the English Dundee Corpus (Kennedy
et al., 2003) and find a stronger effect for wt−1 than
we do. However, our results are not inconsistent
with the relatively lower spillover effects tradi-
tionally observed in eye-tracking data.

Turning to contextual entropy, we find slightly
smaller effects, and slightly more variance, be-
tween languages. There is no obvious relationship
between the effect sizes for surprisal and con-
textual entropy. For example, Dutch, which has
a larger surprisal effect, has one of the small-
est effect sizes for entropy. For frequency, we
find a consistently negative effect for wt, as
expected—as words get more frequent they take
less time to read. For wt−1 and wt−2 effects are
much smaller and less consistent across languages.
For example, Dutch, Finnish, Italian, and Russian
all have consistently positive frequency effects for
wt−1, whereas in Turkish and Greek, these effects
are negative.

We find consistent effects for word length,
which are positive for every language on wt. We
also find consistent negative effects for wt−1. This
may be due to the fact that readers are likely
to skip a word if it comes after a long word,
which would be associated with a reading time of
zero in our analysis. Overall, these coefficient es-
timates are in line with previous reading time
studies and further highlight the crosslinguistic
consistency of our results.

5 Surprisal–RT Linking Function

The regression models we have been using to as-
sess Δ have implicitly assumed a linear linking
function between surprisal and reading time—a
relationship that has been empirically verified
in some previous studies in English (Smith and
Levy, 2013; Wilcox et al., 2020; Shain et al.,
2022). Other recent studies, however, have ques-
tioned linearity, including Meister et al. (2021)
and Hoover et al. (2022), who argue for a super-
linear relationship, and Brothers and Kuperberg
(2021), who argue for a sublinear relationship. In
this section, we directly test the linear link hy-
pothesis. We compare the Δ of our linear regres-
sion models against regression models that can
capture non-linear relationships. We present re-

sults exclusively for gaze duration for the reasons
discussed in Section 3.1.

5.1 Visualizing the Link with GAMs

In order to visualize the link between surprisal
and reading times, we use generalized additive
models (GAMs), a class of models that can fit
non-linear relationships between predictor and re-
sponse variables. Given the less-constrained hy-
pothesis space of the GAM, if the model finds a
relationship that is (visually) linear, this is good
first evidence that the underlying effect is lin-
ear. We fit a GAM to predict reading times
from word frequency, length and surprisal, de-
rived for short contexts (sentence level) and long
contexts (document level). We include smooth
terms for current and previous word surprisal, as
well as tensor product terms for a non-linear in-
teraction between log-frequency and word length.
By way of comparison, we also fit a GAM that
enforces a linear effect of surprisal, following
Hoover et al. (2022). For this comparison, we
fit new models, all using the mgcv library, as
opposed to simply comparing GAMs to our lin-
ear models from the previous section, to ensure
that the effects of our baseline variables are ex-
actly the same between models in this section.9

For each language and language model combina-
tion, we visualize the fitted curve using 10-fold
cross validation, i.e., we train a GAM model on
9 of the 10 folds and sample reading times from
the trained model. To sample reading times, we
vary the surprisal values for wt ranging 0–20 in
increments of 0.1. No other predictors are fed
into the model.

The visualizations of the estimated GAMs for
effects on wt can be seen in Figure 5. Below
the fit, we show density plots for surprisal values
in the corpus. The results are consistent across
languages and contexts. Visually, the non-linear
GAMs capture the effect of surprisal on reading
times by fitting an approximately linear curve,
which sometimes falls directly on top of the lin-
ear control GAM (e.g., for Finnish and Turkish).
Unlike Hoover et al. (2022) we do not find a
consistent difference for fits between surprisals
derived in short contexts versus long contexts.

9For these analyses we choose to only include surprisal,
frequency, and length from wt and wt−1 as predictors. This
was done because of the minimal effects found on wt−2 in
our analysis of coefficients (see Figure 3). A sample GAM
call for this analysis is given in Appendix A.
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Figure 5: Surprisal versus Reading Time Relationship: Non-linear GAMs are in green and linear control GAMs
are in dotted blue. Shaded regions represent bootstrapped 95% confidence intervals. Results are for gaze duration.
Grey subplots indicate the distribution of surprisal values. We find that GAMs recover a linear relationship
between surprisal and reading-time slowdown.

We note, however, that Hoover et al. (2022) find
superlinear trends specially for their best exam-
ined models (e.g., GPT-3), which may outperform
multilingual mGPT.

5.2 Testing Linearity

Although the GAM fits in Figure 5 are visually
linear, we would like to test the question of lin-
earity with a more rigorous method. To do so, we
compare the Δ of the linear and non-linear GAMs
described above. Δ is calculated by comparing
each model to a shared baseline that includes only
tensor product terms for frequency and length. The
idea is that if the underlying relationship between
surprisal and reading time is non-linear, then the
non-linear GAMs should be able to achieve higher
Δ, whereas if the underlying relationship is lin-
ear then the non-linear GAMs would not have an
advantage. Thus, a consistently null result across
languages suggests that the relationship is linear.

The results of this comparison can be seen in
Figure 6. Here, Δ is slightly different for linear
models than in Section 4.1, as we fit these models
with tensor product terms for baseline predictors.
Visually, there is no consistent difference between
linear and non-linear models across languages.
We test the difference in Δ statistically with per-

Figure 6: Comparison Between Linear and
Non-linear Models: Error bars are 95% CIs of Δ.
Results are for gaze duration. We observe no dif-
ference between non-linear GAMs (green) and linear
GAMs (blue) across languages.

mutation tests, as described in Section 3.3. Our
tests do not support the alternative hypothesis for
an α = 0.05 for any of the models or languages.
Together with the visualizations presented above,
these results support a linear linking function be-
tween surprisal and reading times.
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6 Discussion

6.1 Implications of Psycholinguistic Theories
Throughout the paper, we have mentioned that
the eleven languages studied come from five dif-
ferent language families, but what does this mean
in terms of the actual linguistic characteristics
that they exhibit? At the highest organizational
level, our sample includes languages with multiple
different word orders and headedness including
SVO (Hebrew, English), SOV (Korean, Turk-
ish), as well as languages with no dominant word
order (German and Greek; Haspelmath et al.,
2005). Our sample includes languages with exten-
sive case marking such as Finnish (15 cases), as
well as languages with extremely impoverished
case systems, such as English. In terms of word
construction, our sample includes languages that
are both agglutinating (Turkish, Finnish and Ko-
rean) and fusional (Russian, Romance languages).
While this set is not close to covering all ways
that human languages can vary, we bring up these
differences to highlight how it does contain im-
portant high-level parametric variations observed
in human languages.

In light of this, the stability observed in our
results testing the surprisal hypothesis is rather
remarkable. Across language families and model
types, we observe essentially consistent results,
in terms of the predictive power of the models,
the effect size associated with surprisal, as well
as for the shape of the surprisal–reading-time re-
lationship. Focusing first on predictive power,
we find a relatively tight range of Δ values asso-
ciated with surprisal. For example, for gaze dura-
tion and mGPT, all Δ values fall between 0.012
and 0.040. Indeed, across languages and models,
we find relatively little variance in the predictive
power of surprisal. Turning to the effect size of
surprisal, we observe a millisecond-per-bit trade-
off that falls between 2–4 ms/bit for every lan-
guage (see Figure 3). The previous estimate of
3.75 ms of slowdown per bit of surprisal reported
in Smith and Levy (2013) for English falls well
within this range (though note that this previous
work used surprisal estimates derived from an
n-gram model, which will generally be higher
than surprisal estimates derived from large neural
language models such as the ones we consider
in this study). We take these results to suggest
that humans may have stable crosslinguistic pref-
erences for the rate at which they process infor-

mation during reading, i.e., not greater than 4
milliseconds per bit of information. This is con-
sistent with previous work that has observed cross-
linguistic consistency in the rate of information
during speech production (Pellegrino et al., 2011;
Coupé et al., 2019), as well as trade-offs between
the information content of a word and the time
taken to produce it (Pimentel et al., 2021).10

One point of difference between these and pre-
vious results, however, is the size of the effect
of the surprisal of previous words. Looking at
gaze duration in the Dundee corpus of English
(Kennedy et al., 2003), Smith and Levy (2013)
find an effect on reading time for surprisal for
the previous word which is about as strong as for
the current word. We find much weaker effects
in this study, ranging from 0-2 ms/bit. Note, that
this lower effect for previous words is in line with
other incremental processing measures which are
strongly incremental, such as the maze task, where
previous-word surprisal has little to no effect on
reading time of the current word (Boyce and
Levy, 2020), as well as with the results reported
in Pimentel et al. (2023) for eye-tracking over the
Provo (Luke and Christianson, 2018) and Dundee
corpora.

Turning to the shape of the surprisal–reading
times relationship, our results support the linear
link hypothesis and are in line with the compre-
hensive results recently reported in Shain et al.
(2022). Unlike Hoover et al. (2022) we do not
observe superlinear surprisal–reading time rela-
tionships for larger and more data-intensive lan-
guage models, or for language models that had
access to longer contextual windows. Interest-
ingly, we do observe that the one language which
visually appears to be superlinear, (i.e., it has an
upwards curve in Figure 5) is English. Thus, while
we believe Hoover et al. (2022) was right to be
concerned by a potential visual nonlinearity in the
English relationship, this effect does not appear
to exist crosslinguistically and is not borne out
by our statistical testing.

10Our results are not necessarily consistent with a univer-
sal channel capacity, or an information rate above which
comprehension cannot be sustained. A channel capacity
could explain uniform information density effects, or the
tendency to spread information out uniformly over a sen-
tence, presumably at or near the channel capacity (Levy and
Jaeger, 2006; Frank and Jaeger, 2008; Meister et al., 2021).
However, as pointed out in Smith and Levy (2013), such
effects require a superlinear surprisal link hypothesis, which
we do not observe empirically.
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Surprisal theory is attractive because it offers a
general-purpose link between statistical properties
of natural language and human behavior. While
its domain generality gives the theory a universal-
like flavor, previous literature has (in our opin-
ion) correctly refrained from overtly discussing
it as a universal of human language processing.
By conducing the most comprehensive crosslin-
guistic assessment of surprisal theory to date, this
study presents initial evidence which supports
the universality of surprisal effects in naturalistic
reading. That being said, further testing is a nec-
essary next step.

6.2 Implications of Multilingual
Language Modeling

As the number of multilingual language models
has proliferated, it has become increasingly im-
portant to understand how they differ from more
traditional, monolingual models. Previous studies
have produced mixed results: Some have found
that the larger training data scales of multilin-
gual models leads to better performance (Conneau
et al., 2020), while others have found advantages
for monolingual models (Agerri et al., 2020;
Rönnqvist et al., 2019; Virtanen et al., 2019),
which are often attributed to monolingual mod-
els’ language-specific tokenization and vocabu-
lary representation. The majority of these previous
studies have focused on masked language models
(mostly using architecture based off the BERT
model) and evaluation based on performance of
downstream tasks (Doddapaneni et al., 2021). This
study offers a useful complement to previous work
by focusing on autoregressive models, as well as
on their cognitive modeling capacities.11 Our re-
sults are more or less in line with previous stud-
ies, insofar as we find no obvious differences
between our multilingual model and our monolin-
gual models. Our results thus suggest that for
computational linguists interested in cognitive
modeling, multilingual and monolingual language
models may be equally viable options. However,
we would like to note that we did not compare
models in truly low-resource settings, as the train-
ing datasets of our smallest monolingual mod-
els still included 30 million tokens. It may be the
case that when trained on much smaller datasets,

11However, see Hollenstein et al. (2021) for a previous
investigation of multilingual language models’ ability to
predict reading times.

multilingual models may benefit from crosslin-
gual transfer.

6.3 Concurrent Work

We want to briefly note the differences between
the work presented here and a concurrent study
that also used the MECO dataset (i.e., de Varda
and Marelli, 2022). While de Varda and Marelli’s
research questions are similar to ours, their meth-
ods and conclusions are quite different. Instead
of an autoregressive language model, they use a
masked language model (mBERT; Devlin et al.,
2019), which has access to both left and right con-
text. An issue with this strategy is that the surprisal
values produced by this setup are not psycho-
logically plausible estimates of actual surprisals,
which are estimated from the left context alone.12

which weakens the ability to test psycholinguis-
tic causal claim about the relationship between
surprisal and reading times. In their experiments,
de Varda and Marelli do not find significant ef-
fects of pseudo-surprisal on gaze duration in four
of the 12 languages in MECO,13 including En-
glish, and find significant effects of pseudo-
surprisal on other eye movement measures in
even fewer of the languages, which they view as
evidence that surprisal might not be a consistent
predictor of reading times across languages.14

While we are aligned on the importance of
de Varda and Marelli’s research questions, we be-
lieve that their failure to replicate surprisal effects
for English—or to find it for other languages—
reflects the limitations in their methodological
choices.

6.4 Limitations and Future Directions

Turning back to our own study, there are a few
limitations we would like to discuss: Although
our sample of languages is much larger than pre-
vious studies, Indo-European languages are still
overrepresented. Indeed, each of our non Indo-
European language families is represented by a

12Because the perceptual span is limited to about 14
characters to the right of a fixation (Rayner, 1975) and
little linguistic information is gleaned from the far right of
the perceptual span (Schotter et al., 2012), upcoming word
identities cannot have a substantial causal influence on a
word’s first-pass reading behavior (Granger, 1969).

13They include Estonian, which we drop as it was not in
mGPT’s training data.

14Their study does not consider contextual entropy.
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single language. Additionally, all the data tested
here comes from high-resource languages with
long traditions of writing systems, and from
individuals who live in industrialized societies.
Finally, the methodology we employ here re-
quires a large corpus of (written) language on
which a language model can be trained. It may be
the case, that for much lower-resource languages,
there is often not enough linguistic data to derive
statistical estimates needed to test surprisal theory
in this manner. Thus, while our methods may be
able to test the predictions of surprisal theory in
lower-resource settings, where corpora of a few
hundred thousand words exist, they may not be
suitable for a large number of the world’s lan-
guages. While our results put surprisal theory on
firmer empirical footing, testing its predictions
beyond these settings is an important and neces-
sary step in assessing the theory’s universality.

7 Conclusion

This paper has presented the most comprehen-
sive crosslinguistic evaluation of surprisal theory
reported in the literature to date. Using eye-
tracking data from controlled materials in eleven
languages across five language families, we have
tested three hypotheses: (i) the surprisal hypoth-
esis (surprisal is predictive of reading times), (ii)
the contextual entropy hypothesis (contextual en-
tropy is predictive of reading times), and (iii) the
linear link hypothesis (the relationship between
surprisal and reading times is linear). We found
exceptionally strong crosslinguistic stability in
our results, with each prediction being borne out
in every language tested. These results provide the
most robust link between information-theoretic
quantities and incremental processing.

Acknowledgments

We would like to thank our TACL action edi-
tor, Maggie Li, as well as our reviewers, whose
thoughtful feedback greatly improved this work.
T.P. was supported by a Facebook PhD Fellow-
ship. C.M. was supported by the Google PhD
Fellowship. E.G.W. was supported by an ETH
Zurich Postdoctoral Fellowship. R.P.L. was sup-
ported by NSF grant BCS-2121074 and a Newton
Brain Science Award.

References
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A Regression Modeling Details

We give more details on the regression formulae used in the various experiments reported in the main
section. Our notation is as follows: reading time is the reading time of the word of interest, i.e., wt,
surp is the surprisal of wt, prev surp is the surprisal of the previous word, i.e., wt−1, and prev2 surp
is the surprisal of the word two previous, i.e., wt−2. The other variables use the same prev and prev2
prefixes, and we simply explain the variable names for the current index t for the sake of brevity, below.
For these, ent indicates the contextual entropy of Wt, len indicates the length of wt in characters, and
freq indicates the log unigram frequency of wt.

Effect of Surprisal (Section 4.1) For the tests assessing the effect of surprisal within individual
languages, we use the following model:

lmer(reading time ∼ surp + prev surp + prev2 surp + freq + len + prev freq +
prev len + prev2 freq + prev2 len, data = .)

The baseline models are the same with the exception that the surprisal terms are removed. For the
aggregate test assessing the effect of surprisal across languages, we use the following model:

lmer(reading time ∼ surp + prev surp + prev2 surp + freq + len + prev freq +
prev len + prev2 freq + prev2 len + (surp + prev surp + prev2 surp + freq
+ len + prev freq + prev len + prev2 freq + prev2 len | lang), data = .)

Effect of Contextual Entropy (Section 4.2) For both tests, the baseline model included surprisal,
length and unigram frequency, i.e., it was the first model given in the paragraph above. For the replace
test, the target regression model we use is

lmer(reading time ∼ ent + prev ent + prev2 ent + freq + len + prev freq +
prev len + prev2 freq + prev2 len, data = .)

For the add test, the target regression model we use is

lmer(reading time ∼ ent + prev ent + prev2 ent + surp + prev surp +
prev2 surp + freq + len + prev freq + prev len + prev2 freq + prev2 len,
data = .)

Surprisal–RT Linking Function (Section 5) The GAM formula used for non-linear models we use is

gam(reading time ∼ s(surp, bs = ‘cr’, k = 6) + s(prev surp, bs = ‘cr’,
k = 6) + te(freq, len, bs = ‘cr’) + te(prev freq, prev len, bs = ‘cr’),
data = .)

And for linear models:

gam(reading time ∼ surp + prev surp + te(freq, len, bs = ‘cr’) + te(prev freq,
prev len, bs = ‘cr’), data = .)
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Figure 7: Surprisal versus Reading Time Relationship (Previous Word): Non-linear GAMs are in green and
linear control GAMs are in dotted blue. Results are for gaze duration. Shaded regions represent bootstrapped
95% confidence intervals. Gray subplots indicate the distribution of surprisal values.

We now briefly explain the components of these regressions. s() sets up a spline-based smooth term
between a predictor and response variable that can take on a wide variety of non-linear functional
relationships. Here, k=6 indicates a maximum of 6 basis functions for the smooth. We choose k=6
following the logic from Hoover et al. (2022), Appendix C. Having 6 basis functions allows for five
degrees of freedom, which enables the regression to fit non-linear yet still relatively simple curves.
The other term, te(), sets up a tensor product smooth term, which can effectively capture non-linear
interactions between two variables.

B Surprisal versus RT for wt−1

As mentioned in the main text, previous work has investigated the relationship between surprisal and
reading times not just for the current word wt, but also for the previous word, wt−1. Looking at gaze
duration in the Dundee corpus of English (Kennedy et al., 2003), Smith and Levy (2013) find an effect
of wt−1’s surprisal which is about as strong as the effect of wt’s surprisal on the reading time of wt. In
Figure 7 we show this relationship in our corpus for mGPT and monoT(all), using the same methods
and presentational paradigm as in Section 5.1.

The results are consistent across models used, and suggest that the relationship between reading time
and surprisal of the previous word is somewhat variable across languages. For English, Italian, Korean,
Russian, and Spanish we find a relationship that is roughly linear and increasing, i.e., similar to the
results for surprisal of the current word. For Dutch, Turkish, and Hebrew, we find a relationship that
is roughly increasing, but visually non-linear. For Finnish, German, and Greek, we find either a flat or
negative relationship. These results are in line with the effect terms plotted in Figure 3, where we find
very weak and sometimes negative coefficients for the wt−1 surprisal term for these languages (i.e., the
middle x-tick position in the top row). Overall, these results are consistent with the linear effect that
has been previously observed in English. However, they suggest that the impact of the surprisal of the
previous word varies between languages.
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