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Abstract

Cross-lingual semantic parsing transfers pars-
ing capability from a high-resource language
(e.g., English) to low-resource languages with
scarce training data. Previous work has primar-
ily considered silver-standard data augmenta-
tion or zero-shot methods; exploiting few-shot
gold data is comparatively unexplored. We
propose a new approach to cross-lingual se-
mantic parsing by explicitly minimizing cross-
lingual divergence between probabilistic latent
variables using Optimal Transport. We dem-
onstrate how this direct guidance improves
parsing from natural languages using fewer
examples and less training. We evaluate our
method on two datasets, MTOP and Multi-
ATIS++SQL, establishing state-of-the-art re-
sults under a few-shot cross-lingual regime.
Ablation studies further reveal that our method
improves performance even without parallel
input translations. In addition, we show that
our model better captures cross-lingual struc-
ture in the latent space to improve semantic
representation similarity.1

1 Introduction

Semantic parsing maps natural language utter-
ances to logical form (LF) representations of
meaning. As an interface between human- and
computer-readable languages, semantic parsers
are a critical component in various natural lan-
guage understanding (NLU) pipelines, including
assistant technologies (Kollar et al., 2018), knowl-
edge base question answering (Berant et al., 2013;
Liang, 2016), and code generation (Wang et al.,
2023).

Recent advances in semantic parsing have led
to improved reasoning over challenging ques-
tions (Li et al., 2023) and accurate generation of

1Our code and data are publicly available at github.com
/tomsherborne/minotaur.

complex queries (Scholak et al., 2021), however,
most prior work has focused on English (Kamath
and Das, 2019; Qin et al., 2022a). Expanding,
or localizing, an English-trained model to addi-
tional languages is challenging for several rea-
sons. There is typically little labeled data in the
target languages due to high annotation costs.
Cross-lingual parsers must also be sensitive to
how different languages refer to entities or model
abstract and mathematical relationships (Reddy
et al., 2017; Hershcovich et al., 2019). Transfer
between dissimilar languages can also degrade
in multilingual models with insufficient capacity
(Pfeiffer et al., 2022).

Previous strategies for resource-efficient lo-
calization include generating ‘‘silver-standard’’
training data through machine-translation (Nicosia
et al., 2021) or prompting large language models
(Rosenbaum et al., 2022). Alternatively, zero-shot
models use ‘‘gold-standard’’ external corpora for
auxiliary tasks (van der Goot et al., 2021) and
few-shot models maximize sample-efficiency using
meta-learning (Sherborne and Lapata, 2023). We
argue that previous work encourages cross-lingual
transfer through implicit alignment only via mini-
mizing silver-standard data perplexity, multi-task
ensembling, or constraining gradients.

We instead propose to localize an encoder-
decoder semantic parser by explicitly inducing
cross-lingual alignment between representations.
We present MINOTAUR (Minimizing Optimal Trans-
port distance for Alignment Under Representations)—
a method for cross-lingual semantic parsing which
explicitly minimizes distances between probabi-
listic latent variables to reduce representation di-
vergence across languages (Figure 1). MINOTAUR

leverages Optimal Transport theory (Villani,
2008) to measure and minimize this divergence
between English and target languages during
episodic few-shot learning. Our hypothesis is that
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Figure 1: Upper: We align representations explicitly
in the latent representation space, z, between encoder
Q and decoder G. Lower: MINOTAUR induces cross-
lingual similarity by minimizing divergence between
latent distributions at two levels—between individual
and aggregate posteriors.

explicit alignment between latent variables can
improve knowledge transfer between languages
without requiring additional annotations or lex-
ical alignment. We evaluate this hypothesis in
a few-shot cross-lingual regime and study how
many examples in languages beyond English are
needed for ‘‘good’’ performance.

Our technique allows us to precisely measure,
and minimize, the cross-lingual transfer gap be-
tween languages. This yields both sample-efficient
training and establishes leading performance for
few-shot cross-lingual transfer on two datasets.
We focus our evaluation on semantic parsing but
MINOTAUR can be applied directly to a wide range
of other tasks. Our contributions are as follows:

• We propose a method for learning a se-
mantic parser using explicit cross-lingual
alignment between probabilistic latent vari-
ables. MINOTAUR jointly minimizes marginal
and conditional posterior divergence for fast
and sample-efficient cross-lingual transfer.

• We propose an episodic training scheme
for cross-lingual posterior alignment during
training which requires minimal modifica-
tions to typical learning.

• Experiments on task-oriented semantic pars-
ing (MTOP; Li et al., 2021) and execut-
able semantic parsing (MultiATIS++SQL;
Sherborne and Lapata, 2022) demonstrate that

MINOTAUR outperforms prior methods with
fewer data resources and faster convergence.

2 Related Work

Cross-lingual Semantic Parsing Growing in-
terest in cross-lingual NLU has motivated the
expansion of benchmarks to study model adap-
tation across many languages (Hu et al., 2020;
Liang et al., 2020). Within executable semantic
parsing, ATIS (Hemphill et al., 1990) has been
translated into multiple languages such as Chi-
nese and Indonesian (Susanto and Lu, 2017a), and
GeoQuery (Zelle and Mooney, 1996) has been
translated into German, Greek, and Thai (Jones
et al., 2012). Adjacent research in Task-Oriented
Spoken Language Understanding (SLU) has given
rise to datasets such as MTOP in five languages
(Li et al., 2021), and MultiATIS++ in seven lan-
guages (Xu et al., 2020). SLU aims to parse in-
puts into functional representations of dialog acts
(which are often embedded in an assistant NLU
pipeline) instead of executable machine-readable
language.

In all cases, cross-lingual semantic parsing de-
mands fine-grained semantic understanding for
successful transfer across languages. Multilingual
pre-training (Pires et al., 2019) has the potential
to unlock certain understanding capabilities but
is often insufficient. Previous methods resort to
expensive dataset translation (Jie and Lu, 2014;
Susanto and Lu, 2017b) or attempt to mitigate
data paucity by creating ‘‘silver’’ standard data
through machine translation (Sherborne et al.,
2020; Nicosia et al., 2021; Xia and Monti, 2021;
Guo et al., 2021) or prompting (Rosenbaum et al.,
2022; Shi et al., 2022). However, methods that
rely on synthetic data creation are yet to pro-
duce cross-lingual parsing equitable to using gold-
standard professional translation.

Zero-shot methods bypass the need for in-
domain data augmentation using multi-task ob-
jectives which incorporate gold-standard data for
external tasks such as language modeling or de-
pendency parsing (van der Goot et al., 2021;
Sherborne and Lapata, 2022; Gritta et al., 2022).
Few-shot approaches which leverage a small num-
ber of annotations have shown promise in various
tasks (Zhao et al., 2021, inter alia) including se-
mantic parsing. Sherborne and Lapata (2023) pro-
pose a first-order meta-learning algorithm to train
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a semantic parser capable of sample-efficient
cross-lingual transfer.

Our work is most similar to recent studies
on cross-lingual alignment for classification tasks
(Wu and Dredze, 2020) and spoken-language un-
derstanding using token- and slot-level annota-
tions between parallel inputs (Qin et al., 2022b;
Liang et al., 2022). While similar in motivation,
we contrast in our exploration of latent variables
with parametric alignment for a closed-form so-
lution to cross-lingual transfer. Additionally, our
method does not require fine-grained word and
phrase alignment annotations, instead inducing
alignment in the continuous latent space.

Alignment and Optimal Transport Optimal
Transport (OT; Villani, 2008) minimizes the cost
of mapping from one distribution (e.g., utterances)
to another (e.g., logical forms) through some
joint distribution with conditional independence
(Monge, 1781), i.e., a latent variable conditional
on samples from one input domain. OT in NLP
has mainly used Sinkhorn distances to measure
the divergence between non-parametric discrete
distributions as an online minimization sub-
problem (Cuturi, 2013).

Cross-lingual approaches to OT have been pro-
posed for embedding alignment (Alvarez-Melis
and Jaakkola, 2018; Alqahtani et al., 2021), bilin-
gual lexicon induction (Marchisio et al., 2022),
and summarization (Nguyen and Luu, 2022). Our
method is similar to recent proposals for cross-
lingual retrieval using variational or OT-oriented
representation alignment (Huang et al., 2023;
Wieting et al., 2023). Wang and Wang (2019)
consider a ‘‘continuous’’ perspective on OT us-
ing the Wasserstein Auto-Encoder (Tolstikhin
et al., 2018, WAE) as a language model which
respects geometric input characteristics within
the latent space.

Our parametric formulation allows this contin-
uous approach to OT, similar to the WAE model.
While monolingual prior work in semantic pars-
ing has identified that latent structure can benefit
the semantic parsing task (Kočiský et al., 2016;
Yin et al., 2018), it does not consider whether it
can inform transfer between languages. To the best
of our knowledge, we are the first to consider the
continuous form of OT for cross-lingual trans-
fer in a sequence-to-sequence task. We formulate
the parsing task as a transportation problem in
Section 3 and describe how this framework

gives rise to explicit cross-lingual alignment in
Section 4.

3 Background

3.1 Cross-lingual Semantic Parsing

Given a natural language utterance x, represented
as a sequence of tokens (x1, . . . , xT ), a semantic
parser generates a faithful logical-form meaning
representation y.2 A typical neural network parser
trains on input-output pairs {xi, yi}Ni=0, using
the cross-entropy between predicted ŷ, and gold-
standard logical form y, as supervision (Cheng
et al., 2019).

Following the standard VAE framework
(Kingma and Welling, 2014; Rezende et al.,
2014), an encoder Qφ represents inputs from X
as a continuous latent variable Z, Qφ : X → Z .
A decoder Gθ predicts outputs conditioned on
samples from the latent space, Gθ : Z → Y . The
encoder therefore acts as approximate posterior
Qφ(Z|X). Qφ is a multi-lingual pre-trained en-
coder shared across all languages.

For cross-lingual transfer, the parser must also
generalize to languages from which it has seen
few (or zero) training examples.3 Our goal is for
the prediction for input xl ∈ Xl in language l
to match the prediction for equivalent input from
a high-resource language (typically English), i.e.,
xl → y, xEN → y subject to the constraint of
fewer training examples in l (|Nl| � |NEN|).
As shown in Figure 1, we propose measuring
the divergence between approximate posteriors
(i.e., Q (Z|XEN) and Q (Z|Xl)) as the distance
between individual samples and an approxima-
tion of the ‘‘mean’’ encoding of each language.
This goal of aligning distributions naturally fits an
Optimal Transport perspective.

3.2 Kantorovich Transportation Problem

Tolstikhin et al. (2018) propose the Wasserstein
Auto-Encoder (WAE) as an alternative variational
model. The WAE minimizes the transportation
cost under the Kantorovich form of the Optimal
Transport problem (Kantorovich, 1958). Given
two distributions PX , PY , the objective is to find
a transportation plan Γ (X, Y ), within the set of

2Notation key: Capitals X , are random variables; Curly
X , are functional domains; lowercase x are observations
and P{} are probability distributions.

3Resource parity between languages is multilingual se-
mantic parsing which we view as an upper-bound.
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all joint distributions, P (X ∼ PX , Y ∼ PY ), to
map probability mass from PX to PY with mini-
mal cost. Tc expresses the problem of finding
a plan which minimizes a transportation cost
function c (X, Y ) : X × Y → R+:

Tc (PX , PY ) :=

inf
Γ∈(X∼PX, Y ∼PY )

E(X,Y )∼Γ [c (X, Y )] (1)

The WAE is proposed as an auto-encoder (i.e.,
PY approximates PX ), however, in our setting
PX is the natural language input distribution and
PY is the logical form output distribution and
they are both realizations of the same semantics.

Using conditional independence, y ⊥⊥ x | z, we
can transform the plan, Γ (X, Y ) → Γ (Y |X)PX

and consider a non-deterministic mapping from
X to Y under observed PX . Tolstikhin et al.
(2018, Theorem 1) identify how to factor this
mapping through latent variable Z, leading to:

Tc (PX , PY ) = inf
Qφ(Z|X)∈Q

EPX
EQφ(Z|X) [c (Y,Gθ(Z))]

+ αD (Q(Z), P (Z))
(2)

Equation (2) expresses a minimizable objective:
identify the probabilistic encoder Qφ (Z|X) and
decoder Gθ(Z) which minimizes a cost, subject
to regularization on the divergence D between
the marginal posterior Q(Z) and prior P (Z).

The additional regularization is how the WAE

improves on the evidence lower bound in the
variational auto-encoder, where the equivalent
alignment on the individual posterior Qφ(Z|X)
drives latent representations to zero. Regulariza-
tion on the marginal posterior Q(Z) = EX∼PX

[Qφ (Z|X)] instead allows individual posteri-
ors for different samples to remain distinct and
non-zero. This limits posterior collapse, guiding
Z to remain informative for decoding.

We use Maximum Mean Discrepancy (Gretton
et al., 2012, MMD) for an unbiased estimate of
D (Q(Z), P (Z)) as a robust measure of the dis-
tance between high dimensional Gaussian dis-
tributions. Equation (3) defines MMD using some
kernel k : Z × Z → R, defined over a repro-
ducible kernel Hilbert space, Hk:

MMDk (P, Q) =
‖
∫
Z k (z, ·) dP −

∫
Z k (z, ·) dQ‖Hk

(3)

Informally, MMD minimizes the distance be-
tween the ‘‘feature means’’ of variables P and
Q estimated over a batch sample. Equation (4)
defines MMD estimation over observed p and
q using the heavy-tailed inverse multiquadratic
(IMQ) kernel k:

MMDk (p,q) =
1

np (np − 1)

∑
z′ 
=z

k(pz, pz′)+

(4)

1

nq (nq − 1)

∑
z′ 
=z

k(qz, qz′)−
2

npnq

∑
z, z′

k(pz, qz′)

We define the IMQ kernel in Equation (5) below;
C = 2|z|σ2 and S = [0.1, 0.2, 0.5, 1, 2, 5, 10].

k(p, q) =
∑
s∈S

s · C
s · C + ‖p− q‖22

(5)

This framework defines a WAE objective using
a cost function, c to map from PX to PY through
latent variableZ. We now describe how MINOTAUR

integrates explicit posterior alignment during this
learning process.

4 MINOTAUR: Posterior Alignment for
Cross-lingual Transfer

Variational Encoder-Decoder Our model com-
prises of encoder (and approximate posterior)
Qφ, and generator decoder Gθ. The encoder
Qφ produces a distribution over latent encodings
z = {z1, . . . , zT }, parameterized as a sequence
of T mean states μ{1,...,T } ∈ R

T×d, and a single
variance σ2 ∈ R

d for all T states,

z = Qφ(x) ∼ N (μ, σ2) (6)

The latent encodings z are sampled using the
Gaussian reparameterization trick (Kingma and
Welling, 2014),

z = μ+ σ2 ◦ ε, ε ∼ N (0, I) (7)

Finally, an output sequence ŷ is generated from
z through autoregressive generation,

ŷ = Gθ (z) (8)

For an input sequence of T tokens, we use a
sequence of T latent variables for z over pool-
ing into a single representation. This allows for
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more ‘bandwidth’ in the latent state to minimize
the risk of the decoder ignoring z, i.e., poste-
rior collapse. We find this design choice to be
necessary as lossy pooling leads to weak overall
performance. We also use a single variance es-
timate for sequence z—this minimizes variance
noise across z and simplifies computation in pos-
terior alignment. We follow the convention of an
isotropic unit Gaussian prior, P (z) ∼ N (0, I).

Cross-lingual Alignment Typical WAE model-
ing builds meaningful latent structure by aligning
the estimated posterior to the prior only. MINO-
TAUR extends this through additionally aligning
posteriors between languages. Consider learning
the optimal mapping from English utterances XEN

to logical forms Y within Equation (1) via latent
variable Z, from monolingual data (XEN, Y ). The
optimization in Equation (2) converges on an op-
timal transportation plan Γ∗

EN as the minimum
cost.4

For transfer from English to language l, previ-
ous work either requires token alignment between
XEN and Xl or exploits the shared Y between
XEN and Xl (Qin et al., 2022b, inter alia). We
instead induce alignment by explicitly matching
Z between languages. Since Y is dependent only
on Z, the latent variable offers a continuous rep-
resentation space for alignment with the minimal
and intuitive condition that equivalent z yields
equivalent y. Therefore, our proposal is a straight-
forward extension of learning Γ∗

EN; we propose
to bootstrap the transportation plan for target lan-
guage l (i.e., Γ∗

l (Xl, Y )) by aligning on Z in
a few-shot learning scenario. MINOTAUR explicitly
aligns Zl (from a target language l) towards Z
(from EN) by matching Q(Zl|Xl) to Q(Z|XEN)
for the goal Γ∗

l = Γ∗
EN, thereby transferring the

learned capabilities from high-resource languages
with only a few training examples.

Given parallel inputs xEN and xl in English and
language l, with equivalent LF (yEN = yl), their
latent encodings are given by:

zEN = Qφ (xEN) , ŷEN = G (zEN) (9)
zl = Qφ (xl) , ŷl = G (zl) (10)

Unlike vanilla VAEs, where z is a single vec-
tor, the posterior samples (zEN, zl ∈ R

T×d) are
complex structures. We therefore follow Mathieu
et al. (2019) in using a decomposed alignment

4Γ∗ is implicit within the model parameters.

signal minimizing both aggregate posterior align-
ment (higher-level) and individual posterior align-
ment (lower-level) with scaling factors (αP , βP )
respectively. This leads to the MINOTAUR align-
ment outlined in Figure 1 and expressed below,

DMINOTAUR (zEN, zl) =

αPDZ (Qφ (zEN) , Qφ (zl))

+ βPDZ|X (Qφ (zl|xl) ‖Qφ (zEN|xEN))

(11)

where DZ|X is a divergence penalty between
individual representations to match local struc-
ture, while DZ is a divergence penalty between
representation aggregates to match more global
structure. The intuition is that individual match-
ing promotes contextual encoding similarity and
aggregate matching promotes similarity at the
language level.

Similar to the prior alignment, we use the MMD

distance to align aggregate posteriors as Equa-
tion (3) (i.e., marginal posteriors over Z between
languages). For individual alignment, we con-
sider two numerically stable exact solutions to
measure individual divergence which are well
suited to matching high-dimensional Gaussians
(Takatsu, 2011). Modeling Qφ (Z|X) as a para-
metric statistic yields the benefit of closed-form
computation during learning. We primarily use
the L2 Wasserstein distance, W2, as the Opti-
mal Transport-derived minimum transportation
cost between Gaussians (p,q) across domains.
Within Equation (12) the mean is μ, covari-
ance is Σ = Diag{σ2

i , . . . , σ
2
n}, and encodings

have dimensionality d. Tr{} is the matrix trace
function.

W2 (p,q) = ‖μp − μq‖22+ (12)

Tr{Σp +Σq − 2
(
Σ

1
2
pΣqΣ

1
2
p

) 1
2 }

We also consider the Kullback-Leibler Diver-
gence (KL) between two Gaussian distributions
as Equation (13). Minimizing KL is equivalent
to maximizing the mutual information between
distributions as an information-theoretic goal of
semantically aligning z. Section 6 demonstrates
that W2 is superior to KL in all cases.

KL (p‖q) = 1

2

(
log

(
|Σq|
|Σp|

)
− dp,q + (13)

Tr{Σ−1
q Σp}+ (μq − μp)

T Σq (μq − μp)
)
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Tr{} is the matrix trace function. Minimizing
KL is equivalent to maximizing the mutual infor-
mation between distributions as an information-
theoretic goal of semantically aligning z. Section 6
demonstrates that W2 is superior to KL in all cases.

We express DZ|X (see Equation (11)) between
singular p and q representations for individual
tokens for clarity, however, we actually minimize
the mean of DZ|X between each z1 and z2 to-
kens across both sequences, i.e., 1

|z1||z2|
∑

i,j DZ|X
(z1i‖z2j). We observe that minimizing this mean
divergence between all (z1i, z2j) pairs is most
empirically effective.

Finally, Equation (14) expresses the transpor-
tation cost, Tc, for a single (x, y) pair during
training: the cross-entropy between predicted and
gold y and WAE marginal prior regularization.

L(x, y) = EQ(z|x)

[
−
∑
i

yi (logGθ (z))i

]
+

αD (Qφ(z), P (z)) (14)

We episodically augment Equation (14) as Equa-
tion (15) using the MINOTAUR loss every k steps
for few-shot induction of cross-lingual alignment.
Sampling (x, y) is detailed in Section 5.

LΣ = L(xEN, yEN) + L(xl, yl)
+ DMINOTAUR (zEN, zl)

(15)

Another perspective on our approach is that we
are aligning pushforward distributions, Q(X) :
X → Z . Cross-lingual alignment at the input
token level (in X ) requires fine-grained annota-
tions and is an outstanding research problem (see
Section 2). Our method of aligning pushforwards
in Z is smoothly continuous, does not require
word alignment, and does not always require in-
put utterances to be parallel translations. While we
evaluate MINOTAUR principally on semantic pars-
ing, our framework can extend to any sequence-
to-sequence or representation learning task which
may benefit from explicit alignment between lan-
guages or domains.

5 Experimental Setting

MTOP (Li et al., 2021) This contains dialog
utterances of ‘‘assistant’’ queries and their cor-
responding tree-structured slot and intent LFs.
MTOP is split into 15,667 training, 2,235 vali-
dation, and 4,386 test examples in English (EN).

Figure 2: Input, x, and output, y, examples in En-
glish (EN), German (DE), and French (FR) for MTOP
(Li et al., 2021, upper green) and MultiATIS++SQL
(Sherborne and Lapata, 2022, lower red), respectively.

A variable subsample of each split is translated
into French (FR), Spanish (ES), German (DE), and
Hindi (HI). We refer to Li et al. (2021, Table 1)
for complete dataset details. As shown in Figure 2,
we follow Rosenbaum et al. (2022, Appendix B.2)
using ‘‘space-joined’’ tokens and ‘‘sentinel words’’
(i.e., a wordi token is prepended to each input
token and replaces this token in the LF) to pro-
duce a closed decoder vocabulary (Raman et al.,
2022). This allows the output LF to reference in-
put tokens by label without a copy mechanism.
We evaluate LF accuracy using the Space and
Case Invariant Exact-Match metric (SCIEM;
Rosenbaum et al., 2022).

We sample a small number of training in-
stances for low-resource languages, following the
Samples-per-Intent-and-Slot (SPIS) strategy from
Chen et al. (2020) which we adapt to our cross-
lingual scenario. SPIS randomly selects examples
and keeps those that mention any slot and intent
value (e.g., ‘‘IN:’’ and ‘‘SL:’’ from Figure 2)
with fewer than some rate in the existing subset.
Sampling stops when all slots and intents have
a minimum frequency of the sampling rate (or
the maximum if fewer than the sampling rate).
SPIS sampling ensures a minimum coverage of
all slot and intent types during cross-lingual trans-
fer. This normalizes unbalanced low-resource data
as the model has seen approximately similar ex-
amples across all semantic categories. Practically,
an SPIS rate of 1, 5, and 10 equates to 284 (1.8%),
1,125 (7.2%), and 1,867 (11.9%) examples (%
training data).

MultiATIS++SQL (Sherborne and Lapata,
2022) Experiments on ATIS (Hemphill et al.,
1990) study cross-lingual transfer using an exe-
cutable LF to retrieve database information. We
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use the MultiATIS++SQL version (see Table 2),
pairing executable SQL with parallel inputs in
English (EN), French (FR), Portuguese (PT),
Spanish (ES), German (DE), and Chinese (ZH).
We measure denotation accuracy—the propor-
tion of executed predictions retrieving equivalent
database results as executing the gold LF. Data
is split into 4,473 training, 493 validation, and
448 test examples with complete translation for
all splits. We follow Sherborne and Lapata (2023)
in using random sampling. Rates of 1%, 5%, and
10% correspond to 45, 224, and 447 examples,
respectively. For both datasets, the model only
observes remaining data in English, e.g., sam-
pling at 5% uses 224 multilingual examples and
4,249 English-only examples for training.

Modeling We follow prior work in using a
Transformer encoder-decoder: We use the frozen
pre-trained 12-layer encoder from MBART50
(Tang et al., 2021) and append an identical learn-
able layer. The decoder is a six-layer Transformer
stack (Vaswani et al., 2017) matching the encoder
dimensionality (d = 1, 024). Decoder layers are
trained from scratch following prior work and
early experiments verified that pre-training the
decoder did not assist in cross-lingual transfer,
offering minimal improvement on English. The
variance predictor (σ2 for predicting z in Equa-
tion (6)) is a multi-head pooler from Liu and
Lapata (2019) adapting multi-head attention to
produce singular output from sequential inputs.
The final model has ∼116 million trainable pa-
rameters and ∼340 million frozen parameters.

Optimization We train for a maximum of ten
epochs with early stopping using validation loss.
Optimization uses Adam (Kingma and Ba, 2015)
with a batch size of 256 and learning rate of
1 × 10−4. We empirically tune hyperparame-
ters (βP , αP ) to (0.5, 0.01), respectively. During
learning, a typical step (without MINOTAUR align-
ment) samples a batch of (xL, y) pairs in lan-
guages L ∈ {EN, l1, l2 . . .} from a sampled
dataset described above. Each MINOTAUR step
instead uses a sampled batch of parallel data
(xEN, xl, yEN, yl) to induce explicit cross-lingual
alignment from the same data pool. The episodic
learning loop size is tuned to k = 20; we find
that if k is infrequent then posterior alignment
is weaker and if k is too frequent then overall
parsing degrades as the posterior alignment dom-

inates learning. Tokenization uses SentencePiece
(Kudo and Richardson, 2018) and beam search
prediction uses five hypotheses. All experiments
are implemented in PyTorch (Paszke et al., 2019)
and AllenNLP (Gardner et al., 2018). Training
takes one hour using 1× A100 80GB GPU for
either dataset.

Comparison Systems As an upper-bound, we
train the WAE-derived model without low-resource
constraints. We report monolingual (one lan-
guage) and multilingual (all languages) versions
of training a model on available data. We use
the monolingual upper-bound EN model as a
‘‘Translate-Test’’ comparison. We also com-
pare to monolingual and multilingual ‘‘Translate-
Train’’ models to evaluate the value of gold
samples compared to silver-standard training
data. We follow previous work in using OPUS
(Tiedemann, 2012) translations for MTOP and
Google Translate (Wu et al., 2016) for MultiATIS
++SQL in all directions. Following Rosenbaum
et al. (2022), we use a cross-lingual word align-
ment tool (SimAlign; Jalili Sabet et al., 2020) to
project token positions from MTOP source to the
parallel machine-translated output (e.g., to shift
label wordi in EN to wordj in FR).

In all results, we report averages of five
runs over different few-shot splits. For MTOP,
we compare to ‘‘silver-standard’’ methods:
‘‘Translate-and-Fill’’ (Nicosia et al., 2021, TaF)
which generates training data using MT, and
CLASP (Rosenbaum et al., 2022) which uses
MT and prompting to generate multilingual train-
ing data. We note that these models and dataset
pre-processing methods are not public (we have
confirmed that our methods are reasonably com-
parable with authors). For MultiATIS++SQL, we
compare to XG-REPTILE from (Sherborne and
Lapata, 2023). This method uses meta-learning
to approximate a ‘‘task manifold’’ using English
data and constrain representations of target lan-
guages to be close to this manifold. This approach
implicitly optimizes for cross-lingual transfer by
regularizing the gradients for target languages
to align with gradients for English. MINOTAUR

differs in explicitly measuring the representation
divergence across languages.

6 Results

We find that MINOTAUR validates our hypothe-
sis that explicitly minimizing latent divergence
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EN FR ES DE HI Avg.

Gold Monolingual 79.4 69.8 72.3 67.1 60.5 67.4 ± 5.3
Gold Multilingual 81.3 75.7 77.2 72.8 71.6 74.4 ± 3.5

Translate-Test — 7.7 7.4 7.6 7.3 7.5 ± 0.2
Translate-Train Monolingual — 41.7 31.4 50.1 32.2 38.9 ± 9.4
Translate-Train Multilingual 74.2 46.9 43.0 53.6 39.9 45.9 ± 5.9
Translate-Train Multilingual +MINOTAUR 77.5 59.9 60.2 61.6 42.2 56.0 ± 9.2

TaF mT5-large (Nicosia et al., 2021) 83.5 71.1 69.6 70.5 58.1 67.3 ± 6.2
TaF mT5-xxl (Nicosia et al., 2021) 85.9 74.0 71.5 72.4 61.9 70.0 ± 5.5
CLASP (Rosenbaum et al., 2022) 84.4 72.6 68.1 66.7 58.1 66.4 ± 6.1

MINOTAUR 1 SPIS 79.5 ± 0.4 71.9 ± 0.2 72.3 ± 0.1 68.4 ± 0.3 65.1 ± 0.1 69.4 ± 3.4
MINOTAUR 5 SPIS 77.7 ± 0.6 72.0 ± 0.6 73.6 ± 0.3 69.1 ± 0.5 68.2 ± 0.5 70.7 ± 2.5
MINOTAUR 10 SPIS 80.2 ± 0.4 72.8 ± 0.5 74.9 ± 0.1 70.0 ± 0.7 68.6 ± 0.5 71.6 ± 2.8

Table 1: Accuracy on MTOP across (i) upper-bounds, (ii) translation baselines, (iii) ‘‘silver-standard’’
methods, and (iv) MINOTAUR with SPIS sampling at 1, 5 and 10. We report for English, French, Spanish,
German, and Hindi with ± sample standard deviation. Avg. reports the target language average ±
standard deviation across languages. Best result per-language and average for (i) and (ii)–(iv) are
bolded.

EN FR PT ES DE ZH Avg.

Gold Monolingual 72.3 73.0 71.8 67.2 73.4 73.7 71.9 ± 2.7
Gold Multilingual 73.7 74.4 72.3 71.7 74.6 71.3 72.9 ± 1.5

Translate-Test — 70.1 70.6 66.9 68.5 62.9 67.8 ± 3.1
Translate-Train Monolingual — 62.2 53.0 65.9 55.4 67.1 60.8 ± 6.3
Translate-Train Multilingual 72.7 69.4 67.3 66.2 65.0 69.2 67.5 ± 1.9
Translate-Train Multilingual +MINOTAUR 74.8 73.7 71.3 68.5 70.1 69.0 70.6 ± 2.1

@1%
XG-REPTILE 73.8 ± 0.3 70.4 ± 1.8 70.8 ± 0.7 68.9 ± 2.3 69.1 ± 1.2 68.1 ± 1.2 69.5 ± 1.1
MINOTAUR 75.6 ± 0.4 73.7 ± 0.6 71.4 ± 0.9 71.0 ± 0.5 70.4 ± 1.3 70.0 ± 0.9 71.3 ± 1.4

@5%
XG-REPTILE 74.4 ± 1.3 73.0 ± 0.9 71.6 ± 1.1 71.6 ± 0.7 71.1 ± 0.6 69.5 ± 0.5 71.4 ± 1.3
MINOTAUR 77.0 ± 1.0 73.9 ± 1.4 72.8 ± 1.1 71.1 ± 0.6 72.8 ± 2.0 72.3 ± 0.6 72.6 ± 1.0

@10%
XG-REPTILE 75.8 ± 1.3 74.2 ± 0.2 72.8 ± 0.6 72.1 ± 0.7 73.0 ± 0.6 72.8 ± 0.5 73.0 ± 0.8
MINOTAUR 79.8 ± 0.4 75.6 ± 1.8 75.4 ± 0.8 73.2 ± 1.7 76.8 ± 1.5 72.5 ± 0.7 74.7 ± 1.8

Table 2: Denotation Accuracy on MultiATIS++SQL across (i) upper-bounds, (ii) translation baselines,
and (iii) few-shot sampling for MINOTAUR compared to XG-REPTILE (Sherborne and Lapata, 2023) at 1%,
5%, and 10%. We report for English, French, Portuguese, Spanish, German, and Chinese ± sample
standard deviation. Avg. reports the target language average ± standard deviation across languages.
Best result per-language and average for (i) and (ii)–(iii) are bolded.

improves cross-lingual transfer with few training
examples in the target language. As evidenced by
our ablation studies, our technique is surprisingly
robust and can function without any parallel data
between languages. Overall, our method outper-
forms silver-standard data augmentation tech-
niques (in Table 1) and few-shot meta-learning
(in Table 2).

Cross-lingual Transfer in Task-Oriented Pars-
ing Table 1 summarizes our results on MTOP
against comparison models at multiple SPIS rates.
Our system significantly improves on the ‘‘Gold
Monolingual’’ upper-bound even at 1 SPIS by
> 2% (p < 0.01, using a two-tailed sign test
assumed hereafter). For few-shot transfer on
MTOP, we observe strong cross-lingual transfer
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even at 1 SPIS translating only 1.8% of the data-
set. Few-shot transfer is competitive with a mono-
lingual model using 100% of gold translated data
and so represents a promising new strategy for
this dataset. We note that even at a high SPIS
rate of 100 (approximately ∼ 53.1% of training
data), MINOTAUR is significantly (p < 0.01) poorer
than the ‘‘Gold Multilingual’’ upper-bound, high-
lighting that few-shot transfer is challenging on
MTOP.

MINOTAUR outperforms all translation-based
comparisons and augmenting ‘‘Translate-Train
Multilingual’’ with our posterior alignment ob-
jective (+ MINOTAUR) yields a +10.1% average
improvement. With equivalent data, this com-
parison shows that cross-lingual alignment by
aligning each latent representation to the prior only
(i.e., a WAE-based model) is weaker than cross-
lingual alignment between posteriors.

Comparing to ‘‘Silver-Standard’’ Methods A
more realistic comparison is between TaF (Nicosia
et al., 2021) or CLASP (Rosenbaum et al., 2022),
which optimize MT quality in their pipelines,
and our method which uses sampled gold data.
We outperform CLASP by >3% and TaF using
mT5-large (Xue et al., 2021) by >2.1% at all sam-
ple rates. However, MINOTAUR requires > 5 SPIS
sampling to improve upon TaF using mT5-xxl. We
highlight that our model has only ∼ 116 million
parameters whereas CLASP uses AlexaTM-500M
(FitzGerald et al., 2022) with 500 million param-
eters, mT5-large has 700 million parameters and
mT5-xxl has 3.3 billion parameters. Relative to
model size, our approach offers improved com-
putational efficiency. The improvement of our
method is mostly seen in languages typologically
distant from English as MINOTAUR is always the
strongest model for Hindi. In contrast, our method
underperforms for English and German (more
similar to EN) which may benefit from stronger
pre-trained knowledge transfer within larger mod-
els. Our efficacy using gold data and a smaller
model, compared to silver data in larger mod-
els, suggests a quality trade-off, constrained by
computation, as a future study.

Cross-lingual Transfer in Executable Parsing
The results for MultiATIS++SQL in Table 2
show similar trends. However, here MINOTAUR

can outperform the upper-bounds, and sampling
at > 5% significantly (p < 0.01) improves on

DZ|X DZ EN FR ES DE HI Avg.

KL — 78.3 70.6 73.1 67.0 66.6 69.3
W2 — 78.6 72.1 74.3 68.7 67.4 70.6
— MMD 78.7 72.3 74.3 68.8 67.5 70.7
KL MMD 78.4 71.8 73.3 68.5 67.3 70.2
W2 MMD 80.2 72.8 74.9 70.0 68.6 71.6

Table 3: Accuracy on MTOP at 10 SPIS per-
muting different alignment methods between
individual-only (DZ|X ), aggregate-only (DZ) and
joint (DZ|X + DZ). The joint method using
L2-Wasserstein distance is empirically optimal
but not significantly above the aggregate-only
method (p = 0.07).

‘‘Gold-Monolingual’’ and is similar or better
than ‘‘Gold-Multilingual’’ (p < 0.05). Further in-
creasing the sample rate yields marginal gains.
MINOTAUR generally improves on XG-REPTILE and
performs on par at a lower sample rate, i.e., MINO-
TAUR at 1% sampling is closer to XG-REPTILE at 5%
sampling. This suggests that our approach is more
sample efficient, achieving greater accuracy with
fewer samples. MINOTAUR requires < 10 epochs to
train whereas XG-REPTILE reports ∼ 50 training
epochs, for poorer results.

Despite demonstrating overall improvement,
MINOTAUR is not universally superior. Notably,
our performance on Chinese (ZH) is weaker than
XG-REPTILE at 10% sampling and our method
appears to benefit less from more data in compar-
ison. The divergence minimization in MINOTAUR

may be more functionally related to language sim-
ilarity (dissimilar languages demanding greater
distances to minimize) whereas the alignment via
gradient constraints within meta-learning could be
less sensitive to this phenomenon. These results,
with the observation that MINOTAUR improves most
on Hindi for MTOP, illustrate a need for more
in-depth studies of cross-lingual transfer between
distant and lower resource languages. Future work
can consider more challenging benchmarks across
a wider pool of languages (Ruder et al., 2023).

Contrasting Alignment Signals We report
ablations of MINOTAUR on MTOP at 10 SPIS sam-
pling. Table 3 considers each function for cross-
lingual alignment outlined in Section 3.2 as an
individual or composite element. The best ap-
proach, used in all other reported results, mini-
mizes the Wasserstein distance W2 for individual

1440



EN FR ES DE HI Avg.

MMD 77.5 69.6 70.7 66.3 61.7 67.1
KL 77.9 69.8 70.9 66.5 62.1 67.3
L2 77.1 69.2 70.3 65.8 61.7 66.8

Table 4: Accuracy on MTOP at 10 SPIS us-
ing non-parametric alignment without Z. Here
the encoder output, Eφ(X) is input into decoder
Gθ (Eφ(X)). All approaches significantly under-
perform (p < 0.01) relative to Table 3.

divergence and MMD for aggregate diver-
gence. W2 is significantly superior to the
Kullback-Leibler Divergence (KL) for minimiz-
ing individual posterior samples (p < 0.01 for
individual and joint cases). The W2 distance di-
rectly minimizes the Euclidean L2 distance when
variances of different languages are equivalent.
This in turn is more similar to the Maximum
Mean Discrepancy function (the best singular ob-
jective) which minimizes the distance between
approximate ‘‘means’’ of each distribution i.e.,
betweenZ marginal distributions. Note that MMD
and W2 alignments are not significantly dif-
ferent (p = 0.08). The W2 + MMD approach
significantly outperforms all other combinations
(p < 0.01). The identified strength of MMD,
compared to methods for computing DZ|X , high-
lights that minimizing aggregate divergence is
the main contributor to alignment with individual
divergence as a weaker additional contribution.

Alignment without Latent Variables Table 4
considers alignment without the latent variable
formulation on an encoder-decoder Transformer
model (Vaswani et al., 2017). Here, the output of
the encoder is not probabilistically bound with-
out the parametric ‘‘guidance’’ of the Gaussian
reparameterization. This is similar to analysis on
explicit alignment from Wu and Dredze (2020).
We test MMD, statistical KL divergence (e.g.,∑

x p(x)log
(
p(x)
q(x)

)
) and Euclidean L2 distance

as minimization functions and observe all tech-
niques are significantly weaker (p < 0.01) than
counterparts outlined in Table 3. This contrast
suggests the smooth curvature and bounded struc-
ture of the Z parameterization contribute to ef-
fective cross-lingual alignment. Practically, these
non-parametric approaches are challenging to im-
plement. The lack of precise divergences (i.e.,
Equation (13) or Equation (12)) between represen-

Alignment EN FR ES DE HI Avg.

Parallel Ref. 80.2 72.8 74.9 70.0 68.6 71.6

DZ|X only 78.9 67.3 68.3 64.6 59.4 64.9
DZ only 77.6 71.5 72.9 68.4 67.2 70.0
DZ|X + DZ 78.8 70.9 71.9 67.9 64.5 68.8

Table 5: Accuracy on MTOP at 10 SPIS us-
ing non-parallel inputs between languages in
MINOTAUR. During training, we sample English
input, xEN, and an input in language l, xl which
is not a translation of xEN for Equation (15). This
approach weakens individual posterior alignment
but identifies that MMD is the least sensitive to
input parallelism.

tations leads to numerical underflow instability
during training. This impeded alignment against
reasonable comparisons such as cosine distance.
Even using MMD, which does not require an ex-
act solution, fared poorer without the bounding of
the latent variable Z.

Parallelism in Alignment We further inves-
tigate whether MINOTAUR induces cross-lingual
transfer when aligning posterior samples from
inputs which are not parallel (i.e., xl is not a trans-
lation of xEN and output LFs are not equivalent).
We intuitively expect parallelism as necessary
for the model to minimize divergence between
representations with equivalent semantics.

As shown in Table 5, data parallelism is
surprisingly not required using MMD to align
marginal distributions only. The DZ|X only and
DZ|X + DZ techniques significantly under-
perform relative to equivalent methods using
parallel data (p < 0.01). This is largely expected
because individual alignment between posterior
samples which should likely not be equivalent
could inject unnecessary noise into the learning
process. However, MMD (DZ only) is signifi-
cantly (p < 0.01) above other methods with the
closest performance to the parallel equivalent.
This supports our interpretation that MMD aligns
‘‘at the language level’’ as minimization between
languages should not mandate parallel data. For
lower-resource scenarios, this approach could
over-sample less data for cross-lingual transfer to
the long tail of under-resourced languages.

Learning a Latent Semantic Structure We
study the representation space learned from our
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Model Cosine (↑) Top-1 Top-5 Top-10 MRR (↑)

MBART50 0.576 0.521 0.745 0.796 0.622
XG-REPTILE 0.844 0.797 0.949 0.963 0.865
MINOTAUR 0.941 0.874 0.994 0.998 0.927

Table 6: Average similarity between encodings
of English and target languages for Multi-
ATIS++SQL. Cosine similarity evaluates average
distance between encodings of parallel sentences.
Top-k evaluates if the parallel encoding is ranked
within the k most cosine-similar vectors. Mean
Reciprocal Rank (MRR) evaluates average posi-
tion of parallel encodings ranked by similarity.
Significant best results are bolded (p < 0.01).

method training on MultiATIS++SQL at 1% sam-
pling for direct comparison to similar analysis
from Sherborne and Lapata (2023). We compute
sentence representations from the test set as the
average of the z representations for each input
utterance

(
1
T

∑T
i zi

)
. Table 6 compares between

MINOTAUR, MBART50 (Tang et al., 2021) repre-
sentations before training, and XG-REPTILE. The
significant improvement in cross-lingual cosine
similarity using MINOTAUR in Table 6 (p < 0.01)
further supports how our proposed method learns
improved cross-lingual similarity.

We also consider the most cosine-similar neigh-
bors for each representation and test if the
top-k closest representations are from a paral-
lel utterance in a different language or some
other utterance in the same language. Table 6
shows that > 99% of representations learned
by MINOTAUR have a parallel utterance within
five closest representations and ∼50% improve-
ment in mean-reciprocal ranking score (MRR)
between parallel utterances. We interpret this as
the representation space using MINOTAUR is more
semantically distributed relative to MBART50, as
representations for a given utterance are closer
to semantic equivalents. We visualize this in
Figure 3: The original pre-trained model has
minimal cross-lingual overlap, whereas our sys-
tem produces encodings with similarity aligned
by semantics rather than language. MINOTAUR

can rapidly adapt the pre-trained representations
using an explicit alignment objective to produce
a non-trivial informative latent structure. This for-
mulation could have further utility within mul-
tilingual representation learning or information

Figure 3: Visualization of MultiATIS++SQL encodings
(test set; 25% random parallel sample) using t-SNE
(van der Maaten and Hinton, 2008). Compared to
MBART50, MINOTAUR organizes the latent space to be
more semantically distributed across languages without
monolingual separability.

retrieval, e.g., to induce more coherent relation-
ships between cross-lingual semantics.

Error Analysis We conduct an error analysis
on MultiATIS++SQL examples correctly pre-
dicted by MINOTAUR and incorrectly predicted by
baselines. The primary improvement arises from
improved handling of multi-word expressions and
language-specific modifiers. For example, adjec-
tives in English are often multi-word adjectival
phrases in French (e.g., ‘‘cheapest’’ → ‘‘le moins
cher’’ or ‘‘earliest’’ → ‘‘à plus tot’’). Improved
handling of this error type accounts for an average
of 53% of improvement across languages with
the highest in French (69%) and lowest in Chi-
nese (38%). We hypothesize that a combination of
aggregate and mean-pool individual alignment in
MINOTAUR benefits this specific case where seman-
tics are expressed in varying numbers of words
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between languages. While this could be similarly
approached using fine-grained token alignment
labels, MINOTAUR improves transfer in this context
without additional annotation. While this analysis
is straightforward for French, it is unclear why
the transfer to Chinese is weaker. A potential in-
terpretation is that weaker transfer of multi-word
expressions to Chinese could be related to poor
tokenization. Sub-optimal sub-word tokenization
of logographic or information-dense languages
is an ongoing debate (Hofmann et al., 2022; Si
et al., 2023) and exact explanations require fur-
ther study. Translation-based models and weaker
systems often generate malformed, non-executable
SQL. Most additional improvement is due to a
23% boost in generating syntactically well-formed
SQL evaluated within a database. Syntactic cor-
rectness is critical when a parser encounters a
rare entity or unfamiliar linguistic construction
and highlights how our model can better navi-
gate inputs from languages minimally observed
during training. This could potentially be fur-
ther improved using recent incremental decoding
advancements (Scholak et al., 2021).

7 Conclusion

We propose MINOTAUR, a method for few-shot
cross-lingual semantic parsing leveraging Opti-
mal Transport for knowledge transfer between
languages. MINOTAUR uses a multi-level poste-
rior alignment signal to enable sample-efficient
semantic parsing of languages with few anno-
tated examples. We identify how MINOTAUR aligns
individual and aggregate representations to boot-
strap parsing capability from English to multiple
target languages. Our method is robust to differ-
ent choices of alignment metrics and does not
mandate parallel data for effective cross-lingual
transfer. In addition, MINOTAUR learns more seman-
tically distributed and language-agnostic latent
representations with verifiably improved seman-
tic similarity, indicating its potential application
to improve cross-lingual generalization in a wide
range of other tasks.
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divers sçavans & lûs dans ses assemblées,
pages 666–704.

Thong Thanh Nguyen and Anh Tuan Luu.
2022. Improving neural cross-lingual abstrac-
tive summarization via employing optimal
transport distance for knowledge distillation.
In Thirty-Sixth AAAI Conference on Artificial
Intelligence, AAAI 2022, Thirty-Fourth Con-
ference on Innovative Applications of Artificial
Intelligence, IAAI 2022, The Twelveth Sym-
posium on Educational Advances in Artificial
Intelligence, EAAI 2022 Virtual Event, Febru-
ary 22 – March 1, 2022, pages 11103–11111.
AAAI Press. https://doi.org/10.1609
/aaai.v36i10.21359

Massimo Nicosia, Zhongdi Qu, and Yasemin
Altun. 2021. Translate & Fill: Improving
zero-shot multilingual semantic parsing with
synthetic data. In Findings of the Association
for Computational Linguistics: EMNLP 2021,
pages 3272–3284, Punta Cana, Dominican Re-
public. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1
/2021.findings-emnlp.279

Adam Paszke, Sam Gross, Francisco Massa,
Adam Lerer, James Bradbury, Gregory

1446

https://doi.org/10.18653/v1/2021.eacl-main.257
https://doi.org/10.18653/v1/2021.eacl-main.257
https://doi.org/10.1609/aaai.v37i11.26535
https://doi.org/10.1609/aaai.v37i11.26535
https://doi.org/10.1145/2866568
https://doi.org/10.18653/v1/2022.emnlp-main.673
https://doi.org/10.18653/v1/2022.emnlp-main.673
https://doi.org/10.18653/v1/2020.emnlp-main.484
https://doi.org/10.18653/v1/2020.emnlp-main.484
https://doi.org/10.18653/v1/P19-1500
https://doi.org/10.18653/v1/P19-1500
https://doi.org/10.18653/v1/2022.emnlp-main.164
https://doi.org/10.18653/v1/2022.emnlp-main.164
https://doi.org/10.1609/aaai.v36i10.21359
https://doi.org/10.1609/aaai.v36i10.21359
https://doi.org/10.18653/v1/2021.findings-emnlp.279
https://doi.org/10.18653/v1/2021.findings-emnlp.279


Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison,
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