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Abstract

Non-AutoRegressive (NAR) text generation
models have drawn much attention because
of their significantly faster decoding speed and
good generation quality in machine transla-
tion. However, in a wider range of text gener-
ation tasks, existing NAR models lack proper
pre-training, making them still far behind
the pre-trained autoregressive models. In this
paper, we propose Pre-trained Directed Acy-
clic Transformer (PreDAT) and a novel pre-
training task to promote prediction consistency
in NAR generation. Experiments on five text
generation tasks show that our PreDAT re-
markably outperforms existing pre-trained
NAR models (+4.2 score on average) and even
achieves better results than pre-trained autore-
gressive baselines in n-gram-based metrics,
along with 17 times speedup in throughput.
Further analysis shows that PreDAT benefits
from the unbiased prediction order that alle-
viates the error accumulation problem in au-
toregressive generation, which provides new
insights into the advantages of NAR generation.1

1 Introduction

Pre-trained language models have been widely
applied in text generation (Radford et al., 2019;
Song et al., 2019; Lewis et al., 2020; Raffel et al.,
2020), which can effectively improve the perfor-
mance of downstream generation tasks, especially
in low-resource scenarios (Brown et al., 2020).
Most of these pre-trained language models are
based on AutoRegressive (AR) generation, which

∗ Corresponding author: Minlie Huang.
1Our code and pre-trained models are available at

https://github.com/thu-coai/DA-Transformer.

produces high-quality texts by predicting each
token one by one. However, such a sequential
generation process suffers from high latency and
low throughput in inference, thereby largely lim-
iting the use of AR models in scenarios with
real-time requirements.

Non-AutoRegressive (NAR) generation is an
alternative text generation paradigm (Gu et al.,
2018). Unlike sequential generation in AR mod-
els, NAR models predict all tokens in parallel,
which largely accelerates the decoding process.
Although early NAR models suffer from serious
quality degradation due to the independent token
prediction, recent NAR studies have made much
progress on some generation tasks, such as ma-
chine translation (Qian et al., 2021; Gu and Kong,
2021; Huang et al., 2022a). Notably, Huang et al.
(2022c) propose Directed Acyclic Transformer,
which incorporates a directed acyclic graph to re-
duce the conflicts in capturing possible outputs,
achieving a comparable translation quality to the
AR models.

Despite the success of NAR generation in ma-
chine translation, it is still challenging to apply
NAR models to a wider range of generation tasks,
mainly due to the lack of appropriate pre-training.
Although some previous studies have explored
pre-training methods such as directly fine-tuning
BERT for NAR generation (Guo et al., 2020b;
Su et al., 2021; Jiang et al., 2021) or pre-training
NAR models from scratch (Qi et al., 2021; Li
et al., 2022), their models still have a significant
quality gap compared with AR ones. We argue
that these methods do not fully exploit the char-
acteristic of NAR generation, thereby restricting
downstream performance. Specifically, we dis-
cuss two main issues: (1) Previous pre-training
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tasks are ineffective in promoting sentence-level
prediction consistency, making it hard for their
models to predict a whole sentence simultane-
ously while preserving the fluency in down-
stream NAR generation. (2) Previous pre-training
tasks fail to address the multi-modality problem
(Gu et al., 2018), which has proved to be a funda-
mental and important challenge in training NAR
models (Huang et al., 2022b).

In this paper, we introduce PreDAT, a Pre-
trained Directed Acyclic Transformer for high-
quality non-autoregressive text generation. We
utilize the architecture of Directed Acyclic Trans-
former and further propose a novel pre-training
task, Double-Source Text Infilling (DSTI), aiming
to address the above issues in pre-trained NAR
models. Specifically, DSTI contains two steps: It
corrupts a sentence and scatters the tokens into
two sequences, which are fed into the encoder and
decoder as two sources of information; then the
model is trained to recover the corrupted fragments
non-autoregressively. During the pre-training, our
model predicts long sentence fragments (about
15 tokens) from nearby contexts, which promotes
prediction consistency and bidirectional depen-
dencies. Moreover, DSTI designs a strategy for
creating pre-training data pairs that allow the out-
put sequences to have flexible lengths, which well
incorporates various alignment-based NAR train-
ing objectives to alleviate the multi-modality prob-
lem (Libovický and Helcl, 2018; Ghazvininejad
et al., 2020; Du et al., 2021; Huang et al., 2022c).

Automatic evaluation shows that PreDAT is
effective and efficient on five text generation
tasks. It remarkably outperforms previous pre-
trained NAR models (+4.2 score on average) and
even achieves better results than pre-trained AR
baselines in n-gram-based metrics (+0.7 score on
average), along with a 17x speedup in through-
put. To our knowledge, PreDAT is the first NAR
model that outperforms pre-trained AR models
on various generation tasks in automatic evalua-
tion. Further ablation studies verify that our pre-
training task designs, including the long fragment
prediction and alignment-based training objec-
tives, are crucial for success.

To better understand the advantages and weak-
nesses of NAR generation, we use automatic and
manual methods to investigate the generated texts
in downstream tasks. We find that PreDAT can
alleviate the error accumulation in AR generation
and improve the relevance to the input, thereby

leading to a better performance in n-gram-based
metrics. However, we also find that NAR mod-
els, including PreDAT, are still weaker than AR
models in preserving the consistency among gen-
erated tokens, leading to grammatical errors such
as wrong word choices. We believe that these
findings can provide novel insights for future
NAR studies.

2 Related Work

Pre-trained Language Models (PLM) In re-
cent years, PLMs have made significant progress
in natural language generation (Radford et al.,
2019; Song et al., 2019; Lewis et al., 2020;
Raffel et al., 2020). These PLMs are pre-trained on
a large corpus of unlabeled data, where the knowl-
edge can be transferred to downstream tasks, re-
sulting in improved generation quality.

Non-Autoregressive Generation Although NAR
generation (Gu et al., 2018) remarkably speeds up
the inference, Huang et al. (2022b) point out that
it theoretically suffers from serious information
dropping, previously known as the multi-modality
problem. To alleviate the problem, previous stud-
ies propose methods including (1) iterative re-
finement (Lee et al., 2018; Gu et al., 2019;
Ghazvininejad et al., 2019; Guo et al., 2020a;
Huang et al., 2022d); (2) knowledge distillation
(Kim and Rush, 2016; Ding et al., 2022, 2021a,b;
Shao et al., 2022); (3) dependency enhancement
(Sun et al., 2019; Qian et al., 2021; Huang et al.,
2022a; Bao et al., 2022); or (4) alignment-based
objectives (Ghazvininejad et al., 2020; Du et al.,
2021; Libovický and Helcl, 2018; Huang et al.,
2022c).

There are also studies combining PLMs and
NAR generation. For example, some methods
fine-tune existing pre-trained models directly
(Jiang et al., 2021) or with an adapter (Guo et al.,
2020b; Su et al., 2021). Some others combine AR
and NAR prediction (Qi et al., 2021) or involve
an early exiting mechanism (Li et al., 2022) in
pre-training.

Compared with these studies, our method has
two significant differences: (1) Previous methods
either predict short spans (e.g., BERT) or incor-
porate unidirectional AR prediction (Qi et al.,
2021), which hardly contribute to NAR genera-
tion that predicts a whole sentence with bidirec-
tional attention. In contrast, we train our model
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to predict long fragments simultaneously, lead-
ing to better consistency among generated tokens.
(2) Previous methods use a token-level loss that
forces the model to predict a same-length se-
quence to match the target, which over-penalizes
the position shift error (Ghazvininejad et al., 2020)
and worsens the multi-modality problem. We in-
troduce an up-sampling strategy to obtain longer
output sequences, which well incorporates previ-
ous alignment-based NAR losses to address the
above problems.

3 Preliminaries: Directed
Acyclic Transformer

Directed Acyclic Transformer (DAT, Huang et al.,
2022c; see also Figure 1) is an NAR model that
effectively alleviates the multi-modality problem.
It introduces a longer decoding sequence and an
alignment-based objective to reduce the conflicts
in capturing multiple possible outputs. Specifi-
cally, given the input X = {x1, · · · , xM} and
the target sequence Y = {y1, · · · , yN}, DAT pro-
duces a feature sequence V = {v1,v2, · · · ,vL}
organized in a Directed Acyclic Graph (DAG),
where Y is aligned to a sub-sequence of V (equiv-
alently, assigned to a path of the DAG). Notably,
L is usually much larger than N to allow for
more flexible alignments. In DAT training, the
alignment-based objective marginalizes the prob-
abilities of all possible alignments that produce
the target Y , formally as

LDAT(V, Y ) = − logPθ(Y |X)

= − log
∑

A∈Γ
Pθ(Y |A,X)Pθ(A|X), (1)

Pθ(Y |A,X) =
∏L

i=1
Pθ(yi|vai

),

Pθ(A|X) =
∏L−1

i=1
Pθ(ai+1|ai),

where A = {a1, · · · , aL} is feature indexes on
the aligned path, and Γ contains all possible
paths with the size of

(
L
N

)
. Pθ(yi|vai) represents

token probabilities predicted from the feature vai ,
and Pθ(ai+1|ai) represents transition probabili-
ties revealing how likely ai+1 follows ai in a
path. Since it is impossible to enumerate the huge
number of paths in Equation 1, a dynamic pro-
gramming algorithm can be adopted to address
the problem, whose details can be found in the
original paper (Huang et al., 2022c).

Figure 1: Preliminaries: Directed Acyclic Transformer
(DAT). To alleviate the multi-modality problem, DAT
predicts a feature sequence V organized in a directed
acyclic graph (DAG) and then adopts an alignment-
based objective that aligns the target Y to the feature
sequence V , represented by LDAT(V, Y ).

Compared with previous NAR models, DAT
explicitly models the dependencies between tok-
ens by the position transitions and is able to
store multiple modalities on different paths of the
DAG, thereby remarkably improving the gener-
ation performance. Moreover, various decoding
algorithms such as beam search and Nucleus sam-
pling (Holtzman et al., 2020) can be utilized to
boost the generation quality or diversity.

Besides LDAT, there are other alignment-based
objectives that succeed in alleviating the
multi-modality problem in NAR generation, such
as AXE (Ghazvininejad et al., 2020), OaXE
(Du et al., 2021), and CTC (Graves et al., 2006;
Libovický and Helcl, 2018). In general, these
objectives are also obtained by aligning the target
Y with the feature sequence V , thus denoted by
L(V, Y ).

4 Proposed Method

In this section, we introduce PreDAT, Pretrained
Directed Acyclic Transformer. We first propose
the pre-training task (Section 4.1) and then de-
scribe the fine-tuning and inference strategies
(Section 4.2).

4.1 Pre-training Task

Our pre-training task, Double-Source Text In-
filling (DSTI), is a self-supervised pre-training
task that aims to promote prediction consistency
and bidirectional dependencies for NAR mod-
els. Our task scatters part of a sentence into two
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Figure 2: An overview of Double-Source Text Infilling (DSTI). (a) Data Preparation: DSTI first creates the en-
coder input X and the target Y by span masking, and then obtains the decoder input Z by up-sampling, assigning,
and re-masking. (b) Pre-training Process: The NAR model is trained to predict the unseen fragments in Y in
parallel, with X and Z as inputs. The training objective is the sum of alignment-based NAR losses, which
are obtained by aligning each target fragment (e.g., Y1:4) to the feature sequence on the corresponding masked
segments (e.g., V1:6).

sequences, feeds them into the encoder and de-
coder as two sources of information, and then
trains the model to predict long unseen fragments
in a non-autoregressive fashion. Although DSTI
is compatible with various NAR architectures
and losses, we mainly focus on DAT due to its
superior performance.

As shown in Figure 2, our task takes a
piece of text from the pre-training corpus and
decomposes it into a triple (X,Z, Y ), where
X = {x1, · · · , xM} is the encoder input, Z =
{z1, · · · , zL} is the decoder input, and Y =
{y1, · · · , yN} is the target. The data preparation
consists of two stages.

Stage 1: Creating Encoder Input We utilize
span masking (Raffel et al., 2020) to obtain the
encoder input X and the target Y . Specifically,
we randomly mask tokens in the original sen-
tence, and then replace consecutive masks into
a single special token representing the span ID.
Then the prediction target Y is constructed by
concatenating the masked spans with the span IDs
as delimiters.

Specially, we force each masked span to be
long enough (about 15 tokens) because the NAR
model has to generate a whole sentence simul-
taneously in inference, where predicting short
spans is unhelpful in preserving sentence-level
consistency.

Stage 2: Creating Decoder Input The decoder
input Z plays two roles in our pre-training: (1)

It reveals some target tokens to promote bidirec-
tional dependencies in the decoder. (2) It deter-
mines the length of the predicted feature sequence.

To incorporate the alignment-based NAR losses
that require a longer feature sequence than the
target (such as DAT and CTC), we create the
decoder input Z by an up-sampling step. Then we
assign a part of the target tokens to appropriate
positions in Z, where the unseen tokens will be
used as prediction targets. Specifically, creating Z
follows three steps: up-sampling, assigning, and
re-masking.

For up-sampling, we decide the length of Z
based on the target length. Formally, we have
L := λN , where λ is an up-sampling ratio. In
DAT, varying L can bring different DAG sizes
and structures, where we sample λ from a uni-
form distribution to diversify the DAG structures
in pre-training. After determining the length, the
span IDs are put into Z according to the up-
sampling ratio, which will not be modified in the
later steps.

For assigning, we distribute the target tokens
in Z, regardless of whether the token will appear
in the final input. Formally, we use an assignment
sequence {ai}1≤i≤N indicating that zai := yi. All
other positions in Z are masked. For obtaining
the sequence {ai}, a straightforward strategy is
to use uniform assignment, such that every two
consecutive target tokens are separated by a con-
stant number of [Mask]. In the pilot experiment,
we find it better to use the strategy of glancing
training (Huang et al., 2022c; Qian et al., 2021),
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which first predicts a DAG with a fully masked
Z and then assigns the target tokens on the posi-
tions that form the most probable path of the DAG.

For re-masking, we determine the tokens fi-
nally appearing in Z and then mask the remaining
ones. Formally, we randomly sample a fixed pro-
portion of tokens to form a set R, where zai := yi
if i ∈ R, and all the other tokens in Z are masked.

Training Objective Our objective is to recon-
struct the unseen target fragments according to
the given context, similar to masked language
modelling (Devlin et al., 2019) but with a sig-
nificant difference. Instead of using a token-level
loss that forces each masked position to predict
the corresponding target token, we obtain the sum
of alignment-based losses that aligns each unseen
target fragment to the feature sequence predicted
on the corresponding masked segments. Note
that the feature sequence is longer than the tar-
get fragment, which brings a larger DAG with a
higher capacity to capture multiple possible in-
filling results.

Specifically, the decoder input consists of sev-
eral consecutive masked segments segmented by
the observed token or span IDs. Each masked
segment will produce a feature sequence Vai:aj ,
which is then aligned to the corresponding target
fragments Yi:j for the DAT loss. The final loss
is equal to the sum of the DAT loss of all frag-
ments. Formally,

V =
[
v1, · · · ,v|Z|

]
= fθ(X,Z),

L =
∑

i,j∈frag(R)

LDAT(Vai:aj , Yi:j),

where frag(R) consists of all pairs (i, j) repre-
senting the start and end position of unseen frag-
ments, and LDAT is defined in Equation (1).

Notably, our idea can be applied to other
alignment-based NAR losses, such as CTC loss
(Graves et al., 2006), which also trains the model
by aligning the target fragment to a longer pre-
dicted feature sequence. We verify the generality
of DSTI with various loss functions in Section 5.4.

4.2 Fine-tuning and Inference

We generally follow the original training method
(Huang et al., 2022c) to fine-tune our PreDAT on
the downstream datasets while introducing some
improvements: We add a target length predictor
for better adaption to tasks with various ratios of

Figure 3: Illustrations of (a) vanilla decoding and (b)
overlapped decoding. Overlapped decoding reduces the
GPU idle time, leading to higher decoding throughput.

input and target lengths, and further propose a
trick to improve the decoding throughput.

Length Prediction The original DAT simply
sets the feature length L to be a constant multiple
of the input length, which in most cases of ma-
chine translation, satisfies the constraint that the
feature sequence should be longer than the target
length. However, the targets in our downstream
tasks can be arbitrarily long, making this strategy
improper.

To better apply PreDAT to various genera-
tion tasks without the constraint of input and tar-
get length, we introduce a length predictor during
fine-tuning and inference. Specifically, in fine-
tuning, we use a similar up-sampling strategy as
the pre-training to obtain the decoder input length,
i.e., λ times the target length. Then we adopt a
length predictor on the top of the encoder and train
it to predict the target length as a classification.
In inference, we obtain the predicted length from
the predictor, and then multiply it with λ̂ to ob-
tain the decoder input length, where λ̂ is a hyper-
parameter tuned on the validation set that controls
the length of generated sentences.

Overlapped Decoding PreDAT predicts the
DAG in parallel on GPU, and then executes a de-
coding algorithm (e.g., beam search; Huang et al.,
2022c) on CPUs to obtain the most likely output
from the DAG. As shown in Figure 3, we overlap
the GPU and CPU execution, which reduces the
GPU idle time and utilizes multiple CPU cores to
parallelly process the batches, leading to remark-
ably higher decoding throughput while not affect-
ing the latency.

5 Experiments

5.1 Implementation Details

Model Configurations Our PreDAT is based on
a 6-layer encoder-decoder Transformer (Vaswani
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et al., 2017) with a hidden size of 768, following
the base version of AR and NAR baselines.

Pre-Training We pretrain PreDAT with DSTI
on 16GB English corpus from Wikipedia and
BookCorpus (Zhu et al., 2015), with the vocab-
ulary of bert-base-uncased. In stage 1, we take
a sequence with about 600 tokens and mask 6
equal-length spans that account for 15% tokens.
In stage 2, we sample λ uniformly from [4, 8]
and mask 90% tokens in the re-masking step. Un-
less otherwise specified, we pre-train PreDAT for
500k update steps with a batch size of 256 samples
and use Adam optimizer (Kingma and Ba, 2015)
with a learning rate of 2e-4. We utilize Light-
Seq (Wang et al., 2022) to accelerate the training
(not used in inference), and the pre-training lasts
approximately 72 hours on 8 Nvidia A100-40G
GPUs.

Fine-Tuning We fine-tune PreDAT on down-
stream datasets with the DAT loss and glancing
training (Qian et al., 2021; Huang et al., 2022c)
without knowledge distillation. According to the
average sample lengths of each dataset, each
mini-batch has approximately 4k target tokens
for PersonaChat, XSUM, SQuAD1.1, and 8k tar-
get tokens for ROCStory and Quora. We use the
early-stop trick according to the performance on
the validation set. It usually takes less than 60k
steps on SQuAD1.1, Quora, and PersonaChat, and
100k steps on XSUM and ROCStory. We tune the
glancing ratio from {0.3, 0.5}, and learning rate
from {1e-5, 2e-5, 5e-5, 1e-4, 2e-4}. We evaluate
the model every 5k steps on the validation set
and obtain the final model by averaging the five
best checkpoints.

Inference We utilize lookahead decoding (de-
fault unless otherwise specified) and beamsearch
(Huang et al., 2022c) to decode a sequence from
predicted DAG. We use a beam size of 200 and
incorporate a 5-gram LM in the beam search. For
open-ended generation, we further employ Nu-
cleus sampling (Holtzman et al., 2020).

For these three decoding strategies, we prevent
any repeated tri-gram in expanding the decod-
ing path on the DAG, which is inspired by a
similar strategy used in autoregressive decod-
ing (Paulus et al., 2018). Moreover, we also
prevent consecutive uni-gram and bi-gram rep-
etitions, which are common errors in PreDAT’s
outputs.

Dataset Task # Samples Length

SQuAD1.1♠ Question Generation 75k/10k/12k 149.4/11.5
XSUM♠ Summarization 204k/11k/11k 358.5/21.2
Quora♥ Paraphrase Generation 138k/5k/4k 11.5/11.5
PersonaChat♠ Dialog Generation 122k/15k/14k 120.8/11.8
ROCStory♣ Story Generation 88k/5k/5k 9.2/41.6

Table 1: Dataset statistics. # Samples shows the
number of samples in training/validation/test set.
Length shows the average length of input/target.
We use the processed datasets and evaluation
metrics from ♠ Liu et al. (2021), ♥ Jiang et al.
(2021), ♣ Guan et al. (2020).

5.2 Experiment Settings

Datasets and Metrics We utilize five data-
sets: SQuAD1.1 (Rajpurkar et al., 2016), XSUM
(Narayan et al., 2018), Quora2, PersonaChat (Zhang
et al., 2018), and ROCStory (Mostafazadeh et al.,
2016). We use the processed datasets and the
evaluation metrics from previous work, as shown
in Table 1. Note that we use corpus BLEU
(Papineni et al., 2002) on all datasets because
the sentence BLEU may unreasonably prefer very
long outputs due to the smoothing method.3

To evaluate the decoding speedup, we use two
metrics: Latency measures the average time of
processing a single sample, and throughput mea-
sures the average speed in processing the whole
test set, where we tune the batch size to maximize
the throughput. All models except MIST are im-
plemented with Fairseq (Ott et al., 2019) + Apex,
where MIST is implemented with HuggingFace’s
Transformers (Wolf et al., 2019). For the beam
search algorithm on DAG, we adopt the C++ im-
plementation provided by Huang et al. (2022c).
The C++ optimization only affects the extra de-
coding step on the CPU, but does not speedup the
transformer model. All results of speed are eval-
uated on a workstation with an Nvidia V100-32G
GPU and 2 Intel Xeon Gold 6226R CPUs with
32 cores.

Baselines Our baselines include autoregressive
Transformer (Vaswani et al., 2017), pre-trained
AR models (MASS, Song et al., 2019; BART,
Lewis et al., 2020; ProphetNet, Qi et al.,
2020), non-pretrained NAR models (Vanilla NAT,

2https://quoradata.quora.com/First-Quora
-Dataset-Release-Question-Pairs.

3Some previous work (Liu et al., 2021) utilize nltk’s
sentence BLEU with SmoothingFunction().method7.
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Model Pre- SQuAD1.1 XSUM Quora Avg. Latency Throughput

trained? R-L B-4 MTR R-1 R-2 R-L B-1 B-4 MTR ms/sample samples/s

Autoregressive Text Generation Models

Transformer N 29.43 4.61 9.86 30.66 10.80 24.48 58.57 30.14 31.79 25.59 − −
MASS Y 49.48 20.16 24.41 39.70 17.24 31.91 60.56 32.39 32.92 34.31 353 (1.0x) 12 (1.0x)
BART Y 42.55 17.06 23.19 38.79 16.16 30.61 61.56 31.57 32.42 32.66 − −
ProphetNet Y 48.00 19.58 23.94 39.89 17.12 32.07 62.59 33.80 33.95 34.55 − −

Non-autoregressive Text Generation Models

Vanilla NAT N 31.51 2.46 8.86 24.04 3.88 20.32 39.85 9.33 18.90 17.68 − −
GLAT+CTC N 30.31 3.21 10.21 31.34 9.06 24.68 58.96 26.67 30.55 25.00 24 (14.7x) 267 (21.5x)
DSLP+CTC N 28.70 3.00 10.59 28.75 7.35 22.73 61.12 29.70 32.37 24.92 24 (14.7x) 265 (21.4x)
LatentGLAT N 28.28 2.38 10.43 28.44 7.00 22.66 59.78 28.30 31.26 24.28 28 (12.8x) 334 (27.0x)
BANG Y 44.07 12.75 18.99 32.59 8.98 27.41 55.18 24.97 25.99 27.88 18 (19.6x) 360 (29.0x)
MIST Y 47.13 16.00 21.10 34.63 11.29 28.70 59.65 29.00 31.56 31.01 22 (15.9x) 159 (12.8x)

PreDAT (Ours) Y 49.78 21.74 24.58 38.80 16.07 31.78 62.63 32.59 33.37 34.59 26 (13.8x) 278 (22.5x)
w/ BeamSearch Y 50.41 22.66 25.11 39.79 17.38 32.71 62.62 33.18 33.52 35.26 63 (5.7x) 214 (17.3x)
w/o Pre-training N 30.11 3.30 10.32 32.56 11.17 26.21 59.82 28.17 31.10 25.86 25 (14.3x) 272 (21.9x)

Table 2: Performance on closed-ended text generation datasets. Bold and underlined values indicate
the best methods in NAR models and all models, respectively. Latency measures the average time of
processing samples with a batch size of 1, and Throughput measures the speed of processing samples
with a large batch size (tuned to maximize the throughput), which are evaluated on the test set of XSUM.
The metrics include ROUGE-1/2/L (R-1/2/L), BLEU-1/4 (B-1/4), and METEOR (MTR).

Gu et al., 2018); GLAT+CTC, Qian et al., 2021;
DSLP+CTC, Huang et al., 2022a; LatentGLAT,
Bao et al., 2022), and pre-trained NAR mod-
els (BANG, Qi et al., 2021; MIST, Jiang et al.,
2021). All these baselines have the same num-
ber of layers and hidden sizes as our PreDAT,
except that LatentGLAT utilizes a 4-layer latent
predictor and a 4-layer decoder based on the origi-
nal implementation. Note that CTC-based models
also require an up-sampling strategy, so we add
a length predictor following the description of
Section 4.2. Their up-sampling ratio is sampled
from [1.5, 2] in training and tuned on the vali-
dation set in inference. For AR baselines, unless
otherwise specified, we use BeamSearch with a
beam size of 5 and the tri-gram repetition preven-
tion trick (Paulus et al., 2018), and tune the length
penalty on the validation set. For NAR baselines,
we use greedy decoding and further remove con-
secutive repeated tokens after generation (Li et al.,
2019). Some results are collected from Liu et al.
(2021); Qi et al. (2021); Jiang et al. (2021).

5.3 Automatic Evaluation

Closed-Ended Text Generation We first test
PreDAT on three closed-ended text generation
tasks, including question generation, summariza-
tion, and paraphrase generation. Closed-ended text

generation tasks usually have strict semantic con-
straints on the outputs, aiming to test the model’s
ability to extract and organize information.

As shown in Table 2, PreDAT achieves sur-
prisingly good results in both speed and quality.
We highlight our advantages as follows:

• PreDAT remarkably improves the quality
of NAR generation. Compared with previ-
ous pretrained NAR models, PreDAT brings
large improvement (+4.2 scores on average)
due to our DSTI pre-training and the DAT
architecture. Moreover, PreDAT even out-
performs the best AR baseline by 0.7 scores.
To our knowledge, it is the first time that
an NAR model achieves comparable and
even stronger performance than AR mod-
els in n-gram-based metrics on a wide range
of text generation tasks.

• PreDAT is highly efficient. Although our
model is slightly slower than previous NAR
models due to a longer sequence prediction,
it still achieves a speedup of 5∼14 times in
latency and 17∼23 times in throughput com-
pared with AR generation. It verifies that
PreDAT can largely reduce computing con-
sumption in decoding, showing its potential
for real-time applications.
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Model Pre- PersonaChat ROCStory Latency Throughput

trained? B-1 B-2 D-1 D-2 B-1 B-2 D-4 ms/sample samples/s

Autoregressive Text Generation Models

Transformer N 18.37 8.07 1.43 10.04 30.68 14.67 35.18 168 (1.1x) 28 (1.1x)
MASS Y 26.82 14.70 1.20 7.58 35.02 16.96 51.20 180 (1.0x) 25 (1.0x)

w/ Sampling Y 23.90 12.13 1.85 13.09 32.56 14.97 73.72 130 (1.4x) 77 (3.0x)
BART Y 26.84 14.69 1.39 8.85 35.45 17.22 49.03 199 (0.9x) 23 (0.9x)

w/ Sampling Y 24.00 12.31 1.97 14.50 33.95 15.28 73.62 143 (1.3x) 69 (2.7x)

Non-autoregressive Text Generation Models

Vanilla NAT N 18.33 6.37 0.43 0.96 28.44 11.29 89.13 23 (7.8x) 703 (27.7x)
BANG Y 17.38 7.33 2.12 23.02 29.38 11.78 92.10 18 (10.1x) 649 (25.6x)
MIST Y 18.55 8.86 0.54 2.56 23.57 9.09 8.15 25 (7.3x) 330 (13.0x)

PreDAT (Ours) Y 27.06 15.05 1.33 8.31 34.11 17.17 57.50 24 (7.6x) 507 (20.0x)
w/ Sampling Y 24.23 12.29 1.77 15.62 32.52 15.61 74.37 24 (7.4x) 514 (20.3x)
w/ BeamSearch Y 27.31 15.39 1.15 6.30 34.61 17.84 50.55 48 (3.7x) 318 (12.6x)
w/o Pre-training N 21.96 10.38 0.52 3.29 31.81 15.41 52.97 25 (7.2x) 562 (22.2x)

Table 3: Performance on open-ended text generation datasets. Latency and Throughput are evaluated
on the test set of PersonaChat. Average scores are not shown because they cannot reflect the trade-off
between quality and diversity. We utilize corpus BLEU on all datasets, whose values may be different
from some previous results utilizing sentence BLEU (Liu et al., 2021). The metrics include BLEU-1/2
(B-1/2) and Distinct-1/2/4 (D-1/2/4).

Open-Ended Text Generation We further test
PreDAT on two open-ended text generation tasks,
dialog generation and story generation. Open-
ended text generation tasks encourage the model
to produce novel and diverse outputs, where sam-
pling decoding methods are commonly adopted to
promote generation diversity.

Therefore, in addition to lookahead decoding
and beamsearch, we also introduce Nucleus sam-
pling (Holtzman et al., 2020). Specifically, we set
p = 0.9 and the temperature τ = 1 for PreDAT.
For MASS and BART, we also use p = 0.9,
but τ = 0.8 on PersonaChat and τ = 0.7 on
ROCStory to achieve similar diversity as PreDAT.

We present the evaluation results in Table 3
and the trade-off of quality and diversity by tun-
ing the temperature in Figure 4. Generally, the
comparison of quality metrics is similar to closed-
ended generation: PreDAT largely outperforms
NAR baselines and achieves comparable BLEU
scores to AR models. Moreover, we highlight two
findings:

• PreDAT generates plausible outputs in
open-ended tasks while previous NAR mod-
els cannot. Open-ended generation tasks
usually have targets with diverse expressions,
which worsens the multi-modality problem

Figure 4: Trade-off curves of quality and diversity
on PersonaChat. All models use Nucleus sampling
with p = 0.9 and temperature τ from {0, 0.2, 0.4, 0.6,
0.8, 1}.

and seriously degrades the NAR generation
quality. Specifically, MIST shows very low
diversity because it generates numerous repe-
titions, and BANG shows very high diversity
because it introduces many incomprehensible
n-grams. In contrast, PreDAT has a rea-
sonable quality-diversity trade-off, showing
its ability to address the serious challenges
brought by the multi-modality problem.

• PreDAT achieves a flexible quality and diver-
sity trade-off. As shown in Figure 4, Pre-
DAT is slightly better than two AR baselines
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Figure 5: Average performance of previous baselines
(Gray) and NAR models pre-trained by our proposed
task with different loss functions (Red). The shown
scores are the average of automatic metrics on XSUM.

w.r.t. the trade-off curves by tuning the
decoding temperature. It demonstrates that
PreDAT can meet the diversity requirement
of open-ended text generation, verifying its
generality in text generation.

5.4 Ablation Study

In this section, we conduct ablation studies to
reveal how our designs contribute to the results.

Loss Function In PreDAT, we utilize the DAT
loss to alleviate the multi-modality problem,
which plays an important role in the pre-training.
Notably, our pre-training task can be combined
with other NAR losses, so we compare the DAT
loss against CTC (Graves et al., 2006; Libovický
and Helcl, 2018) and the token-level cross-entropy
loss (CE).

Specifically, the same loss function is applied
in both pre-training and fine-tuning to avoid dis-
crepancies between the two training stages. For
CTC, we randomly sample the up-sampling ratio
from [1.5, 2]. For CE, we do not use up-sampling
(i.e., λ = 1) because the CE loss requires an out-
put sequence with the same length as the target.

As shown in Figure 5, we find: (1) It is impor-
tant to incorporate alignment-based NAR losses
in pre-training, where CTC and DAT losses bring
substantial improvements compared with the CE
loss. (2) The NAR model pre-trained with CE still
outperforms previous pre-trained NAR baselines,
verifying the effectiveness of our pre-training
task in preserving sentence-level consistency and
promoting bidirectional dependencies.

Pre-training Strategy Our proposed pre-
training task includes several strategies for con-
structing the training data pair. To evaluate the

Figure 6: Comparisons of pre-training strategies by the
average validation score on SQuAD1.1 and XSUM.
All models are pre-trained for 100k steps for energy
saving. The strategies in our final model are marked
in Red.

effects of these strategies, we design four groups
of comparisons as follows, whose results are
shown in Figure 6.

(a) Stage 1: Encoder Masking. Besides Span
masking, we use two other strategies including
Token masking that independently samples masked
positions (Devlin et al., 2019), and Sequence
masking that masks a single consecutive sequence.
All strategies mask the same ratio of tokens. We
conclude that the masked spans should not be
too short (about 1∼3 tokens in token masking) or
too long (about 90 tokens in sequence masking),
which prevents the NAR model from learning
prediction consistency or make the prediction too
difficult.

(b) Stage 2, Step 1: Up-sample Ratios. We com-
pare the random sampling ratio (4∼8x) against
fixed up-sampling ratios (4x and 8x). We find that
random up-sampling can diversify the DAG struc-
ture, which works as a data augmentation method
and thus benefits the downstream performance.

(c) Stage 2, Step 2: Assignment Strategies. Be-
sides the proposed assignment strategy according
to the path probability (MaxProb), we use Uni-
form and Random assignment that assigns the
target into the decoder input uniformly or ran-
domly. We find the MaxProb assignment can
better determine the lengths of each masked seg-
ment according to the model’s own prediction,
leading to slightly better results than the other
strategies.

949



Figure 7: Validation performance under various com-
binations of up-sampling strategies in pre-training and
fine-tuning. The shown score is the average of auto-
matic metrics. 4x and 8x indicates fixed up-sampling
ratios, and 4∼8x indicates random ratios sampled from
[4, 8]. All models are pre-trained for only 100k steps.

(d) Stage 2, Step 3: Re-masking Strategies.
Besides the Fixed masking strategy, we also try
Adaptive and Adaptive + Annealing masking
strategies proposed by Qian et al. (2021), where
they adjust the masking ratio by the difficul-
ties of the sample. It shows that these strategies
have similar performance, outperforming the fully
masked decoder input (All Masked), which ver-
ifies the importance of introducing information
in the decoder input for bidirectional dependency
modelling. However, the adaptive masking is less
effective in pre-training, so we use the fixed
masking ratio for simplicity.

Up-sampling Ratio in Fine-tuning As de-
scribed in Section 4.2, we obtain the decoder input
length in fine-tuning by up-sampling. To inves-
tigate how the up-sampling strategies affect per-
formance, we evaluate different combinations of
up-sampling ratios in pre-training and fine-tuning.

As shown in Figure 7, random up-sampling
always benefits the performance in pre-training
and fine-tuning, together bringing an improve-
ment of about 1.2 scores. It indicates that varying
the DAG size is an important trick in training
PreDAT. Moreover, the up-sampling ratios in
pre-training and fine-tuning do not need to be
the same, which can be helpful if smaller DAG
sizes are preferred in downstream tasks due to
limited memory budget.

Overlapped Decoding Overlapped decoding
aims to improve the decoding throughput by over-
lapping the execution of DAG prediction and
beam search decoding. To verify its effectiveness,
we evaluate the speedup with various batch sizes
on XSUM.

Figure 8: Throughput speedups with the vanilla and
overlapped decoding on the test set of XSUM.

As shown in Figure 8, our overlapped decoding
brings a 17.3x speedup with a batch size of 32,
largely outperforming the vanilla one. We also
note that throughput starts to decline as batch
size increases, possibly because the introduced
paddings increase the consumption of invalid
computations.

5.5 Analysis
In this section, we investigate the reasons why
PreDAT achieves better automatic scores than
pre-trained AR baselines, which may provide
some insights for future NAR generation studies.

PreDAT Alleviates Error Accumulation. Er-
ror accumulation is a major concern of auto-
regressive generation (Bengio et al., 2015;
Ranzato et al., 2016; Arora et al., 2022), where
a prediction error may be propagated into later
decoding steps, leading to low-quality generated
sentences. In contrast, NAR models naturally
avoid the problem due to their unbiased prediction
order.

To verify that PreDAT has advantages in tack-
ling error accumulation, we compare PreDAT
against two AR models with different decoding
orders, a left-to-right (L2R) one and a right-to-
left (R2L) one. Specifically, we fine-tune MASS
on the downstream datasets using the two gener-
ation orders. We find that MASS still performs
well in right-to-left decoding, with a performance
drop of less than 0.5 scores. Then we calculate
the average token prediction accuracy bucketed
by the relative position, formally defined as

Acc(D) = Average(I(Ŷ (i)
j ∈ Y (i)))

for 1 ≤ i ≤ N, 1 ≤ j ≤ |Ŷ (i)|, j

|Ŷ (i)|+ 1
∈ D,

where Acc(D) is the average prediction accu-
racy on the interval D, Y (i) is the i-th sample in
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Figure 9: Normalized prediction accuracy ΔAcc(D)
bucketed by relative positions. The shaded area is 95%
confidence interval by bootstrap sampling (Efron and
Tibshirani, 1994). L2R: left-to-right, R2L: right-to-left.

the test set, Ŷ (i) is the i-th model outputs, and
j indicates the position. Moreover, since predic-
tion difficulties vary with the positions (e.g., the
last token is always punctuation), we utilize a
normalized accuracy:

ΔAcc(D) = Acc(D)− AccL2R(D) + AccR2L(D)

2
,

where AccL2R(D) and AccR2L(D) indicate the
prediction accuracy of L2R and R2L MASS.

As shown in Figure 9, we find that MASS has
a strong tendency to predict earlier generated to-
kens more accurately than later generated ones,
which applies to both left-to-right and right-to-left
models. In contrast, our PreDAT shows no sig-
nificant preference for any positions because it
predicts all tokens simultaneously, which reveals
the advantages of unbiased prediction order in
NAR generation models.

PreDAT Improves the Relevance to the Input.
Previous studies empirically found that AR gen-
erated texts may lose relevance to the input sen-
tences, which is also known as hallucination
(Maynez et al., 2020; Ji et al., 2022) or off-prompt
errors (Dou et al., 2022). One explanation is that
AR models may be distracted by its generated
prefixes, which can be avoided in NAR genera-
tion (Huang et al., 2021).

To verify our hypothesis, we introduce two met-
rics to evaluate the relevance to inputs: Knowl-
edge F1 (Shuster et al., 2021) and PARENT-T
(Dhingra et al., 2019; Wang et al., 2020). Knowl-
edge F1 measures the unigram F1 between gen-
erated sentences and the input knowledge, while
PARENT-T measures n-gram entailment. Both
metrics require the extraction of knowledge pieces
that should appear in the generated sentences. For

Dataset Model Knowledge PARENT-T

P R F1 P R F1

XSUM
MASS 35.1 9.7 14.7 35.1 8.5 13.1
PreDAT 36.3 9.9 14.9 36.4 8.6 13.3

PersonaChat
MASS 19.6 17.2 17.8 13.2 11.3 11.5
PreDAT 21.1 17.7 18.5 13.8 11.0 11.5

Table 4: Relevance to the input on XSUM and
PersonaChat. We utilize two automatic metrics,
Knowledge F1 and PARENT-T. P: Precision,
R: Recall.

simplicity, we take each sentence in the passage
(of XSUM) or the persona profile (of Persona-
Chat) as a piece of knowledge and further filter
out the stop words.

As shown in Table 4, PreDAT achieves bet-
ter precision on both datasets in using the input
knowledge compared with MASS (+1.2 on av-
erage). It indicates that PreDAT is less likely to
produce irrelevant keywords, justifying our hy-
pothesis that the NAR model can better con-
centrate on the input. However, we also notice
that PreDAT and MASS have comparable perfor-
mance on recall, showing that it is still challenging
to cover more keywords.

5.6 Manual Evaluation

Although PreDAT shows surprising performance
in automatic evaluation, it is still questionable
whether these automatic metrics are reliable when
comparing AR and NAR models. In this sec
tion, we conduct a manual evaluation that com-
pares PreDAT against pre-trained AR and NAR
baselines.

Settings We compare PreDAT against three
baselines, two NAR models (BANG and MIST)
and an AR model (MASS). We randomly se-
lected 150 samples in SQuAD1.1, accounting for
600 generated sentences for the four models. For
each sample, three annotators were asked to rank
the outputs from two dimensions: grammatical-
ity measures whether the output contains any
grammatical errors, and appropriateness mea-
sures whether the output is reasonable for the
given context.

Results The results are shown in Table 5, where
we highlight two findings: (1) PreDAT achieves
a significant quality improvement over previous
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Grammaticality Appropriateness

Win Tie Lose κ Win Tie Lose κ

Comparison against Non-autoregressive Models

vs. BANG 75.3** 12.0 12.7 0.66 69.8** 17.3 12.9 0.59
vs. MIST 66.7** 18.0 15.3 0.50 57.1** 26.0 16.9 0.47

Comparison against Autoregressive Models

vs. MASS 15.1 47.8 37.1** 0.32 32.2 36.7 31.1 0.46

Table 5: Manual evaluation results on SQuAD1.1.
Fleiss’ κ is shown for iter-rater reliability (all
are fair agreement or above). * and ** indi-
cate p-value < 0.05 and 0.01 in the sign test,
respectively.

NAR models, where annotators highly prefer Pre-
DAT (with Win% + Tie%> 83%). (2) There is still
a quality gap between PreDAT and the AR model.
Although PreDAT achieves higher word overlap
in automatic evaluation, it exhibits poorer gram-
maticality in human ratings. A possible reason is
that PreDAT preserves better relevance to the in-
puts, leading to the higher word overlap, however,
is still weaker than AR models in preserving the
consistency among generated tokens.

Typical Errors and Case Study To better
understand how PreDAT makes errors, we inves-
tigate the typical errors in the generated outputs.
Specifically, we randomly chose 100 samples
from SQuAD1.1, collected the outputs of the four
models, and then manually annotated the errors
in these outputs.

Figure 10 presents the proportions of error
types. In terms of grammaticality, we find that
PreDAT addresses the major problems in previous
NAR models, such as incomprehensible outputs
and repetitions, well. However, there are still some
word errors, which affect only a small fragment
of the sentence but are very obvious to human
readers, leading to the unsatisfying result. We be-
lieve the problem can be alleviated by post-editing
or iterative refinement, which we leave for fu-
ture work. In terms of appropriateness, PreDAT
has comparable performance to MASS in error
distributions, showing its ability to extract and
organize information to form appropriate outputs.

To support the above discussions, we show
some output cases in Table 6. We find that pre-
vious NAR models usually generate low-quality
texts, whereas PreDAT achieves significant im-
provement. Moreover, PreDAT maintains a strong

Figure 10: Proportion of samples with different error
types in terms of grammaticality and appropriate-
ness on SQuAD1.1. Word Error: containing less than
two wrong/missing/redundant tokens. Sentence Mix-
ing: can be splitted into two (nearly) grammatically
correct sentences with a shared fragment. Answer Un-
matched: the generated question is not matched with
the given answer. Wrong Information: using incorrect
or unmentioned information in the passage.

relevance to the inputs, yet it can occasionally in-
troduce grammatical errors. In contrast, MASS
generates plausible outputs, but they may not
always be faithful. This observation highlights
the distinctive behaviors between AR and NAR
models.

6 Limitations

Although PreDAT achieves a significant advance-
ment in NAR generation, it still faces the following
limitations:

(1) Although PreDAT achieves superior
performance in automatic evaluation, it still signi-
ficantly underperforms AR models in grammati-
cality according to human evaluation (as discussed
in Section 5.6). This inconsistency can be at-
tributed to the different biases of AR and NAR
models: AR models tend to generate fluent
outputs but may sacrifice relevance to the input,
while NAR models prioritize relevance but may
incur grammatical errors. It is important to take
the behavior into consideration when applying
PreDAT to real-world applications.

(2) PreDAT may struggle with capturing long-
range coherence, because NAR models are in-
herently weak in modeling token dependencies,
and PreDAT is pre-trained only on predicting 15-
token-long fragments. Notably, our experiments
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SQuAD1.1

Passage: (74 words omitted) . . . JFK and Newark Liberty were the busiest and fourth busiest U.S. gateways for
international air passengers, respectively, in 2012 . . . (72 words omitted)

Answer: Newark Liberty International Airport
BANG what airport in busiest airport in the u .
MIST what is john f . kennedy international airport john f busiest international airport and laguardia ?
MASS what is the name of the busiest airport in new york ?
PreDAT (Ours) what is the name of the fourth busiest airport for international air passengers in 2012 ?

Passage: (102 words omitted) . . . The FDIC guarantees the funds of all insured accounts up to US $ 100, 000 . . .
(72 words omitted)

Answer: US $ 100, 000
BANG what much the deposits of deposits of allmac deposits ?
MIST what is the funds of all insured ins allmac accounts to ?
MASS how much does the fdic guarantee the funds of all insured accounts ?
PreDAT (Ours) how much is the fdic guarantee the funds of all insured accounts ?

Passage: When one Republican presidential candidate for the 2016 election ridiculed the liberalism of "New York
values" in January 2016, Donald Trump, leading in the polls, vigorously defended his city . . . (68 words
omitted)

Answer: Donald Trump
BANG who did the republican the against new values " in
MIST who was the leader the " new york in 2016 ?
MASS who was the republican presidential candidate for 2016 ?
PreDAT (Ours) who led the polls in 2016 ?

PersonaChat

Persona: (9 words omitted) . . . I like to listen to country music . . . (24 words omitted)
History: A: Hello I like to travel.

B: Hello, how are you tonight? I do too and love to cook.
A: I would love to see europe.

BANG i would like to too but i am a to .
MIST what do you do for a living . for a living ?
MASS i have never been to europe , but i have always wanted to go to australia .
PreDAT (Ours) i would love to go to europe . i am listening to country music .

Persona: I am an eccentric hair stylist for dogs . . . (27 words omitted)
Dialog History: (24 tokens omitted) ...

A: I am doing wonderful, now that I avoided the mangoes. I am allergic.
B: Oh sorry to hear that I like going out with my friends.

BANG i do you like.
MIST what do you do for a living for a living ?
MASS do you have any pets ? i have a dog .
PreDAT (Ours) what do you like to do with fun ? i am a hair stylist .

Persona: . . . (43 words omitted)
Dialog History: (131 tokens omitted) ...

B: I bet you can learn a lot studying ice, must be cold though.
A: It is. Some people freeze to death.
B: Yikes, too cold for me. i will stay home with my pets!

BANG i do you do any
MIST what do you do . pets . how . you ?
MASS do you have any hobbies besides music ?
PreDAT (Ours) what kind of pets do you do ?

Table 6: Cases of model outputs on SQuAD1.1 and PersonaChat. Grammatical errors are marked in red.
The phrases that are faithful to the input are marked in blue, whereas the unfaithful ones are marked in
brown. All generated sentences are in lowercase.

are conducted on relatively short text generation
(whose length statistics are shown in Table 1), and
the performance on longer text generation tasks
requires further investigation.

(3) Compared with AR models, PreDAT re-
quires more GPU memory during inference and
takes more time in fine-tuning (typically 2∼4
times in our experiments). This is because Pre-

DAT’s decoder has to process a much longer
sequence.

7 Conclusion

In this paper, we propose a pre-training task to
promote sentence-level consistency and bidirec-
tional dependencies for NAR generation. We
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demonstrate that combining the state-of-the-art
NAR models with appropriate pre-training can
lead to efficient and high-quality text genera-
tion on a wide range of tasks, where our PreDAT
largely outperforms previous NAR pre-trained
models in generation quality. We further show
that, compared with AR models, PreDAT al-
leviates error accumulation and enhances rele-
vance to inputs, but still introduces non-negligible
grammatical problems, thereby providing new in-
sights into the strengths and weaknesses of NAR
generation.
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