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1Facebook AI Research, France 2Facebook AI Research, USA

{angelafan, jacobkahn}@fb.com
3Stanford University, USA

{simran, chrismre}@cs.stanford.edu
4Cohere, USA

Patrick@cohere.ai

Abstract
Users an organizations are generating ever-
increasing amounts of private data from a wide
range of sources. Incorporating private con-
text is important to personalize open-domain
tasks such as question-answering, fact-checking,
and personal assistants. State-of-the-art systems
for these tasks explicitly retrieve information
that is relevant to an input question from a
background corpus before producing an an-
swer. While today’s retrieval systems assume
relevant corpora are fully (e.g., publicly) ac-
cessible, users are often unable or unwilling
to expose their private data to entities host-
ing public data. We define the SPLIT ITERATIVE

RETRIEVAL (SPIRAL) problem involving iter-
ative retrieval over multiple privacy scopes.
We introduce a foundational benchmark with
which to study SPIRAL, as no existing bench-
mark includes data from a private distribution.
Our dataset, CONCURRENTQA, includes data
from distinct public and private distributions
and is the first textual QA benchmark requir-
ing concurrent retrieval over multiple distribu-
tions. Finally, we show that existing retrieval
approaches face significant performance deg-
radations when applied to our proposed re-
trieval setting and investigate approaches with
which these tradeoffs can be mitigated. We
release the new benchmark and code to re-
produce the results.1

1 Introduction

The world’s information is split between publicly
and privately accessible scopes, and the ability to
simultaneously reason over both scopes is useful
to support personalized tasks. However, retrieval-
based machine learning (ML) systems, which first
retrieve relevant information to a user input from

∗Equal contribution.
∗∗Work done at Meta.

1https://github.com/facebookresearch
/concurrentqa.

background knowledge sources before providing
an output, do not consider retrieving from private
data that organizations and individuals aggregate
locally. Neural retrieval systems are achieving
impressive performance across applications such
as language-modeling (Borgeaud et al., 2022),
question answering (Chen et al., 2017), and dia-
logue (Dinan et al., 2019), and we focus on the
under-explored question of how to personalize
these systems while preserving privacy.

Consider the following examples that require
retrieving information from both public and pri-
vate scopes. Individuals could ask ‘‘With my GPA
and SAT score, which universities should I ap-
ply to?’’ or ‘‘Is my blood pressure in the normal
range for someone 55+?’’. In an organization, an
ML engineer could ask: ‘‘How do I fine-tune a
language model, based on public StackOverflow
and our internal company documentation?’’, or
a doctor could ask ‘‘How are COVID-19 vac-
cinations affecting patients with type-1 diabetes
based on our private hospital records and public
PubMed reports?’’. To answer such questions,
users manually cross-reference public and private
information sources. We initiate the study of a
retrieval setting that enables using public (global)
data to enhance our understanding of private
(local) data.

Modern retrieval systems typically collect doc-
uments that are most similar to a user’s question
from a massive corpus, and provide the resulting
documents to a separate model, which reasons
over the information to output an answer (Chen
et al., 2017). Multi-hop reasoning (Welbl et al.,
2018) can be used to answer complex queries
over information distributed across multiple docu-
ments, e.g., news articles and Wikipedia. For such
queries, we observe that using multiple rounds
of retrieval (i.e., combining the original query
with retrieved documents at round i for use in
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retrieval at round i + 1) provides over 75% im-
provement in quality versus using one round of
retrieval (Section 5). Iterative retrieval is now
common in retrieval (Miller et al., 2016; Feldman
and El-Yaniv, 2019; Asai et al., 2020; Xiong et al.,
2021; Qi et al., 2021; Khattab et al., 2021, inter
alia).

Existing multi-hop systems perform retrieval
over a single privacy scope. However, users and
organizations often cannot expose data to public
entities. Maintaining terabyte-scale and dynamic
data is difficult for many private entities, warrant-
ing retrieval from multiple distributed corpora.

To understand why distributed multi-hop re-
trieval implicates privacy concerns, consider two
illustrative questions an employee may ask. First,
to answer ‘‘Of the products our competitors
released this month, which are similar to our un-
released upcoming products?’’, an existing multi-
hop system likely (1) retrieves public documents
(e.g., news articles) about competitors, and (2)
uses these to find private documents (e.g., com-
pany emails) about internal products, leaking no
private information. Meanwhile, ‘‘Have any com-
panies ever released similar products to the one
we are designing?’’ entails (1) retrieving pri-
vate documents detailing the upcoming product,
and (2) performing similarity search for public
products using information from the confidential
documents. The latter reveals private data to an
untrusted entity hosting a public corpus. An effec-
tive privacy model will minimize leakage.

We introduce the SPLIT ITERATIVE RETRIEVAL

(SPIRAL) problem. Public and private document
distributions usually differ and our first obser-
vation is that all existing textual benchmarks
require retrieving from one data-distribution. To
appropriately evaluate SPIRAL, we create the
first textual multi-distribution benchmark, CON-
CURRENTQA, which spans Wikipedia in the public
domain and emails in the private domain, enabling
the study of two novel real-world retrieval setups:
(1) multi-distribution and (2) privacy-preserving
retrieval:

• Multi-distribution Retrieval The ability for
a model to effectively retrieve over multiple
distributions, even in the absence of privacy
constraints, is a precursor to effective SPI-
RAL systems, since it is unlikely for all pri-
vate distributions to be reflected at train time.
However, the typical retrieval setup requires

retrieving over a single document distribu-
tion with a single query distribution (Thakur
et al., 2021). We initiate the study of the
real-world multi-distribution setting. We find
that the SoTA multi-hop QA model trained
on 90.4k Wikipedia data underperforms the
same model trained on the 15.2k CONCUR-
RENTQA (Wikipedia and Email) examples by
20.8 F1 points on questions based on Email
passages. Further, we find the performance
of the model trained on Wikipedia improves
by 4.3% if we retrieve the top k

2 passages
from each distribution vs. retrieving the over-
all top k passages, which is the standard
protocol.

• Privacy-Preserving Retrieval We then pro-
pose a framework for reasoning about the
privacy tradeoffs required for SoTA models
to achieve as good performance on public-
private QA as is achieved in public-QA. We
evaluate performance when no private in-
formation is revealed, and models trained
only on public data (e.g., Wikipedia) are uti-
lized. Under this privacy standard, models
sacrifice upwards of 19% performance un-
der SPIRAL constraints to protect document
privacy and 57% to protect query privacy
when compared to a baseline system with
standard, non privacy-aware retrieval me-
chanics. We then study how to manage the
privacy-performance tradeoff using selective
prediction, a popular approach for improving
the reliability of QA systems (Kamath et al.,
2020; Lewis et al., 2021; Varshney et al.,
2022).

In summary: (1) We are the first to report on
problems with applying existing neural retrieval
systems to the public and private retrieval setting,
(2) We create CONCURRENTQA, the first textual
multi-distribution benchmark to study the prob-
lems, and (3) We provide extensive evaluations of
existing retrieval approaches under the proposed
real-world retrieval settings. We hope this work
encourages further research on private retrieval.

2 Background and Related Work

2.1 Retrieval-Based Systems

Open-domain applications, such as question an-
swering and personal assistants, must support user
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inputs across a broad range of topics. Implicit-
memory approaches for these tasks focus on
memorizing the knowledge required to answer
questions within model parameters (Roberts et al.,
2020). Instead of memorizing massive amounts of
knowledge in model parameters, retrieval-based
systems introduce a step to retrieve information
that is relevant to a user input from a massive
corpus of documents (e.g., Wikipedia), and then
provide this to a separate task model that produces
the output. Retrieval-free approaches have not
been shown to work convincingly in multi-hop
settings (Xiong et al., 2021).

2.2 Multi-hop Retrieval

We focus on open-domain QA (ODQA), a classic
application for retrieval-based systems. ODQA
entails providing an answer a to a question q,
expressed in natural language and without ex-
plicitly provided context from which to find the
answer (Voorhees, 1999). A retriever collects rel-
evant documents to the question from a corpus,
then a reader model extracts an answer from
selected documents.

Our setting is concerned with complex queries
where supporting evidence for the answer is
distributed across multiple (public and private)
documents, termed multi-hop reasoning (Welbl
et al., 2018). To collect the distributed evidence,
systems use multiple hops of retrieval: Represen-
tations of the top passages retrieved in hopi are
used to retrieve passages in hopi+1 (Miller et al.,
2016; Feldman and El-Yaniv, 2019; Asai et al.,
2020; Wolfson et al., 2020; Xiong et al., 2021;
Qi et al., 2021; Khattab et al., 2021).2 Finally,
we discuss the applicability of existing multi-hop
benchmarks to our problem setting in Section 4.

2.3 Privacy Preserving Retrieval

Information retrieval is a long-standing topic span-
ning the machine learning, databases, and privacy
communities. We discuss the prior work and con-
siderations for our setup along three axes: (1)
Levels of privacy. Prior private retrieval system
designs guarantee privacy for different compo-
nents across both query and document privacy.
Our setting requires both query and document
privacy. (2) Relative isolation of document stor-

2Note that beyond multi-hop QA, retrieval augmented
language models and dialogue systems also involve iterative
retrieval (Guu et al., 2020).

age and retrieval computation. The degree to
which prior retrieval and database systems store
or send private data to centralized machines (with
or without encryption) varies. Our work struc-
tures dataflow to eliminate processing of private
documents on public retrieval infrastructure. (3)
Updatability and latency. Works make differ-
ent assumptions about how a user will interact
with the system. These include (1) tolerance of
high-latency responses and (2) whether corpora
are static or changing. Our setting focuses on
open-domain questions for interactive applica-
tions with massive, temporally changing corpora
and requiring low-latency.

Isolated systems with document and query
privacy but poor updatability. To provide the
strongest possible privacy guarantee (i.e., no in-
formation about the user questions or passages
is revealed), prior work considers when purely
local search is possible (Cao et al., 2019) (i.e.,
search performed on systems controlled exclu-
sively by the user). This guarantee provides no
threat opportunities, assuming that both data (doc-
uments and queries) and computation occur on
controlled infrastructure. Scaling the amount of
locally hosted data and updating local corpora
with quickly changing public data is challenging;
we build a system that might meet such demands.

Public, updatable database systems provid-
ing query privacy. A distinct line of work ex-
plores how to securely perform retrieval such that
the user query is not revealed to a public entity
that hosts and updates databases. Private infor-
mation retrieval (PIR) (Chor et al., 1998) in the
cryptography community refers to a setup where
users know the entry in a remote database that
they want to retrieve (Corrigan-Gibbs and Kogan,
2020). The threat model is directly related to the
cryptographic scheme used to protect queries and
retrieval computation. Here, the document con-
taining the answer is assumed to be known; leak-
ing the particular corpus containing the answer
may implicitly leak information about the query.
In contrast, we focus on open-domain applica-
tions, where users ask about any topic imagin-
able and do not know which corpus item holds
the answer. Our setting also considers document
privacy, as discussed in Section 6.

Public, updatable but high-latency secure
nearest neighbor search with document and
query privacy. The next relevant line of work fo-
cuses on secure nearest neighbor search (NNS)
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Figure 1: Multi-hop retrieval systems use beam search to collect information from a massive corpus: Retrieval in
hopi+1 is conditioned on the top documents retrieved in hopi. The setting of retrieving from corpora distributed
across multiple privacy scopes is unexplored. Here, the content of a private document retrieved in hopi is revealed
to the entity hosting public data if used to retrieve public documents in hopi+1.

(Murugesan et al., 2010; Chen et al., 2020a;
Schoppmann et al., 2020; Servan-Schreiber,
2021), where the objective is to securely (1)
compute similarity scores between the query and
passages, and (2) select the top-k scores. The speed
of cryptographic tools (secure multi-party compu-
tation, secret sharing) that are used to perform
these steps increase as the sparsity of the query
and passage representations increases. Perform-
ing the secure protocol over dense embeddings
can take hours per query (Schoppmann et al.,
2020). As before, threats in this setting are re-
lated to vulnerabilities in cryptographic schemes
or in actors gaining access to private document
indices if not directly encrypted. Prior work re-
laxes privacy guarantees and computes approx-
imate NNS; speeds, however, are still several
seconds per query (Schoppmann et al., 2020;
Chen et al., 2020a). This is prohibitive for iterative
open domain retrieval applications.

Partial query privacy via fake query aug-
mentation for high-latency retrieval from
public databases. Another class of privacy tech-
niques for hiding the user’s intentions is query-
obfuscation or k-anonymity. The user’s query is
combined with fake queries or queries from other
users to increase the difficulty of linking a partic-
ular query to the user’s true intentions (Gervais
et al., 2014). This multiplies communication costs
since nearest neighbors must be retrieved for each
of the k queries; iterative retrieval worsens this
cost penalty. Further, the private query is revealed
among the full set of k; the threat of identifying
the user’s true query remains (Haeberlen et al.,
2011).

Finally, we note that our primary focus is on
inference-time privacy concerns and note that dur-
ing training time, federated learning (FL) with
differential privacy (DP) is a popular strategy for
training models without exposing training data
(McMahan et al., 2016; Dwork et al., 2006).

Overall, despite significant interest in IR, there
is limited attention towards characterizing the pri-
vacy risks as previously observed (Si and Yang,
2014). Our setting, which focuses on support-
ing open-domain applications with modern dense
retrievers, is not well-studied. Further, the prior
works do not characterize the privacy concerns
associated with iterative retrieval. Studying this
setting is increasingly important with the preva-
lence of API-hosted large language models and
services. For instance, users may want to incor-
porate private knowledge into systems that make
multiple calls to OpenAI model endpoints (Brown
et al., 2020; Khattab et al., 2022). Code assis-
tants, which may be extended to interact with
both private repositories and public resources like
Stack Overflow, are also seeing widespread use
(Chen et al., 2021).

3 Problem Definition

Objective Given a multi-hop input q, a set of
private documents p ∈ DP , and public documents
d ∈ DG, the objective is to provide the user
with the correct answer a, which is contained
in the documents. Figure 1 (Right) provides an
example. Overall, the SPLIT ITERATIVE RETRIEVAL

(SPIRAL) problem entails maximizing quality,
while protecting query and document privacy.
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Standard, Non-Privacy Aware QA Standard
non-private multi-hop ODQA involves answering
q with the help of passages d ∈ DG, using beam
search. In the first iteration of retrieval, the k
passages from the corpus, d1, . . . , dk, that are most
relevant to q are retrieved. The text of a retrieved
passage is combined with q using function f (e.g.,
concatenating the query and passages sequences)
to produce qi = f(q, di), for i ∈ [1..k]. Each qi
(which contains di) is used to retrieve k more
passages in the following iteration.

We now introduce the SPIRAL retrieval prob-
lem. The user inputs to the QA system are the
private corpus DP and questions q. There are two
key properties of the problem setting.

Property 1: Data is likely stored in multiple
enclaves and personal documents p ∈ DP can
not leave the user’s enclave. Users and organi-
zations own private data, and untrustworthy (e.g.,
cloud) services own public data. First, we assume
users likely do not want to publicly expose their
data to create a single public corpus nor blindly
write personal data to a public location. Next, we
also assume it is challenging to store global data
locally in many cases. This is because not only are
there terabytes of public data and user-searches
follow a long tail (Bernstein et al., 2012) (i.e., it
is challenging to anticipate all a user’s informa-
tion needs), but public data is also constantly be-
ing updated (Zhang and Choi, 2021). Thus, DP

and DG are hosted as separate corpora.
Now, given q, the system must perform one

retrieval over DG and one over DP , rank the re-
sults such that the top-k passages will include kP
private and kG public passages, and use these
for the following iteration of retrieval. If the
retrieval-system stops after a single-hop, there
is no document privacy risk since no p ∈ DP is
publicly exposed and no query privacy risk if the
system used to retrieve from DP is private, as
is assumed. However for multi-hop questions, if
kP > 0 for an initial round of retrieval, meaning
there exists some pi ∈ DP which was in the top-k
passages, it would sacrifice privacy if f(q, pi)
were to be used to perform the next round of
retrieval from DG. Thus, for the strongest privacy
guarantee, public retrievals should precede private
document retrievals. For less privacy-sensitive use
cases, this strict ordering can be weakened.

Property 2: Inputs that entirely rely on private
information should not be revealed publicly.

Given the multiple indices, DP and DG, q may
be entirely answerable using multiple hops over
the DP index, in which case, q would never
need to leave the user’s device. For example,
the query from an employee standpoint, Does
the search team use any infrastructure tools that
our personal assistant team does not use?, is
fully answerable with company information. Prior
work demonstrates that queries are very revealing
of user interests, intents, and backgrounds (Xu
et al., 2007; Gervais et al., 2014). There is an
observable difference in the search behavior of
users with privacy concerns (Zimmerman et al.,
2019) and an effective system will protect queries.

4 CONCURRENTQA Benchmark

Here we develop a testbed for studying public-
private retrieval. We require questions spanning
two corpora, DP and DG. First, we consider us-
ing existing benchmarks and describe the limita-
tions we encounter, motivating the creation of
our new benchmark, CONCURRENTQA. Then we
describe the dataset collection process and its
contents.

4.1 Adapting Existing Benchmarks

We first adapt the widely used benchmark, Hot-
potQA (Yang et al., 2018), to study our problem.
HotpotQA contains multi-hop questions, which
are each answered using two Wikipedia passages.
We create HotpotQA-SPIRAL by splitting the
Wikipedia corpus into DG and DP . This results
in questions entirely reliant on p ∈ DP , entirely
on d ∈ DG, or reliant on a mix of one private
and one public document, allowing us to evalu-
ate performance under SPIRAL constraints.

Ultimately, however, DP and DG come from
a single Wikipedia distribution in HotpotQA-
SPIRAL. Private and public data will often re-
flect different linguistic styles, structures, and
topics. We observe all existing textual multi-hop
benchmarks require retrieving from a single dis-
tribution. We cannot combine two existing bench-
marks over two corpora because this will not
yield questions that rely on both corpora simulta-
neously. To evaluate with a more realistic setup,
we create a new benchmark: CONCURRENTQA. We
quantitatively demonstrate the limitations of us-
ing HotpotQA-SPIRAL in the experiments and
analysis.
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Question Hop 1 and Hop 2 Gold Passages

What was the estimated 2016 population of
the city that generates power at the Hetch
Hetchy hydroelectric dams?

Hop 1 An email mentions that San Francisco gener-
ates power at the Hetch Hetchy dams.
Hop 2 The Wikipedia passage about San Francisco
reports the 2016 census-estimated population.

Which firm invested in both the 5th round
of funding for Extraprise and first round of
funding for JobsOnline.com?

Hop 1 An email lists 5th round Exraprise investors.
Hop 2 An email lists round-1 investors for
JobsOnline.com.

Table 1: Example CONCURRENTQA queries based on Wikipedia passages (DG) and emails (DP ).

Split Total EE EW WE WW

Train 15,239 3762 4002 3431 4044
Dev 1,600 400 400 400 400
Test 1,600 400 400 400 400

Table 2: Size statistics. The evaluation splits are
balanced between questions with gold passages as
emails (E) vs. Wikipedia (W) passages for Hop1
and Hop2.

4.2 CONCURRENTQA Overview
We create and release a new multi-hop QA data-
set, CONCURRENTQA, which is designed to more
closely resemble a practical use case for SPI-
RAL. CONCURRENTQA contains questions span-
ning Wikipedia documents as DG and Enron
employee emails (Klimt and Yang, 2004) as DP .3

We propose two unique evaluation settings for
CONCURRENTQA: performance (1) conditioned on
the sub-domains in which the question evidence
can be found (Section 5), and (2) conditioned on
the degree of privacy protection (Section 6).

Example questions from ConcurrentQA are
included in Table 1. The corpora contain 47k
emails (DP ) and 5.2M Wikipedia passages (DG),
and the benchmark contains 18,439 examples
(Table 2). Questions require three main reason-
ing patterns: (1) bridge questions require iden-
tifying an entity or fact in Hop1 on which the
second retrieval is dependent, (2) attribute ques-
tions require identifying the entity that satisfies
all attributes in the question, where attributes are
distributed across passages, and (3) comparison
questions require comparing two similar entities,
each appearing in a separate passage. We esti-
mate the benchmark is 80% bridge, 12% attri-

3The Enron Corpus includes emails written by 158
employees of Enron Corporation and are in the public domain.

bute, and 8% comparison questions. We focus on
factoid QA.

Benchmark Design Each benchmark example
includes the question that requires reasoning over
multiple documents, answer which is a span of
text from the supporting documents, and the spe-
cific supporting sentences in the documents which
are used to arrive at the answer and can serve as
supervision signals.

As discussed in Yang et al. (2018), collecting a
high quality multi-hop QA dataset is challenging
because it is important to provide reasonable
pairs of supporting context documents to the
worker—not all article pairs are conducive to a
good multi-hop question. There are four types of
pairs we need to collect for the Hop1 and Hop2
passages: Private and Private, Private and Pub-
lic, Public and Private, and Public and Public.
We use the insight that we can obtain meaning-
ful passage-pairs by showing workers passages
that mention similar or overlapping entities. All
crowdworker assignments contain unique passage
pairs. A detailed description of how the passage
pairs are produced is in Appendix C and we release
all our code for creating the passage pairs.

Benchmark Collection We used Amazon Turk
for collection. The question generation stage be-
gan with an onboarding process in which we
provided training videos, documents with exam-
ples and explanations, and a multiple-choice exam.
Workers completing the onboarding phase were
given access to pilot assignments, which we man-
ually reviewed to identify individuals with high
quality submissions. We worked with these indi-
viduals to collect the full dataset. We manually
reviewed over 2.5k queries in the quality-check
process and prioritized including the manually
verified examples in the final evaluation splits.
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In the manual review, examples of the crite-
ria that led us to discard queries included: the
query (1) could be answered using one passage
alone, (2) had multiple plausible answers either
in or out of the shown passages, or (3) lacked
clarity. During the manual review, we developed
a multiple-choice questionnaire to streamline the
checks along the identified criteria. We then used
this to launch a second Turk task to validate the
generated queries that we did not manually re-
view. Assembling the cohort of crowdworkers for
the validation task again involved onboarding and
pilot steps, in which we manually reviewed per-
formance. We shortlisted ∼20 crowdworkers with
high quality submissions who collectively vali-
dated examples appearing in the final benchmark.

4.3 Benchmark Analysis

Emails and Wiki passages differ in several ways.
Format: Wiki passages for entities of the same
type tend to be similarly structured, while emails
introduce many formats—for example, certain
emails contain portions of forwarded emails, lists
of articles, or spam advertisements. Noise: Wiki
passages tend to be typo-free, while the emails
contain several typos, URLs, and inconsistent cap-
italization. Entity Distributions: Wiki passages
tend to focus on details about one entity, while
a single email can cover multiple (possibly un-
related) topics. Information about email entities
is also often distributed across passages, whereas
public-entity information tends to be localized to
one Wiki passage. We observe that a private entity
occurs 9× on average in gold training data pas-
sages while a public entity appears 4× on average.
There are 22.6k unique private entities in the gold
training data passages, and 12.8k unique public
entities. Passage Length: Finally, emails are 3×
longer than Wiki passages on average.4

Answer Types CONCURRENTQA is a factoid QA
task so answers tend to be short spans of text
containing nouns, or entity names and properties.
Figure 2 shows the distribution NER tags across
answers and examples from each category.

Limitations As in HotpotQA, workers see the
gold supporting passages when writing questions,
which can result in lexical overlap between the

4Since information density is generally lower in emails vs.
Wiki passages, this helps crowdworkers generate meaningful
questions. Lengths chosen within model context window.

Figure 2: NER types for CONCURRENTQA answers.

questions and passages. We mitigate these effects
through validation task filtering and by limiting
the allowed lexical overlap via the Turk interface.
Next, our questions are not organic user searches,
however existing search and dialogue logs do not
contain questions over public and private data to
our knowledge. Finally, Enron was a major public
corporation; data encountered during pretraining
could impact the distinction between public and
private data. We investigate this in Section 5.

Ethics Statement The Enron Dataset is already
widely used in NLP research (Heller, 2017). That
said, we acknowledge the origin of this data as
collected and made public by the U.S. FERC
during their investigation of Enron. We note that
many of the individuals whose emails appear in
the dataset were not involved in wrongdoing. We
defer to using inboxes that are frequently used in
prior work.

In the next sections, we evaluate CONCURRENT-
QA in the SPIRAL setting. We first ask how a
range of SoTA retrievers perform in the multi-
domain retrieval setting in Section 5, then intro-
duce baselines for CONCURRENTQA under a strong
privacy guarantee in which no private information
is revealed whatsoever in Section 6.

5 Evaluating Mixed-Domain Retrieval

Here we study the SoTA multi-hop model per-
formance on CONCURRENTQA in the novel multi-
distribution setting. The ability for models trained
on public data to generalize to private distribu-
tions, with little or no labeled data, is a precursor
to solutions for SPIRAL. In the commonly stud-
ied zero-shot retrieval setting (Guoa et al., 2021;
Thakur et al., 2021), the top k of k passages will
be from a single distribution, however users often
have diverse questions and documents.

We first evaluate multi-hop retrievers. Then
we apply strong single-hop retrievers to the set-
ting, to understand the degree to which iterative
retrieval is required in CONCURRENTQA.
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Retrieval Method
OVERALL Domain-Conditioned

EM F1 EE EW WE WW

CONCURRENTQA-MDR 48.9 56.5 49.5 66.4 41.8 68.3
HotpotQA-MDR 45.0 53.0 28.7 61.7 41.1 81.3
Subsampled HotpotQA-MDR 37.2 43.9 23.8 51.1 28.6 72.1
BM25 33.2 40.8 44.2 30.7 50.2 30.5

Oracle 74.1 83.4 66.5 87.5 89.4 90.4

Table 3: CONCURRENTQA results using four retrieval approaches, and oracle retrieval. On the right, we
show performance (F1 scores) by the domains of the Hop1 and Hop2 gold passages for each question
(email is ‘‘E’’, Wikipedia is ‘‘W’’, and ‘‘EW’’ indicates the gold passages are email for Hop1 and
Wikipedia for Hop2).

5.1 Benchmarking Multi-Hop Retrievers

Retrievers We evaluate the multi-hop dense re-
trieval model (MDR) (Xiong et al., 2021), which
achieves SoTA on multi-hop QA and multi-hop
implementation of BM25, a classical bag-of-
words method, as prior work indicates its strength
in OOD retrieval (Thakur et al., 2021).

MDR is a bi-encoder model consisting of a
query encoder and passage encoder. Passage em-
beddings are stored in an index designed for ef-
ficient retrieval (Johnson et al., 2017). In Hop1,
the embedding for query q is used to retrieve the
k passages d1, . . . , dk with the highest retrieval
score by the maximum inner product between
question and passage encodings. For multi-hop
MDR, those retrieved passages are each ap-
pended to q and encoded, and each of the k re-
sulting embeddings are used to collect k more
passages in Hop2, yielding k2 passages. The
top-k of the passages after the final hop are in-
puts to the reader, ELECTRA-Large (Clark et al.,
2020). The reader selects a candidate answer in
each passage.5 The candidate with the highest
reader score is outputted.

Baselines We evaluate using four retrieval
baselines: (1) CONCURRENTQA-MDR, a dense
retriever trained on the CONCURRENTQA train
set (15.2k examples), to understand the value
of in-domain training data for the task; (2)
HotpotQA-MDR, trained on HotpotQA (90.4K
examples), to understand how well a publicly
trained model performs on the multi-distribution
benchmark; (3) Subsampled HotpotQA-MDR,

5Xiong et al. (2021) compare ELECTRA and other readers
such as FiD (Izacard and Grave, 2021), finding similar
performance. We follow their approach and use ELECTRA.

Figure 3: F1 score vs training data size, training MDR
on subsampled HotpotQA (HPQA) and subsampled
CONCURRENTQA (CQA) training data. We also show
trends by the question domain for CQA (dotted lines).

trained on subsampled HotpotQA data of the same
size as the CONCURRENTQA train set, to investigate
the effect of dataset size; and (4) BM25 sparse
retrieval. Results are in Table 3. Experimental
details are in Appendix A.6

Training Data Size Strong dense retrieval per-
formance requires a large amount of training data.
Comparing CONCURRENTQA-MDR and Subsam-
pled HotpotQA-MDR, the former outperforms by
12.6 F1 points as it is evaluated in-domain. How-
ever, the HotpotQA-MDR baseline, trained on
the full HotpotQA training set, performs nearly
equal to CONCURRENTQA-MDR. Figure 3 shows

6We check for dataset leakage stemming from the ‘‘pub-
lic’’ models potentially viewing ‘‘private’’ email information
in pretraining. Using the MDR and ELECTRA models
fine-tuned on HotpotQA, we evaluate on CONCURRENTQA
using a corpus of only Wiki passages. Test scores are 72.0
and 3.3 EM for questions based on two Wiki and two email
passages respectively, suggesting explicit access to emails is
important.
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the performance as training dataset size varies.
Next we observe that the sparse method matches
the zero-shot performance of the Subsampled
HotpotQA model on CONCURRENTQA. For larger
dataset sizes (HotpotQA-MDR) and in-domain
training data (CONCURRENTQA-MDR), dense out-
performs sparse retrieval. Notably, it may be
difficult to obtain training data for all private
or temporally arising distributions.

Domain Specific Performance Each retriever
excels in a different subdomain of the bench-
mark. Table 3 shows the retrieval performance of
each method based on whether the gold support-
ing passages for Hop1 and Hop2 are email (E)
or Wikipedia (W) passages (EW is Email-Wiki
for Hop1-Hop2). HotpotQA-MDR performance
on WW questions is far better than on questions
involving emails. The sparse retriever performs
worse than the dense models on questions involv-
ing W, but better on questions with E in Hop2.
When training on CONCURRENTQA, performance
on questions involving E improves significantly,
but remains low on W-based questions. Finally,
we explicitly provide the gold supporting pas-
sages to the reader model (Oracle). EE oracle
performance also remains low, indicating room to
improve the reader.

How well does the retriever trained on pub-
lic data perform in the SPIRAL setting? We
observe the HotpotQA-MDR model is biased
towards retrieving Wikipedia passages. On ex-
amples where the gold Hop1 passage is an email,
15% of the time, no emails appear in the top-k
Hop1 results; meanwhile, this only occurs 4%
of the time when Hop1 is Wikipedia. On the slice
of EE examples, 64% of Hop2 passages are E,
while on the slice of WW examples, 99.9% of
Hop2 passages are W. If we simply force equal
retrieval (k2 ) from each domain on each hop, we
observe 2.3 F1 points (4.3%) improvement in CON-
CURRENTQA performance, compared to retrieving
the overall top-k. Optimally selecting the alloca-
tion for each domain is an exciting question for
future work.

Performance on WE questions is notably
worse than on EW questions. We hypothesize
that this is because several emails discuss each
Wikipedia-entity, which may increase the noise in
Hop2 (i.e., WE is a one-to-many hop, while for
EW, W typically contains one valid entity-specific

Method Recall@10

Two-hop MDR 77.5
One-hop MDR 45.7
Contriever 52.7
Contriever MS-MARCO 64.3

Table 4: Comparing the retrieval quality using
one-hop MDR, Contriever, and Contriever fine-
tuned on MS-MARCO to the quality of two-hop
MDR. Results are over the HotpotQA dataset.

passage). The latter is intuitively because individ-
uals refer to a narrow set of public entities in
private discourse.

5.2 Benchmarking Single-Hop Retrieval

In Section 3, we identify that iterative retrieval
implicates document privacy. Therefore, an im-
portant preliminary question is to what degree
multiple hops are actually required? We inves-
tigate this question using both HotpotQA and
CONCURRENTQA. We evaluate MDR using just
the first-hop results and Contriever (Izacard et al.,
2021), the SoTA single-hop dense retrieval model.

Results In Table 4, we summarize the retrieval
results from using three off-the-shelf models for
HotpotQA: (1) the HotpotQA MDR model for
one-hop, (2) the pretrained Contriever model,
and (3) the MS-MARCO (Nguyen et al., 2016)
fine-tuned variant of Contriever. We observe a
sizeable gap between the one and two hop base-
lines. Strong single-hop models trained over more
diverse publicly available data may help ad-
dress the SPIRAL problem as demonstrated by
Contriever fine-tuned on MS-MARCO.

However, when evaluating the one-hop base-
lines on CONCURRENTQA, we find Contriever
underperforms the two-hop baseline more sig-
nificantly, as shown in Appendix Table 8. This is
consistent with prior work that finds Contriever
quality degrades on tasks that increasingly dif-
fer from the pretraining distribution (Zhan et al.,
2022). By sub-domain, Contriever MS-MARCO
returns the gold first-hop passage for 85% of
questions where both gold passages are from
Wikipedia, but for less than 39% of questions
when at least one gold passage (Hop1 and/or
Hop2) is an email. By hop, we find Contriever
MS-MARCO retrieves the first-hop passage 49%
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of the time and second-hop passage 25% of
the time.

Finally, to explore whether a stronger single-
hop retriever may further improve the one-hop
baseline, we continually fine-tune Contriever on
CONCURRENTQA. We follow the training protocol
and use the code released in Izacard et al. (2021),
and include these details in Appendix A. The
fine-tuned model achieves 39.7 Recall@10 and
63.6 Recall@100, while two-hop MDR achieves
55.9 Recall@10 and 73.8 Recall@100 (Table 9
in the Appendix). We observe Contriever’s one-
hop Recall@100 of 63.6 exceeds the two-hop
MDR Recall@10 of 55.9, suggesting a tradeoff
space between the number of passages retrieved
per hop (which is correlated with cost) and the
ability to circumvent iterative retrieval (which we
identify implicates privacy concerns).

6 Evaluation under Privacy Constraints

This section provides baselines for CONCURRENT-
QA under privacy constraints. We concretely
study a baseline in which no private informa-
tion is revealed publicly whatsoever. We believe
this is an informative baseline for two reasons:

1. The privacy setting we study is often cat-
egorized as an access-control framework—
different parties have different degrees of
access to different degrees of privileged in-
formation. While this setting is quite restric-
tive, this privacy framework is widely used
in practice for instance in the government
and medical fields (Bell and LaPadula, 1976;
Hu et al., 2006).

2. There are many possible privacy constraints
as users find different types of information to
be sensitive (Xu et al., 2007). Studying these
is an exciting direction that we hope is facil-
itated by this work. Because the appropriate
privacy relaxations are subjective, we focus
on characterizing the upper (Section 5) and
lower bounds (Section 6) of retrieval quality
in our proposed setting.

Setup We use models trained on Wikipedia
data to evaluate performance under privacy re-
strictions both in the in-distribution multi-hop
HotpotQA-SPIRAL (an adaptation of the Hotpot-
QA benchmark to the SPIRAL setting [Yang et al.,
2018]) and multi-distribution CONCURRENTQA

settings. Motivating the latter setup, sufficient
training data is seldom available for all private
distributions. We use the multi-hop SoTA model,
MDR, which is representative of the iterative re-
trieval procedure that is used across multi-hop so-
lutions (Miller et al., 2016; Feldman and El-Yaniv,
2019; Xiong et al., 2021, inter alia).

We construct Hotpot-SPIRAL by randomly as-
signing passages to the private (DP ) and public
(DG) corpora. To enable a clear comparison, we
ensure that the sizes of DP and DG, and the
proportions of questions for which the gold doc-
uments are public and private in Hop1 and Hop2
match those in CONCURRENTQA.

6.1 Evaluation

We evaluate performance when no private infor-
mation (neither queries nor documents) is revealed
whatsoever. We compare four baselines, shown in
Table 6. (1) No Privacy Baseline: We combine all
public and private passages in one corpus, ignoring
privacy concerns. (2) No Privacy Multi-Index:
We create two corpora and retrieve the top k from
each index in each hop, and retain the top-k of
these 2k documents for the next hop, without ap-
plying any privacy restriction. Note performance
should match single-index performance. (3) Doc-
ument Privacy: We use the process in (2), but
cannot use a private passage retrieved in Hop1 to
subsequently retrieve from public DG. (4) Query
Privacy: The baseline to keep q entirely private is
to only retrieve from DP .

We can answer many complex questions while
revealing no private information whatsoever (see
Table 5). However, in maintaining document pri-
vacy, the end-to-end QA performance degrades
by 9% HotpotQA and 19% for CONCURRENTQA
compared to the quality of the non-private sys-
tem; degradation is worse under query privacy.
We hope the resources we provide facilitate future
work under alternate privacy frameworks.

6.2 Managing the Privacy-Quality Tradeoff

Alongside improving the retriever’s quality, an
important area of research for end-to-end QA
systems is to avoid providing users with incorrect
predictions, given existing retrievers. Significant
work focuses on equipping QA-systems with
this selective-prediction capability (Chow, 1957;
El-Yaniv and Wiener, 2010; Kamath et al., 2020;
Jones et al., 2021, inter alia). Towards improving
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Privacy Level Sample Questions Answered under Each Privacy Level

Answered with
No Privacy, but
not under Document
Privacy

Q1 In which region is the site of a meeting between Dabhol manager Wade
Cline and Ministry of Power Secretary A. K. Basu located?
Q2 What year was the state-owned regulation board that was in conflict
with Dabhol Power over the DPC project formed?

Answered with
Document Privacy

Q1 The U.S. Representative from New York who served from 1983 to 2013
requested a summary of what order concerning a price cap complaint?
Q2 How much of the company known as DirecTV Group does GM own?

Answered with
Query Privacy

Q1 Which CarrierPoint backer has a partner on SupplySolution’s board?
Q2 At the end of what year did Enron India’s managing director responsible
for managing operations for Dabhol Power believe it would go online?
*All evidence is in private emails and not in Wikipedia.

Table 5: Examples of queries answered under different privacy restrictions. Bold indicates private
information.

Model
HOTPOTQA-SPIRAL CONCURRENTQA

EM F1 EM F1

No Privacy Baseline 62.3 75.3 45.0 53.0

No Privacy Multi-Index 62.3 75.3 45.0 53.0

Document Privacy 56.8 68.8 36.1 43.0

Query Privacy 34.3 43.3 19.1 23.8

Table 6: Multi-hop QA datasets using the dense retrieval baseline (MDR) under each privacy setting.

Figure 4: Risk-coverage curves using the model trained on Wikipedia data for HotpotQA-PAIR and multi-
distribution CONCURRENTQA retrieval, both under No Privacy and Document Privacy, where privacy is achieved
by restricting Private to Public retrieval altogether. The left shows the overall test results, and the right is split
by the the domains of the gold supporting passages for the question at hand, for Hop1 to Hop2.
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the reliability of the QA system, we next evaluate
selective prediction in our novel retrieval setting.

Setup Selective prediction aims to provide the
user with an answer only when the model is con-
fident. The goal is to answer as many questions
as possible (high coverage) with as high perfor-
mance as possible (low risk). Given query q, and
a model which outputs (â, c), where â is the pre-
dicted answer and c ∈ R represents the model’s
confidence in â, we output â if c ≥ γ for some
threshold γ ∈ R, and abstain otherwise. As γ in-
creases, risk and coverage both tend to decrease.
The QA model outputs an answer and score for
each of the top-k retrieved passages—we com-
pute the softmax over the top-k scores and use the
top softmax score as c (Hendrycks and Gimpel,
2017; Varshney et al., 2022). Models are trained
on HotpotQA, representing the public domain.

Results Risk-coverage curves for HotpotQA
and CONCURRENTQA are in Figure 4. Under Doc-
ument Privacy, the ‘‘No Privacy’’ score of 75.3
F1 for HotpotQA and 53.0 F1 for CONCURRENT-
QA are achieved at 85.7% and 67.8% coverage,
respectively.

In the top plots, in the absence of privacy
concerns, the risk-coverage trends are worse for
CONCURRENTQA vs. HotpotQA (i.e., quality de-
grades more quickly as the coverage increases).
Out-of-distribution selective prediction is actively
studied (Kamath et al., 2020). However, this
setting differs from the standard setup. The bot-
tom plots show on CONCURRENTQA that that the
risk-coverage trends differ widely based on the
sub-domains of the questions; the standard re-
trieval setup typically has a single distribution
(Thakur et al., 2021).

Next, privacy restrictions correlate with de-
gredations in the risk-coverage curves on both
CONCURRENTQA and HotpotQA. Critically, Hot-
potQA is in-distribution for the retriever. Strate-
gies beyond selective prediction via max-prob,
the prevailing approach in NLP (Varshney et al.,
2022), may be useful for the SPIRAL setting.

7 Conclusion

We ask how to personalize neural retrieval-
systems in a privacy-preserving way and report
on how arbitrary retrieval over public and pri-

vate data poses a privacy concern. We define the
SPIRAL retrieval problem, present the first tex-
tual multi-distribution benchmark to study the
novel setting, and empirically characterize the
privacy-quality tradeoffs faced by neural retrieval
systems.

We motivated the creation of a new benchmark,
as opposed to repurposing existing benchmarks
through our analysis. We qualitatively identified
differences between the public Wikipedia and pri-
vate emails in Section 4.3, and quantitatively dem-
onstrated the effects of applying models trained
on one distribution (e.g., public) to the mixed-
distribution (e.g., public and private) setting in
Sections 5 and 6. Private iterative retrieval is un-
derexplored and we hope the benchmark-resource
and evaluations we provide inspire further re-
search on this topic, for instance under alternate
privacy models.
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2017. Billion-scale similarity search with
GPUs. IEEE Transactions on Big Data.

Erik Jones, Shiori Sagawa, Pang Wei Koh,
Ananya Kumar, and Percy Liang. 2021. Se-
lective classification can magnify disparities
across groups. In International Conference on
Learning Representations (ICLR).

Amita Kamath, Robin Jia, and Percy Liang.
2020. Selective question answering under do-
main shift. In Proceedings of the 58th Annual
Meeting of the Association for Computational
Linguistics (ACL). https://doi.org/10
.18653/v1/2020.acl-main.503

Vladimir Karpukhin, Barlas Oguz, Sewon Min,
Patrick Lewis, Ledell Wu, Sergey Edunov,
Danqi Chen, and Wen tau Yih. 2020. Dense
passage retrieval for open-domain question
answering. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). https://doi
.org/10.18653/v1/2020.emnlp-main.550

Omar Khattab, Christopher Potts, and Matei
Zaharia. 2021. Baleen: Robust multi-hop rea-
soning at scale via condensed retrieval. In 35th
Conference on Neural Information Processing
Systems (NeurIPS).

Omar Khattab, Keshav Santhanam, Xiang Lisa
Li, David Hall, Percy Liang, Christopher
Potts, and Matei Zaharia. 2022. Demonstrate-
search-predict: Composing retrieval and lan-
guage models for knowledge-intensive NLP.
arXiv preprint arXiv:2212.14024.

B. Klimt and Y. Yang. 2004. Introducing the
enron corpus. In Proceedings of the 1st Con-
ference on Email and Anti-Spam (CEAS).

Henry Corrigan-Gibbs and Dmitry Kogan. 2020.
Private information retrieval with sublinear on-
line time. In Annual International Conference
on the Theory and Applications of Crypto-
graphic Techniques (EUROCRYPT). https://
doi.org/10.1007/978-3-030-45721-1 3

Tom Kwiatkowski, Jennimaria Palomaki, Olivia
Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin,
Matthew Kelcey, Jacob Devlin, Kenton Lee,
Kristina N. Toutanova, Llion Jones, Ming-Wei
Chang, Andrew Dai, Jakob Uszkoreit, Quoc
Le, and Slav Petrov. 2019. Natural ques-
tions: A benchmark for question answering
research. Transactions of the Association of
Computational Linguistics (TACL), 7:453–466.
https://doi.org/10.1162/tacl a 00276

Patrick Lewis, Yuxiang Wu, Linqing Liu, Pasquale
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Plachouras, Tim Rocktäschel, and Sebastian
Riedel. 2021. KILT: A benchmark for knowl-
edge intensive language tasks. In Proceedings
of the 2021 Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies
(NAACL-HLT), pages 2523–2544. https://
doi.org/10.18653/v1/2021.naacl-main
.200

Peng Qi, Haejun Lee, Oghenetegiri Sido, and
Christopher D. Manning. 2021. Retrieve, read,
rerank, then iterate: Answering open-domain
questions of varying reasoning steps from text.
https://doi.org/10.48550/arXiv.2010
.12527

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using siamese
BERT-networks. In Proceedings of the 2019
Conference on Empirical Methods in Natural
Language Processing (EMNLP). https://
doi.org/10.18653/v1/D19-1410

Adam Roberts, Colin Raffel, and Noam Shazeer.
2020. How much knowledge can you pack
into the parameters of a language model? In
Proceedings of the 2020 Conference on Empir-
ical Methods in Natural Language Processing
(EMNLP). https://doi.org/10.18653
/v1/2020.emnlp-main.437

Phillipp Schoppmann, Lennart Vogelsang, Adrià
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A Experimental Details

The MDR retriever is trained with a contrastive
loss as in Karpukhin et al. (2020), where each
query is paired with a (gold annotated) positive
passage and m negative passages to approximate

Model Avg-PR

Learning Rate 5e–5
Batch Size 150
Maximum passage length 300
Maximum query length at initial hop 70
Maximum query length at 2nd hop 350
Warmup ratio 0.1
Gradient clipping norm 2.0
Traininig epoch 64
Weight decay 0

Table 7: Retrieval hyperparameters for MDR
training on CONCURRENTQA and Subsampled-
HotpotQA experiments.

Model Recall@10

Two-hop MDR 55.9
Contriever 12.1
Contriever MS-MARCO 36.9

Table 8: Comparison of one-hop baseline models
evaluated on the two-hop CONCURRENTQA task
without finetuning.

the softmax over all passages. We consider two
methods of collecting negative passages: First,
we use random passages from the corpus that
do not contain the answer (random), and second,
we use one top-ranking passage from BM25 that
does not contain the answer as a hard-negative
paired with remaining random negatives. We do
not observe much difference between the two
approaches for CONCURRENTQA-results (also ob-
served in Xiong et al. [2021]), and thus use ran-
dom negatives for all experiments.

The number of passages retrieved per hop, k, is
an important hyperparameter; increasing k tends
to increase recall, but sacrifice precision. A larger
k is also less efficient at inference time. We use
k = 100 for all experiments in the paper and
Table 9 studies the effect of using different val-
ues of k.

We find the hyperparameters in Table 7 in
the Appendix work best and train on up to 8
NVidia-A100 GPUs.

Sparse Retrieval For the sparse retrieval base-
line, we use Pyserini with default parameters.7

7https://github.com/castorini/pyserini.
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k Avg-PR F1

k = 1 41.4 33.5
k = 10 55.9 44.7
k = 25 63.3 48.0
k = 50 68.4 50.4
k = 100 73.8 53.0

Table 9: Retrieval performance (Average Passage-
Recall@k, F1) for k ∈ {1, 10, 25, 50, 100} re-
trieved passages per hop using the retriever trained
on HotpotQA for OOD CONCURRENTQA test data.

k F1

k = 1 22.0
k = 10 34.6
k = 25 37.8
k = 50 39.3
k = 100 40.8

Table 10: F1 score on the CONCURRENTQA test
data for k ∈ {1, 10, 25, 100} per hop using
BM25.

We consider different values of k ∈ {1, 10, 25,
100} per retrieval, reported in Table 10 in the
Appendix. We generate the second hop query by
concatenating the text of the initial query and first
hop passages.

QA Model We use the provided ELECTRA-
Large reader model checkpoint from Xiong et al.
(2021) for all experiments. The model was trained
on HotpotQA training data. Using the same reader
is useful to understand how retrieval quality
affects performance, in the absence of reader
modifications.

Contriever Model We use the code released
by for zero-shot and fine-tuning implementation
and evaluation (Izacard et al., 2021).8 We per-
form a hyperparamter search for the learning rate
∈ {1e − 4, 1e − 5}, temperature ∈ {0.5, 1}, and
number of negatives ∈ {5, 10}. We found a learn-
ing rate of 1e − 5 with a linear schedule and 10
negative passages to be best. These hyperparame-
ters are chosen following the protocol in Izacard
et al. (2021).

8https://github.com/facebookresearch/contriever.

B Additional Analysis

We include two figures to further characterize
the differences between the Wikipedia and Enron
distributions.

Figure 5 (Left, Middle) in the Appendix shows
the UMAP plots of CONCURRENTQA questions us-
ing BERT-base representations, split by whether
the gold hop passages are both from the same do-
main (e.g., two Wikipedia or two email passages)
or require one passage from each domain. The
plots reflect a separation between Wiki-based and
email-based questions and passages.

C CONCURRENTQA Details

Here we compare CONCURRENTQA to available
textual QA benchmarks and provide additional
details on the benchmark collection procedure.

C.1 Overview

CONCURRENTQA is the first multi-distribution tex-
tual benchmark. Existing benchmarks in this cate-
gory are summarized in Table 11 in the Appendix.
We note that HybridQA (Chen et al., 2020b) and
similar benchmarks also include multi-modal doc-
uments. However, these only contain questions
that require one passage from each domain for
all questions, i.e., one table and one passage. Our
benchmark considers text-only documents, where
questions can require arbitrary retrieval patterns
across the distributions.

C.2 Benchmark Construction

We need to generate passage pairs for Hop1,
Hop2 of two Wikipedia documents (Public, Pub-
lic), an email and a Wikipedia document (Pub-
lic, Private and Private, Public), and two emails
(Private, Private).

Public-Public Pairs For Public-Public Pairs,
we use a directed Wikipedia Hyperlink Graph,
G where a node is a Wikipedia article and an
edge (a, b) represents a hyperlink from the first
paragraph of article a to article b. The entity as-
sociated with article b, is mentioned in article a
and described in article b, so b forms a bridge, or
commonality, between the two contexts. Crowd-
workers are presented the final public document
pairs (a, b) ∈ G. We provide the title of b as a
hint to the worker, as a potential anchor for the
multi-hop question.

919

https://github.com/facebookresearch/contriever


Figure 5: UMAP of BERT-base embeddings, using Reimers and Gurevych (2019), of CONCURRENTQA ques-
tions based on the domains of the gold passage chain to answer the question (left and middle). I.e., questions
that require an Email passage for hop 1 and Wikipedia passage for hop 2 are shown as ‘‘Wiki-Email’’. Embed-
dings for all gold passages are also shown, split by domain (right).

Dataset Size Domain

WebQuestions (Berant et al., 2013) 6.6K Freebase
WebQSP (Yih et al., 2016) 4.7K Freebase
WebQComplex (Talmor and Berant, 2018) 34K Freebase
MuSiQue (Trivedi et al., 2021) 25K Wiki
DROP (Dua et al., 2019) 96K Wiki
HotpotQA (Yang et al., 2018) 112K Wiki
2Wiki2MultiHopQA (Ho et al., 2020) 193K Wiki
Natural-QA (Kwiatkowski et al., 2019) 300K Wiki

CONCURRENTQA 18.4K Email & Wiki

Table 11: Existing textual multi-hop benchmarks are designed over a single-domain.

To initialize the Wikipedia hyperlink graph, we
use the KILT KnowledgeSource resource (Petroni
et al., 2021) to identify hyperlinks in each of
the Wikipedia passages.9 To collect passages that
share enough in common, we eliminate entities
b which are too specific or vague, having many
plausible correspondences across passages. For
example, given a representing a ‘‘company’’, it
may be challenging to write a question about its
connection to the ‘‘business psychology’’ doctrine
the company ascribes to (b is too specific) or to
the ‘‘country’’ in which the company is located
(b is too general). To determine which Wiki en-
tities to permit for a and b pairings shown to the
workers, we ensure that the entities come from a
restricted set of entity-categories. The Wikidata
knowledge base stores type categories associated
with entities (e.g., ‘‘Barack Obama’’ is a ‘‘politi-
cian’’ and ‘‘lawyer’’). We compute the frequency
of Wikidata types across the 5.2 million entities
and permit entities containing any type that occurs

9https://github.com/facebookresearch/KILT.

at least 1000 times. We also restrict to Wikipedia
documents containing a minimum number of sen-
tences and tokens. The intuition for this is that
highly specific types entities (e.g., a legal code or
scientific fact) and highly general types of enti-
ties (e.g., countries) occur less frequently.

Pairs with Private Emails Unlike Wikipedia,
hyperlinks are not readily available for many un-
structured data sources including the emails, and
the non-Wikipedia data contains both private and
public (e.g., Wiki) entities. Thus, we design the
following approach to annotate the public and
private entity occurrences in the email passages:

1. We collect candidate entities with SpaCy.10

2. We split the full set into candidate public
and candidate private entities by identifying
Wikipedia linked entities amongst the spans
tagged by the NER model. We annotate

10https://spacy.io/.
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the text with the open-source SpaCy entity-
linker, which links the text to entities in
the Wiki knowledge base, to collect candi-
date occurrences of global entities.11 We use
heuristic rules to filter remaining noise in the
public entity list.

3. We post-process the private entity lists to
improve precision. High precision entity-
linking is critical for the quality of the
benchmark: A query assumed to require the
retrieval of private passages a and b should
not be unknowingly answerable by public
passages. After curating the private entity
list, we restrict to candidates which occur
at least 5 times in the deduplicated set of
passages.

A total of 43.4k unique private entities and 8.8k
unique public entities appear in the emails, and
1.6k private and 2.3k public entities occur at least
5 times across passages. We present crowd work-
ers emails containing at least three total entities
to ensure there is sufficient information to write
the multi-hop question.

11https://github.com/egerber/spaCy-entity
-linker.

Private-Private Pairs are pairs of emails that
mention the same private entity e. The Private-
Public and Public-Private are pairs of emails men-
tioning public entity e and the Wikipedia passage
for e. In both cases, we provide the hint that e is
a potential anchor for the multi-hop question.

Comparison Questions For comparison ques-
tions, Wikidata types are readily available for
public entities, and we use these to present the
crowdworker with two passages describing enti-
ties of the same type. For private emails, there is
no associated knowledge graph so we heuristically
assigned types to private entities, by determining
whether type strings occurred frequently along-
side the entity in emails (e.g., if ‘‘politician’’ is
frequently mentioned in the emails in which an
entity occurs, assign the ‘‘politician’’ type).

Finally, crowdworkers are presented with a pas-
sage pair and asked to write a question that requires
information from both passages. We use separate
interfaces for bridge vs. comparison questions and
guide the crowdworker to form bridge questions
by using the passages in the desired order for
Hop1 and Hop2.
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