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Abstract

Current language models can generate high-
quality text. Are they simply copying text they
have seen before, or have they learned gener-
alizable linguistic abstractions? To tease apart
these possibilities, we introduce RAVEN, a
suite of analyses for assessing the novelty of
generated text, focusing on sequential struc-
ture (n-grams) and syntactic structure. We ap-
ply these analyses to four neural language
models trained on English (an LSTM, a Trans-
former, Transformer-XL, and GPT-2). For
local structure—e.g., individual dependencies—
text generated with a standard sampling
scheme is substantially less novel than our
baseline of human-generated text from each
model’s test set. For larger-scale structure—
e.g., overall sentence structure—model-
generated text is as novel or even more
novel than the human-generated baseline, but
models still sometimes copy substantially, in
some cases duplicating passages over 1,000
words long from the training set. We also per-
form extensive manual analysis, finding evi-
dence that GPT-2 uses both compositional
and analogical generalization mechanisms and
showing that GPT-2’s novel text is usually
well-formed morphologically and syntacti-
cally but has reasonably frequent semantic
issues (e.g., being self-contradictory).

1 Introduction

There are many abstract properties that charac-
terize well-formed text, from grammatical prop-

∗ Work done while at Microsoft Research and Johns
Hopkins University.

† Work done while at Microsoft Research.

erties (e.g., subject-verb agreement) to discourse
properties (e.g., coherence). How can we tell
which of these properties have been learned by a
language model (LM)? One popular approach is
to analyze text generated by the LM (Dai et al.,
2019; Brown et al., 2020; Zhang et al., 2022).
The assumption underlying this approach is that,
if the text displays a particular linguistic property
(e.g., coherence), then the LM must have cap-
tured that property.

We argue that this approach has an important
shortcoming: The generated text could have been
copied from the LM’s training data, in which
case it does not provide clear evidence for lin-
guistic abstractions. For example, suppose an LM
achieves coherence by copying a paragraph from
its training set. In this case, the entity that deserves
credit for being coherent would not be the LM
but rather the human who originally wrote that
paragraph. To address this concern, it is important
to check whether LM-generated text duplicates
from the training data. That is, we argue that LM-
generated text must have two traits to be clear
evidence that the LM has learned some abstrac-
tion A:

(1) Quality: The text must be well-formed with
respect to A.

(2) Novelty: The text must not have been copied
from the training data.

Much prior work has discussed how to evaluate
various aspects of quality (Gatt and Krahmer,
2018; Celikyilmaz et al., 2020). Our central point
is that novelty also merits careful consideration.

In this work, to quantify the novelty of
generated text, we introduce a suite of analyses

652

Transactions of the Association for Computational Linguistics, vol. 11, pp. 652–670, 2023. https://doi.org/10.1162/tacl a 00567
Action Editor: Anette Frank. Submission batch: 9/2022; Revision batch: 1/2023; Published 6/2023.

c© 2023 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

mailto:tom.mccoy@princeton.edu
mailto:psmo@microsoft.com
mailto:linzen@nyu.edu
mailto:jfgao@microsoft.com
mailto:aslic@meta.com
https://doi.org/10.1162/tacl_a_00567


called RAVEN (RAting VErbal Novelty).1,2

These analyses cover both sequential structure
(n-grams) and syntactic structure. We apply these
analyses to text generated by an LSTM, a Trans-
former, Transformer-XL, and all 4 sizes of GPT-2
(the largest LM for which we had access to the
training data). Because there are many ways to
generate text from LMs, we test 12 generation
methods and 4 prompt lengths. As a baseline,
we also analyze human-generated text from each
model’s test set.

Summary of Findings: We find that models
display novelty for all aspects of structure that
we analyze: They generate novel n-grams, novel
morphological combinations, and novel syntac-
tic structures. For instance, GPT-2 coins several
types of novel words, including inflections (e.g.,
Swissified) and derivations (e.g., IKEA-ness), and
83% of sentences generated by Transformer-XL
have a syntactic structure that no training sen-
tence has. Thus, neural language models do not
simply memorize; instead they use productive
processes that allow them to combine familiar
parts in novel ways. Nonetheless, when consid-
ering small n-grams, these models are less novel
than the baseline. For example, for each model,
the baseline human-generated text has 1.5 to
3.2 times as many novel bigrams as the model-
generated text does. For n-grams larger than 5-
grams, models are more novel than the baseline,
but they still occasionally copy extensively: GPT-2
sometimes duplicates training passages that are
over 1,000 words long.

Significance of Findings: Our main finding is
that LMs do not copy much. This finding is a
welcome one because it shows that a confound
present in many prior analyses (the possibility
that LMs might mainly be copying) is unlikely

1https://github.com/tommccoy1/raven (last
accessed March 18, 2023).

2Verbal here uses its broad definition of ‘‘linguistic’’
rather than the narrow definition of ‘‘verb-related.’’ This
acronym refers to ‘‘The Raven’’ by Edgar Allan Poe, in which
the narrator encounters a mysterious raven which repeat-
edly cries out, ‘‘Nevermore!’’ The narrator cannot tell if
the raven is simply repeating something that it heard a
human say, or if it is constructing its own utterances (per-
haps by combining never and more)—the same basic ambi-
guity that our paper addresses. This acronym is also a nod
to Bender et al.’s (2021) comparison of LMs to another
utterance-generating bird, the parrot.

to be a major concern in practice. On the other
hand, the fact that LMs sometimes copy substan-
tially shows that it is not safe to assume that a
particular piece of generated text is novel—we
must specifically check for novelty if we want to
draw general conclusions about an LM from text
it has generated.

Beyond these broad takeaways, the specific
types of novelty illuminated by our analyses pro-
vide evidence that several important linguistic ab-
stractions have been captured by the LMs we
investigated. These abstractions include:

• Constituency structure (§6)

• Dependency structure (§6)

• Plural and possessive morphology (§7.1)

• Spelling-change rules (§7.1)

• Subject-verb agreement (§7.2)

• Incrementation and ordering (§7.2)

• Novelty (i.e., in addition to the fact that
it produces novelty, there is evidence that
GPT-2 encodes whether its text is novel, as
shown by a tendency to enclose novel words
in quotation marks: §7.2)

Our analyses also revealed two areas that were
not well-captured by GPT-2, namely:

• Acronym structure (§7.1)

• The relation between morphology and mean-
ing (§7.3)

Finally, our results provide evidence that GPT-2
uses two distinct types of generalization: Com-
positional and analogical generalization (§7.4).

Though many of the abstractions that we study
have been discussed in prior analyses of LMs, the
only one for which prior work has enforced nov-
elty is subject-verb agreement (Wei et al., 2021).
Overall, by evaluating novelty, we gain a new
window into how models have or have not suc-
ceeded at generalizing beyond their experience.

2 Background

Memorization and Copying: The concern that
LMs might copy extensively from their training
data is widely recognized. For example, Bender
et al. (2021) liken LMs to ‘‘stochastic parrots’’ that
simply memorize seen examples and recombine
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them in shallow ways.3 On the other hand, some
prominent examples of LM-generated text have
led others to assume that LMs are not heavily re-
liant on copying. For example, GPT-2 generated
a story about scientists discovering talking uni-
corns in the Andes, which seems unlikely to have
arisen via copying (Radford et al., 2019). Our
goal is to adjudicate between these conflicting
viewpoints.

It is clear that neural networks are capable
of extensive memorization: They can memorize
randomly labeled examples (Zhang et al., 2021a)
and can reveal training data when subjected to
adversarial attacks (Shokri et al., 2017; Carlini
et al., 2019, 2021, 2023). We study copying in text
generated under standard, non-adversarial con-
ditions, a topic which a few other recent works
have touched on by studying whether Transform-
ers copy large n-grams when generating lan-
guage (Brown et al., 2020; Lee et al., 2022b;
Kandpal et al., 2022) or code (Chen et al., 2021;
Ziegler, 2021). We perform a more comprehen-
sive analysis of duplication: We look across the
full range of n-gram sizes and analyze a range
of architectures and generation methods. Beyond
n-grams, we also evaluate copying of other lin-
guistic structures (e.g., dependency arcs). Thus,
we study linguistic generalization, while past work
studied concerns of data privacy (Carlini et al.,
2019) and plagiarism (Lee et al., 2022a).

Evaluating Text Quality: Prior work has pro-
posed many approaches for evaluating the qual-
ity of generated text. Some approaches provide a
single holistic score (Zhang et al., 2020a), while
others give scores that focus on specific proper-
ties (Dou et al., 2022) such as fluency (Mutton
et al., 2007) or factual accuracy (Kryściński et al.,
2020).

Our focus is novelty rather than quality. The
previously studied attribute that is most similar to
novelty is diversity (Zhu et al., 2018; Hashimoto
et al., 2019): Can a model generate a diverse
range of output sentences? Like novelty, diver-
sity is rooted in differences between pieces of
text. Despite this superficial similarity, novelty

3This view even extends beyond the research commu-
nity: A 2021 webcomic by Zach Weinersmith (https://
languagelog.ldc.upenn.edu/nll/?p=52293; last
accessed March 18, 2023) includes an AI system exclaim-
ing, ‘‘The fools don’t realize how many of my coherent
phrases are verbatim from training data!’’

and diversity are distinct. Novelty covers how
the generated text differs from the training set,
while diversity covers how the generated text
is different from other generated text. A model
could be diverse but not novel (by copying a di-
verse set of training sentences), or novel but not
diverse (by repeatedly generating the same novel
sentence).

Much discussion about evaluating LMs focuses
on whether they understand language (Bender
and Koller, 2020; Marcus, 2020), whereas we
assess the novelty of surface text. Thus, our main
analyses only test whether models have abstrac-
tions governing form (e.g., syntax), not meaning.

Our focus on considering a model’s training
data when evaluating that model fits with a broader
trend of tracing model behavior back to the train-
ing set. Other papers in this direction include
Akyurek et al. (2022), Han and Tsvetkov (2022),
and Elazar et al. (2022).

3 Motivation and Approach

Motivation: The analyses in RAVEN are in-
spired by a scientific question: To what extent do
LMs have generalizable linguistic abilities? This
question motivates our focus on novelty because
only novel text can illustrate linguistic general-
ization. There may be some practical use cases
for which novelty is not important—but for an-
swering our scientific question, and for working
toward general-purpose LMs that can handle un-
familiar situations (LeBrun et al., 2022), novelty
is crucial.

Approach: We generate many samples of text
from LMs and then evaluate how novel the text
is. We assess novelty for two types of structure:
n-grams and syntactic structure. We count a gen-
erated structure as duplicated if it appears in the
training set or the context (the concatenation of
the prompt and the text that the LM has already
generated based on the prompt); otherwise, it is
novel.

Copying is not necessarily undesirable
(Khandelwal et al., 2020): Some long n-grams,
such as book titles, might reasonably be dupli-
cated from the training set. To contextualize a
model’s degree of duplication, we compare the
model-generated text to human-generated text
from the model’s (in-distribution) test set, which
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gives a baseline for how much duplication is ex-
pected in the model’s training domain. If the model
is at least as novel as the baseline, we conclude
that it is not copying excessively. Pannitto and
Herbelot (2020), Meister and Cotterell (2021),
and Yamakoshi et al. (2022) also analyzed models’
linguistic abilities by comparing model-generated
text to human-generated text, but none of these
focused on novelty.

4 Experimental Details

Models: To compare architectures in a con-
trolled way, we used three models trained on
the same dataset, namely, Wikitext-103 (Merity
et al., 2017). Wikitext-103 is a collection of En-
glish Wikipedia articles tokenized at the word
level. Its training set contains 103 million words.
Holding this training set constant, we com-
pared the LSTM (Hochreiter and Schmidhuber,
1997), Transformer (Vaswani et al., 2017), and
Transformer-XL (TXL; Dai et al., 2019) architec-
tures, chosen because they give examples of the
two most prevalent types of processing in lan-
guage modeling: recurrence (used in the LSTM)
and self-attention (used in the Transformer), with
TXL using both mechanisms.

In addition to these systematic analyses, we
also analyzed GPT2-XL, the largest size of
GPT-2 (Radford et al., 2019), as an example of
a larger-scale Transformer LM (GPT-2 was the
model with the largest training set that we could
gain access to). Unlike our other models, GPT-2
is trained on the WebText corpus, which is con-
structed from webpages linked to on Reddit,
mainly in English. GPT-2 also differs from our
other models in its tokenization: All our other
models use word-level tokenization (in which
each token is a full word), but GPT-2 uses a sub-
word tokenization scheme (Sennrich et al., 2016).
The WebText training corpus contains 7.7 billion
words, making it much larger than Wikitext-103.
For more details about each model, see Section
A in our online supplement.4 Throughout this
paper, unless otherwise stated, GPT-2 refers to
GPT2-XL.

Prompts: To generate text from a model, we
input a prompt drawn from that model’s test

4https://github.com/tommccoy1/raven/blob
/main/raven supplementary materials.pdf (last
accessed March 18, 2023).

set, which comes from the same distribution as
its training set. For Wikitext-103, we use 1000
prompts of length 512 words and have mod-
els generate 1000 words following the prompt.
For WebText, we use 1000 prompts of length
564 subword tokens, and have models generate
1100 subword tokens; these numbers are 1.1 times
the corresponding Wikitext-103 numbers because
there are about 1.1 subword tokens per word in
WebText. As our baseline human-generated text,
we use the text that follows the prompt in the
corpus.

Decoding Method: Top-40 Sampling: As its
prediction about which word will appear next, a
language model outputs a probability distribution
over the vocabulary. There are many ways to
select a word to generate from this distribution,
which are called decoding methods.

A tempting choice for a decoding method
would be pure sampling, in which we simply
sample from the model’s distribution. However,
when evaluating a model’s novelty, an impor-
tant consideration is that novelty is not always
positive: A model that generates random non-
sense would be highly novel. Thus, we want
a decoding method that gives high-quality text,
because novelty is only positive when accom-
panied by high quality. Pure sampling is not
suitable for this purpose because it yields ‘‘in-
coherent gibberish’’ rather than high-quality text
(Holtzman et al., 2020).

Instead, the main decoding scheme that we use
is top-k sampling with k = 40, where the mod-
el’s distribution is truncated to the 40 highest-
ranked tokens then renormalized and sampled
from. We chose top-40 sampling because it is
what Radford et al. (2019) used for GPT-2 and
what Dai et al. (2019) used for TXL; because
this method was selected by the creators of these
models, we can be reasonably confident that it
produces high-quality text from these models. In
addition, using the same decoding method as
prior work facilitates comparisons to that work,
which is important for our goal of assessing
whether prior results might have been confounded
by a lack of novelty. For consistency, we use this
same decoding scheme for our LSTM and Trans-
former, for which there is no established decod-
ing method. For experiments with other decoding
methods, see Section 5.2.
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Figure 1: Novelty of n-grams generated by LMs using top-40 sampling (which is the approach used in relevant
prior literature) and pure sampling (which uses a model’s unaltered distribution but is not standard because it
produces low-quality text). As baselines, we use text drawn from models’ test sets.

5 N-Gram Novelty

We first investigate novelty at the level of
n-grams, where an n-gram is a sequence of n
words.

Motivation: Many prior papers (e.g., Dai et al.,
2019; Zhang et al., 2022) use holistic demonstra-
tions of the high quality of LM-generated text
as evidence for the LM’s overall strength. As
discussed in Section 1, these conclusions would
be undermined if the generated text were copied
from the training data. One goal of our work is
to test whether this concern is borne out in prac-
tice. In this section, we use analyses at the n-gram
level as holistic measures of novelty, to match
the holistic nature of the relevant prior dem-
onstrations of quality. In later sections, we will
conduct analyses that target specific linguistic
properties.

5.1 How Often Are Generated n-Grams
Novel for Various Values of n?

We first discuss n-gram novelty for two decod-
ing methods: top-40 sampling and pure sampling.
As discussed in Section 4, top-40 sampling fol-
lows the precedent of prior literature, while pure
sampling is rarely used but shows the LM’s un-
altered distribution. The next section then gives
an investigation of a wider range of decoding
methods.

Findings: For n > 6, LM-generated n-grams
are almost always novel, both for top-40 sam-
pling and pure sampling (Figure 1). For smaller
n-grams, these decoding methods diverge: Small
n-grams generated with top-40 sampling are less
novel than small n-grams in the human-generated
baseline, but small n-grams generated with pure
sampling are more novel than the baseline.
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Details: We tokenize all text with the Moses
tokenizer (Koehn et al., 2007), which treats punc-
tuation marks as separate tokens but otherwise
does not break words into smaller units, and
we then analyze n-grams formed from these to-
kens. Figure 1 shows the proportion of generated
n-grams that are novel. We first note that the
models are not merely copying: For all models,
for n-grams of size 5 or larger, the majority of
n-grams are novel.

We can obtain a more nuanced view by com-
paring the models to the baseline of text from
each model’s test set. When using pure sampling,
models are more novel than the baseline across
n-gram sizes. With top-40 sampling, small and
large n-grams differ: For small n-grams (n < 6),
models are less novel than the baseline. For in-
stance, with Wikitext-103, the baseline has 6%
of its bigrams being novel, while the models
have 2% to 3% novelty; for trigrams, the base-
line has 31% novelty while models have 17% to
22%. Thus, models are conservative at the small
scale when using top-40 sampling, rarely pro-
ducing novel bigrams and trigrams. However, for
larger n-grams (n > 6), the models are more
novel than the baseline. Thus, at a larger scale,
even when using top-40 sampling, models can-
not be described as excessively copying n-grams
they have seen before.

The LSTM and TXL are less novel for
small n-grams than the Transformer (Figures 1a
and 1b, insets). We conjecture the following
explanation: Recurrence creates a recency bias
(Ravfogel et al., 2019) which makes models
likely to condition their predictions heavily on
immediately preceding tokens, biasing them to
memorize bigrams and trigrams. The LSTM
and TXL both incorporate recurrence, whereas
the Transformer does not, explaining why the
Transformer duplicates the least.

5.2 How Is Novelty Related to the Decoding
Scheme and the Generated Text’s
Quality?

Findings: Changing decoding parameters can
substantially alter a model’s novelty: The nov-
elty can be increased by increasing p in top-p
sampling, k in top-k sampling, or the temper-
ature. However, all modifications that increase
the novelty of generated text also decrease the
quality.

Details: To get a single number that summarizes
novelty, we use a new metric called the point-
wise duplication score: Each token gets a score
quantifying the extent to which it duplicates
previously-seen text. This score is equal to the
size of the smallest novel n-gram that ends with
this word. For example, if the word is the end of
a novel 4-gram (e.g., these rules will not be), but
all smaller n-grams ending with the word were
duplicated (will not be, not be, and be), then the
pointwise duplication score is 4. The overall score
is the average across tokens. A downside of this
basic score is that the average can be heavily
influenced by high values arising from the rare
instances of long copied passages. To address
this concern, we truncate each token’s score at 5
before averaging (see supplement Section E for
untruncated results).

Using this score, we investigated a range of
decoding methods. The supplement (Section F)
shows in detail the effects of varying commonly
used decoding parameters. With top-k sampling
(truncating the distribution to the k most prob-
able tokens before sampling), increasing k also
increases novelty. With top-p sampling (truncat-
ing the distribution to the the top p probability
mass before sampling; Holtzman et al., 2020),
increasing p increases novelty. When using a tem-
perature (which scales words’ scores before taking
the softmax), increasing the temperature increases
novelty. All of these trends make intuitive sense:
A small k, p, or temperature upweights the head of
the model’s distribution, and it makes sense that
statistical learners would assign higher probabil-
ity to things they have seen than things they have
not, which would lead to the head of a model’s
distribution being less novel than the tail.

Could we make models perfectly novel just by
changing the decoding scheme? Unfortunately,
the decoding methods that increase novelty also
decrease quality. Measuring quality is challeng-
ing; ideally we would use human evaluations, but
that is beyond the scope of this project because
we have 48 conditions to evaluate (4 models with
12 decoding schemes). Instead, we use perplex-
ity as a proxy for quality, under the assumption
that high-quality text should have a low perplex-
ity. This assumption is certainly imperfect: Text
can have a low perplexity for degenerate reasons
such as being repetitive (Holtzman et al., 2020).
Nonetheless, it can still give a rough initial sense
of general trends. We use GPT-2 to measure the
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Figure 2: Manipulations of the decoding scheme that
result in higher-quality text (i.e., lower perplexity;
x-axis) also result in decreased novelty (i.e., a greater
degree of duplication; y-axis). Each point shows a
different decoding scheme.

perplexity of text generated by the LSTM, Trans-
former, and TXL; we use TXL to measure the
perplexity of GPT-2 text.

Figure 2 shows a clear tradeoff between nov-
elty and quality. None of the models trained on
Wikitext do as well as the baseline at manag-
ing this tradeoff. However, a model’s perplexity
does not entirely determine its level of novelty:
Both Transformer architectures do better at this
tradeoff than LSTMs, showing that it is possible
to improve on this tradeoff using architectural
innovations.

In contrast to the Wikitext-103 models, GPT-2
performs similarly to the baseline at the quality-
novelty tradeoff. The GPT-2 decoding scheme
that comes closest to the baseline is top-p de-
coding with p = 0.95; this achieves a perplexity
of 93.7 (baseline: 89.4) and a truncated point-
wise duplication score of 4.41 (baseline: 4.47).
Why does GPT-2 (with the right decoding scheme)
outperform the Wikitext-103 models at match-
ing the quality and novelty of its baseline? It is
unlikely that architecture is the reason because
GPT-2 is similar in architecture to the Wikitext-
103 Transformer. Although GPT-2 is our largest
model, we also doubt that model size is the expla-
nation: GPT-2 Small shows similar results even
though it is smaller than TXL. It may be that
training set size is the key factor, as WebText is
much larger than Wikitext-103. Alternatively, the
WebText baseline might be easier to meet than
the Wikitext one, because the generic Internet
text in WebText is generally lower-quality than
the curated articles in Wikitext-103, meaning that
the level of quality required to match the Web-

Text baseline is lower than the level required to
match the Wikitext baseline.

For the rest of this paper, all results are
with top-40 sampling, for the reasons given in
Section 4.

5.3 Do Models Ever Duplicate Large
n-Grams?

Finding: All models occasionally duplicate
training set passages that are 100 words long
or longer.

Details: Models rarely duplicate n-grams larger
than 10 tokens; for all models, fewer than 5%
of 10-grams are duplicated. However, there are
occasional exceptions where models duplicate
extremely long sequences. For instance, in our
GPT-2 generated text, there are several cases
where an entire generated passage (over 1,000
words long) appears in the training set. To refer
to these extreme cases, we use the term super-
copying, which we define as the duplication of an
n-gram of size 100 or larger. See the supplement
(Section D) for examples of supercopied text.

What Causes Supercopying? We hypothesize
that models supercopy passages that appear mul-
tiple times in the training set. For instance, the
Wikitext-103 training set contains 159 articles
about instances of The Boat Race, a rowing com-
petition: ‘‘The Boat Race 1861,’’ ‘‘The Boat Race
2002,’’ etc. These articles are formulaic, with
many sentences repeated across articles, and some
of the n-grams that were supercopied are indeed
from these repetitive articles; e.g., the 100-gram
in the supplement that was generated by all 3
Wikitext-103 models occurs 56 times in the train-
ing set. More generally, supercopied 100-grams
appear, on average, over 10 times in the training
set, whereas randomly-selected 100-grams typi-
cally appear only once. This is consistent with
the findings of Lee et al. (2022b) and Ziegler
(2021) that duplicated text tends to be common.
Carlini et al. (2021) found that text can be extracted
even if it only occurred once, but they used an ad-
versarial method that deliberately tries to extract
training data, instead of freely generating text.

5.4 How Does Model Size Affect Novelty?

Finding: Model size does not have a clear effect
on novelty.
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Figure 3: Effect of model size.

Details: It seems possible for model size to af-
fect novelty in either direction. Larger models
might be less novel due to having a greater capac-
ity to memorize. On the other hand, larger mod-
els are generally stronger (Kaplan et al., 2020),
which might include a greater ability to be novel.

Figure 3 shows the level of duplication ob-
served for the 4 sizes of GPT-2 (all using top-40
samping). Across n-gram sizes, the most novel
model is GPT-2 XL; however, GPT-2 Medium
is more novel than GPT-2 Large. Therefore, the
effect of size on novelty is inconsistent.

5.5 Other n-Gram Analyses
Additional analyses are in the supplement
(Sections H, I, and J). We find that prompt length
does not have a clear effect on novelty; novelty
is influenced by position within the generated text
for some models, but the effect is small; and our
novelty results do not change much if we only
consider duplication from the training set rather
than duplication from the context and/or train-
ing set.

6 Syntactic Novelty

Motivation: We have seen that models display
some novelty. How deeply does their novelty
extend? Are they just inserting words into mem-
orized templates or performing deeper syntactic
composition? Prior work has shown that the pre-
dictions of neural LMs have high quality with
respect to syntax (Hu et al., 2020; Zhang et al.,
2021b); e.g., the annotators in Dou et al. (2022)
marked less than 3% of LM-generated tokens
as having grammatical errors. Here we evaluate
syntactic novelty to address the possibility that
the syntactic success of LMs is driven by memo-
rization rather than by generalizable abstractions.

POS Parse Dep. Dep.
seq. struct. arcs roles

Wiki baseline 0.82 0.82 0.13 0.0053
LSTM 0.86 0.87 0.07 0.0016
Transformer 0.84 0.85 0.08 0.0025
TXL 0.83 0.83 0.07 0.0021

Web baseline 0.63 0.65 0.05 0.0018
GPT-2 0.65 0.67 0.03 0.0011

Table 1: Syntactic novelty. Abbreviations: seq=
sequence; dep=dependency; struct=structure.

Findings: At the level of global sentence struc-
ture, models show a high degree of syntactic
novelty, with the majority of generated sentences
having an overall syntactic structure that no train-
ing sentence has (Table 1). Models also display
some novelty for local structure (e.g., individual
dependency arcs), but they have much less local
novelty than the baselines do. Paired with the
syntactic quality shown in prior work, the syn-
tactic novelty in our analyses is evidence that the
LMs we analyzed have captured abstract syntac-
tic structure.

Details: We parsed our generated text and
our models’ training data using state-of-the-art
constituency (Kitaev and Klein, 2018) and de-
pendency (Zhang et al., 2020b) parsers. We then
evaluated novelty for 7 aspects of syntax.

Though current parsers perform well, they are
not perfect, so we cannot completely trust their
output. This is particularly a problem because the
cases that are important to us (novel ones) are
especially likely to confuse parsers. To address
this issue, we manually analyzed the examples
identified as novel to estimate the parsers’ error
rates (details are in supplement Section K). We
concluded that 4 of the 7 attributes that we an-
alyzed were handled accurately enough by the
parsers for us to report numerical results, which
are in Table 1. Here is a description of these
attributes:5

• POS sequence: the sequence of part-of-
speech tags for the words in the sentence.

5The excluded attributes were CFG rules, word/POS tag
pairs, and word/argument structure pairs (e.g., ‘‘suffuse used
intransitively’’).
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• Parse structure: the sentence’s constitu-
ency tree minus the leaves (the words).

• Labeled dependency arc: a 3-tuple of a de-
pendency relation (e.g., nsubj) and the two
words that hold that relation.

• Dependency role: a 3-tuple of a word, a
dependency relation that the word is part of,
and the word’s position in that relation; e.g.,
‘‘watch as the head of an nsubj relation.’’

These attributes give a window into whether
models have captured compositional syntactic
structure: Each attribute is composed of simpler
units (e.g., a parse structure is composed of sub-
trees, and a dependency arc is composed of the
elements in its 3-tuple). Thus, producing novel
examples for these attributes requires composi-
tional generalization (combining familiar parts in
novel ways).

For POS sequences and parse structures, there
is a high degree of novelty: Across all models
and baselines, the majority of sentences have an
overall structure that no training sentence has.
In addition, there is little difference between the
models and the baselines. For the more local
structure of dependency arcs and dependency re-
lations, the baselines are far more novel than the
models.

These syntactic findings are similar at a high
level to our n-gram results, which showed that
models are less novel than the baseline for local
structure (small n-grams) but more novel than the
baseline for larger-scale structure (large n-grams).
To expand on this parallel, we considered de-
pendency paths of varying lengths, analogous to
n-grams of varying sizes. We define a depen-
dency path as the labeled path in a dependency
tree from a word to any of its ancestors or the
root. Some example paths in Figure 4 are [dog],
[dognsubj , barked], and [dognsubj , barkedroot,
ROOT], which have lengths 1, 2, and 3 (a length-2
path is equivalent to a dependency arc). Depen-
dency path novelty (Figure 5) displays trends
similar to those for n-gram novelty (Figures 1a
and 1c): For short paths, models show little nov-
elty and are less novel than the baseline, but for
longer paths they are almost always novel and are
more novel than the baseline. These results cor-
roborate the general conclusion that models using
top-40 sampling are rarely novel at small scales
but usually novel at medium or large scales.

Figure 4: Example dependency tree.

Figure 5: Novelty of dependency paths in LM-
generated text. An example path is [tablepobj , near],
which has length 2 (Figure 4). As baselines, we use
text drawn from models’ test sets.

See the supplement (Section M) for specific
examples of syntactic generalization (e.g., nouns
that were generated as direct objects but never
appeared as direct objects in training).

7 Manual Analyses of Specific
Phenomena

Our previous analyses focused on general sequen-
tial and syntactic structure. We now investigate
some more specific linguistic phenomena by us-
ing manual analysis to verify both the quality and
the novelty of relevant LM-generated text. Man-
ual analysis is labor-intensive; to use this labor
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Morphology Syntax

Baseline GPT-2 Baseline GPT-2

Correct 0.99 0.96 0.97 0.94
Incorrect 0.01 0.02 0.00 0.01
Unclear 0.00 0.02 0.03 0.05

Table 2: Syntactic and morphological usage of
novel words.

most effectively, we exclusively analyze GPT-2
because it is the strongest-performing model.

For this initial analysis, we study only the novel
unigrams that GPT-2 generates; GPT-2 uses sub-
word tokenization, so it can generate novel words
by combining seen subwords in novel ways. We
study novel words because they give a win-
dow into several levels of linguistic structure.
Studying the words themselves provides insights
into word-internal structure (morphology), while
studying the context in which novel words ap-
pear provides insights into syntactic and semantic
structure, since syntax and meaning use individ-
ual words as components. See the supplement
(Section N) for a detailed taxonomy of GPT-2’s
novel words. Here in the main paper, we dis-
cuss 4 targeted questions about these novel words.
Throughout this section, any word in boldface is
novel.

7.1 When GPT-2 Generates Novel Words,
Are They Morphologically
Well-Formed?

Finding: The vast majority of GPT-2’s novel
words (96%) are well-formed (Table 2); this is,
however, lower than the baseline (99%).

Specific Categories: Forming English plurals
requires a choice between two orthographic forms,
-s and -es. In 72 of the 74 novel plurals,
GPT-2 made the correct choice (e.g., Brazil-
ianisms, Fowleses). The two incorrect examples
were 1099es and SQLes. Similarly, forming En-
glish possessives requires a choice between -’s
and -’. Here, GPT-2 makes the correct choice
in 135 out of 136 novel possessives (e.g.,
Flexagons’, Runerealm’s), with the only error
being watchmakers’s.

Acronyms provide another case for which
we can easily quantify well-formedness. Our
GPT-2-generated text contains 75 novel acronyms

that appear along with the full version of what the
acronym stands for. In 72% of cases, the acronym
is not a suitable abbreviation (well-formed ex-
ample in 3, ill-formed example in 4). There are
valid reasons why an acronym might not match
its expansion; e.g., sometimes English-language
publications will translate a non-English phrase
but not its abbreviation, giving results such as
Doctors Without Borders (MSF). However, in our
baseline text, 17 of the 21 acronyms that appeared
with expansions were suitable, so GPT-2 is still
not suitable nearly as often as the baseline (28%
vs. 81%).

(3) West of England Cricket and Athletics Club
(WECAC)

(4) Extremely Large Interactive Neutrino Exper-
iment (ELIGO)

Some additional examples of success involve suf-
fixes that require the stem to change spelling, with
GPT-2 successfully making the change (5). Some
additional mistakes are the use of a plural noun as
the first component of a compound (6) and over-
regularization, namely, using the regular suffix -th
instead of the exceptional suffix -nd (7).

(5) a. by ‘‘ cookying ’’ certain searches on the
internet

b. Summission base camp
c. the ridiculousities of war

(6) The...rivers had their headswaters in a larger
basin

(7) the 752th year

7.2 When GPT-2 Generates Novel Words,
Do They Fit Within Their Syntactic
Context?

Finding: The vast majority of GPT-2’s novel
words (94%) are used in grammatically correct
contexts (Table 2), but it does make more errors
than we see in the baseline (e.g., 8, 9).

(8) the manicure that I did for Sally-themed a
year ago

(9) Slicex load-samples provides a single button

Agreement: Despite these errors the vast major-
ity of cases have proper syntax. Some particularly
impressive cases involve novel plural words. First,
despite the mistake in (9), GPT-2 generally does
well at providing plural verbs (underlined) to
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agree with novel plural nouns, whether the verb
appears after the noun (10) or before the noun in
a question (11). In (12), it correctly inflects both
verbs that agree with the novel plural subject—a
verb within the relative clause, and a verb after
it. The correct agreement with the verb after the
relative clause is especially impressive because, in
both sentences, there are 3 singular ‘‘distractors’’
(italicized) between the subject and the verb.

(10) a. We know that M-Sinks need a target
b. Torpexes are small hardpoints

(11) Why do SQLes have to change

(12) a. The Huamangas, who are descendants
of indigenous people who lived on the
Isthmus of Tehuantepec before it was
covered by farmland, have been de-
manding that the federal government
address the issue of climate change .

b. FOIA-requesters who think an agency
has a good reason for withholding in-
formation are not always given a second
opportunity to press their case .

Overall, GPT-2 produces the correct verb inflec-
tion in 25 of the 26 relevant cases; the only error
is the one in (9). See Haley (2020) for similar
observations but with BERT (Devlin et al., 2019)
instead of GPT-2.

Other Plural-Relevant Syntax: Beyond agree-
ment, syntactic consequences of plurality are
observed in a few other places as well: in using
the plural possessive form that is just an apos-
trophe instead of the singular form of -’s (13);
in having the pronouns that are coreferential with
the noun be plural as well (14); and in following
determiners that require a plural noun (15).

(13) The Fowleses ’ lawyer

(14) a. I love Klymits, but it has been nearly
impossible for us to find them in stores .

b. The Sarrats were lucky to have her as
part of their lives

(15) a. These small townites were lucky to have
her as part of their lives

b. so many Brazilianisms

Across these categories, GPT-2 makes no errors,
but the sample size is small (we found 1 possessive
example, 7 examples with coreferential pronouns,
and 4 with number-sensitive determiners).

Baseline GPT-2

p(novel) 0.0022 0.0022
p(novel | in quotes) 0.023 0.028
p(in quotes) 0.0016 0.0015
p(in quotes | novel) 0.016 0.019

Table 3: Quotation mark statistics. Computed
over all word-level (not subword-level) unigrams.

Incrementing/Ordering: Another type of
inter-word relation that GPT-2 appears to have
learned is incrementing/ordering, with examples
in the supplement (Section O.8). In one example,
GPT-2 increments numbers from Firstly to
Fourteenthly, with Thirteenthly and Fourteenthly
being novel. In another example, it increments
the letters at the ends of variable names in com-
puter code, going from multiplyx to multiplyz to
multiplyz. In a final example, the prompt ends with
an alphabetical list of companies, and GPT-2 con-
tinues this list, staying mostly in alphabetical order
and including many novel words along the way.

Quotation Marks: A final aspect of sentence
structure that we analyze is putting words within
quotation marks. In human-generated text, there is
an association between novel words and quotation
marks: Words are much more likely to appear
inside quotation marks if they are novel, and they
are much more likely to be novel if they appear
inside quotation marks. This association is also
present in GPT-2’s generated text (Table 3), e.g.:

(16) a. The ‘‘ proto-poetry ’’ of modern times

b. the ‘‘ un-competition ’’ that is happening

Therefore, GPT-2 may encode some version of the
concept ‘‘novel word’’ which it can access when
determining whether to include quotation marks.

7.3 When GPT-2 Generates Novel Words,
Do They Result in Reasonable Meanings?

Finding: GPT-2 does less well in this area than
in morphology and syntax, consistent with the
claims of Bender and Koller (2020) that language
models only learn form, not meaning (Table 4).

Examples: There are some generated examples
for which there is clear evidence that the mean-
ing is incorrect (17). One frequent source of mis-
takes is numbers, revealing a general lack of
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Baseline GPT-2

Clearly suitable 0.327 0.209
Potentially suitable 0.643 0.587
Probably not suitable 0.002 0.044
Clearly unsuitable 0.001 0.072
Unclear 0.028 0.089

Table 4: How semantically suitable novel words
are for their contexts.

understanding of the quantities that these numbers
represent. Numerical errors include incorrect con-
versions (18a), physical impossibilities (18b), and
inconsistent exchange rates (18c):

(17) a. An old school English term is a
Brazilianism .

b. ... adding an optional ‘‘ no-knockout ’’
version . . . so you can actually be
knocked out

(18) a. a 1,240-lb . ( 735-kg ) device

b. the ... 4ml tank holds 10.4ml of e juice .

c. KES50 ( £ 3.50 ) ... KES100 ( £ 4.00 )
... KES300 ( £ 4.50 ) ... KES200 ( £
2.50 )

Nonetheless, there are also some positive exam-
ples where GPT-2 essentially provides a clear and
accurate definition of the novel word or otherwise
makes use of all aspects of the word’s meaning:

(19) a. . . . the process of re-nitrification that
gives them a new supply of nitrogen

b. the concept of ‘ co-causation ’ , in
which effects are thought to be caused
by causes that act in parallel

c. the ‘‘ bondbreaking enchantment ’’
, which . . . permanently breaks any
binding

7.4 What Generalization Mechanisms Are
Used by GPT-2?

We have seen that GPT-2 generates some novel
words. What types of generalization does GPT-2
use to create these words? There are two basic
types of generalization that might be employed
(see Prasada and Pinker [1993], Albright and
Hayes [2003], and Dasgupta et al. [2022] for
discussion). First, a novel word could be created
by a compositional rule that builds up word parts

(20a). Alternatively, a novel word could be cre-
ated via a similarity-based analogy, with similar
word parts replacing each other (20b):

(20) a. elephant + -s = elephants

b. giraffes - giraffe + elephant = elephants

As these examples show, a given word (e.g.,
elephants) could have been formed in either of
these ways, so we can never be certain about
which approach GPT-2 is using. However, based
on some examples which are reasonably clear,
we suspect that GPT-2 employs both types of
generalization.

Generalization by Composition: In a few
cases, GPT-2 generates a novel word whose stem
never appears in training but does appear in the
context (the prompt plus the previously generated
words): see (21). We believe that these examples
are best explained by composition: Analogy re-
quires some notion of similarity between the two
word parts being swapped, and it is unlikely that
the model would have such similarity notions for a
word stem it has never seen before. Thus, we think
these examples are better understood as the model
adding a prefix or suffix to a word from its context,
without direct reference to another word that has
that prefix or suffix—a form of composition.

21 a. using the LHAW to take out other
LHAWs

b. Pelagic epineopterygoid . . . Sub-
epineopterygoid, N. scapulatus

Generalization by Analogy: The supplement
(Section O.16) contains one piece of generated
text which we believe provides clear evidence
for analogy. The prompt for this generation con-
tains the real English word torero (borrowed from
Spanish), which means ‘‘bullfighter.’’ The gen-
eration then contains several alternative forms of
this word (some with plural inflection): tearro,
tornro, tearingros, and tearsros (e.g., in the sen-
tence tearingros are taught to avoid the horns).
It appears, then, that GPT-2 has taken the word
torero and replaced the first 4 letters (tore) with
other forms of the verb tear: tear, torn, tearing,
and tears. There is no morphological process in
English that adds -ro to verbs, so it is unlikely
that these words were generated via composi-
tion; instead, it seems more likely that they were
generated via analogy.
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8 Discussion

Using our analysis suite RAVEN, we have found
that models generated many types of novelty—
novel n-grams of all sizes, novel syntactic struc-
tures, and novel morphological combinations.
However, they also show many signs of copy-
ing: For local structure, they are substantially less
novel than the baseline; and we see occasional
large-scale copying, such as duplicating passages
from the training set that are over 1,000 words
long.

Compositionality: Compositional generaliza-
tion (combining familiar parts in novel ways) is
crucial for processing both the syntax and seman-
tics of natural language (Montague, 1970). It is of-
ten discussed in the context of out-of-distribution
generalization (Hadley, 1994; Hupkes et al., 2020;
Keysers et al., 2020; Li et al., 2021), typically
relying on synthetic datasets to test models’ com-
positional abilities (Lake and Baroni, 2018; Kim
and Linzen, 2020; McCoy et al., 2020). The base-
lines in Table 1 show that compositional syntactic
generalization is important even for in-distribution
test sets drawn from large-scale natural corpora.
Most notably, the majority of test sentences had
a sentence-level syntactic structure that had never
appeared in the training set.

Turning to the model results in Table 1, all
models displayed nonzero rates of compositional
generalization, giving an existence proof that
they can perform these types of generalization.
Nonetheless, the models’ scores are lower than
the baseline, so their generalization might be lim-
ited to particular subcases, instead of being as
general as human generalization. In the opposite
direction, however, GPT-2 sometimes general-
ized too freely, such as generating the word 752th
(Section 7.1). Therefore, it may not be enough
to simply encourage models to be systematic,
because language is not completely systematic.
Instead, we need models that recognize both rules
and exceptions (O’Donnell, 2015; Yang, 2016).

Our analyses focused on compositional general-
ization as it applies to linguistic form (specifically,
morphology and syntax). An important future
direction would be to analyze novelty in meaning.

Evaluating Novelty: The main point of our
work is that novelty has not received the attention
it deserves in evaluation of LMs. For generated

text to truly illustrate a model’s generative capa-
bilities, that text must be novel—otherwise, it may
only illustrate the model’s ability to copy but not
other abilities (e.g., the ability to be coherent). We
recommend using the level of novelty found in an
in-distribution test set as a baseline: if the model
is at least as novel as this baseline, we can rule out
the possibility that it is copying excessively.

Recent increases in data quantity make it es-
pecially critical to check for novelty because the
magnitude of recent datasets can break our in-
tuitions about what can be expected to occur.
For instance, some notable work in language ac-
quisition (e.g., Kuczaj II, 1977; Marcus et al.,
1992) relies on the assumption that regular past
tense forms of irregular verbs (e.g., becomed,
teached) do not appear in a learner’s experience,
so if a learner produces such words, they must be
novel. However, for all 92 basic irregular verbs
in English, the incorrect regular form appears in
GPT-2’s training set; details are in the supplement
(Section P), along with results for another cate-
gory often assumed to be novel, namely, nonsense
words such as wug (Berko, 1958). Thus, when we
use models trained on such large-scale datasets,
it is not safe to assume that something is absent
from the training set; we must actually check.

Improving Novelty: One straightforward ap-
proach for increasing novelty would be to modify
the sampling procedure to suppress highly copied
outputs, similar to penalties used to prevent rep-
etition (Keskar et al., 2019). Another approach
would be deduplication during training: We found
that supercopying mainly arises when there is
repetition in the training set, so eliminating such
repetition might improve models’ novelty. Indeed,
concurrent work (Lee et al., 2022b; Kandpal et al.,
2022) has shown that deduplication can substan-
tially decrease the extent to which large n-grams
are copied from the training set.

Ideally, however, we would find ways to de-
crease copying that are deeper, without requiring
post-hoc modifications to the training data and
sampling procedure. In humans, novelty has long
been attributed to the usage of symbolic, com-
positional rules. Thus, greater novelty might be
achieved through models that build in composi-
tional mechanisms, such as RNNGs (Dyer et al.,
2016) and TP-Transformers (Schlag et al., 2019).

Alternatively, one major difference between
text generation in humans and neural LMs is that
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humans usually have a meaning that they want to
express that guides their text generation, whereas
LMs have no explicit plan when producing text.
This difference may partly explain the ways in
which models are less novel than humans: Since
models mainly manipulate text alone, they fall
back to repeating text they have seen before.
Thus, novelty may be improved by incorporating
more explicit semantic planning (Rashkin et al.,
2020).

9 Conclusion

In machine learning, it is critical to evaluate mod-
els on a withheld test set. When text is sampled
from a language model, that text might be copied
from the training set, in which case it is not
withheld—so using that text to evaluate the model
(e.g., for coherence or grammaticality) is not valid.
Thus, it is important to consider novelty when us-
ing text generation to evaluate the model’s abstract
abilities. We have introduced RAVEN, an analysis
suite covering sequential and syntactic structure,
and have applied it to several models, showing that
models are rarely novel for local structure but are
often novel for larger-scale structure. The types of
novelty that models display provide evidence that
they have captured a range of linguistic abstrac-
tions, such as constituency structure, dependency
structure, and several morphological processes.
However, models occasionally copy even very
long passages, showing that generated text can-
not be assumed to be novel: We must directly
check for novelty, such as by using the analyses
in RAVEN. Overall, our results demonstrate the
importance of considering a model’s training data
when evaluating that model’s abilities.
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