
Aggretriever: A Simple Approach to Aggregate Textual Representations
for Robust Dense Passage Retrieval

Sheng-Chieh Lin, Minghan Li, and Jimmy Lin
David R. Cheriton School of Computer Science

University of Waterloo, Canada
{s269lin,m692li,jimmylin}@uwaterloo.ca

Abstract
Pre-trained language models have been suc-
cessful in many knowledge-intensive NLP
tasks. However, recent work has shown that
models such as BERT are not ‘‘structurally
ready’’ to aggregate textual information into
a [CLS] vector for dense passage retrieval
(DPR). This ‘‘lack of readiness’’ results from
the gap between language model pre-training
and DPR fine-tuning. Previous solutions call
for computationally expensive techniques such
as hard negative mining, cross-encoder dis-
tillation, and further pre-training to learn a
robust DPR model. In this work, we instead
propose to fully exploit knowledge in a pre-
trained language model for DPR by aggregat-
ing the contextualized token embeddings into
a dense vector, which we call agg�. By con-
catenating vectors from the [CLS] token and
agg�, our Aggretriever model substantially
improves the effectiveness of dense retrieval
models on both in-domain and zero-shot eval-
uations without introducing substantial train-
ing overhead. Code is available at https://
github.com/castorini/dhr.

1 Introduction

A bi-encoder architecture (Reimers and Gurevych,
2019; Karpukhin et al., 2020) based on pre-trained
language models (Devlin et al., 2018; Liu et al.,
2019; Raffel et al., 2020) has been widely used
for first-stage retrieval in knowledge-intensive
tasks such as open-domain question answering
and fact checking. Compared to bag-of-words
models such as BM25, these approaches circum-
vent lexical mismatches between queries and
passages by encoding text into dense vectors.

Despite their success, recent research calls
into question the robustness of these single-
vector models (Thakur et al., 2021). As shown
in Figure 1, single-vector dense retrievers (e.g.,
BERTCLS and TAS-B) trained with well-designed

knowledge distillation strategies (Hofstätter et al.,
2021) still underperform BM25 on out-of-domain
datasets. Along the same lines, Sciavolino et al.
(2021) find that simple entity-centric questions
are challenging to these dense retrievers.

Recently, Gao and Callan (2021) observe that
pre-trained language models such as BERT are
not ‘‘structurally ready’’ for fine-tuning on down-
stream retrieval tasks. This is because the [CLS]
token, pre-trained on the task of next sentence
prediction (NSP), does not have the proper at-
tention structure to aggregate fine-grained textual
information. To address this issue, the authors
propose to further pre-train the [CLS] vector be-
fore fine-tuning and show that the gap between
pre-training and fine-tuning tasks can be miti-
gated (see coCondenserCLS illustrated in Figure 1).
However, further pre-training introduces addi-
tional computational costs, which motivates us to
ask the following question: Can we directly bridge
the gap between pre-training and fine-tuning with-
out any further pre-training?

Before diving into our proposed solution, we
briefly overview the language modeling pre-
training and DPR fine-tuning tasks using BERT.
Figure 2(a) illustrates the BERT pre-training tasks,
NSP and mask language modeling (MLM), while
Figure 2(b) shows the task of fine-tuning a dense
retriever. We observe that solely relying on the
[CLS] vector as the dense representation does not
exploit the full capacity of the pre-trained model,
as the [CLS] vector participates directly only in
NSP during pre-training, and therefore lacks in-
formation captured in the contextualized token
embeddings. A simple solution is to aggregate the
token embeddings by pooling (max or mean) into
a single vector. However, information is lost in
this process and empirical results do not show
any consistent effectiveness gains. Hence, we see
the need for better aggregation schemes.

436

Transactions of the Association for Computational Linguistics, vol. 11, pp. 436–452, 2023. https://doi.org/10.1162/tacl a 00556
Action Editor: Hang Li. Submission batch: 9/2022; Revision batch: 12/2022; Published 5/2023.

c© 2023 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

mailto:s269lin@uwaterloo.ca
mailto:m692li@uwaterloo.ca
mailto:jimmylin@uwaterloo.ca
https://github.com/castorini/dhr
https://github.com/castorini/dhr
https://doi.org/10.1162/tacl_a_00556

Figure 1: In-domain versus zero-shot effectiveness. All
DPR models are trained with BM25 negatives.

In this paper, we propose a novel approach
to generate textual representations for retrieval
that fully exploit contextualized token embed-
dings from BERT, shown in Figure 2(c). Specifi-
cally, we reuse the pre-trained MLM head to map
each contextualized token embedding into a high-
dimensional wordpiece lexical space. Following
a simple max-pooling and pruning strategy, we
obtain a compact lexical vector that we call agg�.
By concatenating agg� and the [CLS] vector,
our novel Aggretriever dense retrieval model cap-
tures representations pre-trained from both NSP
and MLM, improving retrieval effectiveness by a
noticeable margin compared to fine-tuned mod-
els that solely rely on the [CLS] vector (see
BERTAGG vs BERTCLS in Figure 1).

Importantly, fine-tuning Aggretriever does not
require any sophisticated and computationally ex-
pensive techniques, making it a simple yet com-
petitive baseline for dense retrieval. However, our
approach is orthogonal to previously proposed
further pre-training strategies, and can still ben-
efit from them to improve retrieval effectiveness
even more (see coCondenserAGG in Figure 1). To
the best of our knowledge, this is the first work
in the DPR literature that leverages the BERT
pre-trained MLM head to encode textual informa-
tion into a single dense vector.

2 Background and Motivation

Given a query q, our task is to retrieve a list of
passages to maximize some ranking metric such
as nDCG or MRR. Dense retrievers (Reimers and
Gurevych, 2019; Karpukhin et al., 2020) based
on pre-trained language models encode queries
and passages as low dimensional vectors with a
bi-encoder architecture and use the dot product

between the encoded vectors as the similarity
score:

sim[CLS](q, p) � eq[CLS] · ep[CLS] , (1)

where eq[CLS] and ep[CLS] are the [CLS] vectors
at the last layer of BERT (Devlin et al., 2018).
Subsequent work leverages expensive fine-tuning
strategies (e.g., hard negative mining, knowledge
distillation) to guide models to learn more ef-
fective and robust single-vector representations
(Xiong et al., 2021; Zhan et al., 2021b; Lin et al.,
2021b; Hofstätter et al., 2021; Qu et al., 2021).

Recent work (Gao and Callan, 2021; Lu et al.,
2021) shows that the [CLS] vector remains ‘‘dor-
mant’’ in most layers of pre-trained models and
fails to adequately aggregate information from
the input sequence during pre-training. Thus,
researchers argue that the models are not ‘‘struc-
turally ready’’ for fine-tuning. To tackle this issue,
unsupervised contrastive learning has been pro-
posed, which creates pseudo relevance labels from
the target corpus to ‘‘prepare’’ the [CLS] vector
for retrieval. The most representative technique is
the Inverse Cloze Task (ICT; Lee et al., 2019).
However, since the generated relevance data is
noisy, further pre-training with ICT often requires
a huge amount of computation due to the need
for large batch sizes or other sophisticated train-
ing techniques (Chang et al., 2020; Izacard et al.,
2021; Ni et al., 2021).

Another thread of work (Gao and Callan, 2021;
Lu et al., 2021) manages to guide transformers
to aggregate textual information into the [CLS]
vector through auto-encoding. This method does
not require as much computation as unsupervised
contrastive learning but is still much more com-
putationally intensive than fine-tuning. For exam-
ple, Gao and Callan (2021) report that the further
pre-training process still requires one week on
four RTX 2080 Ti GPUs, while fine-tuning con-
sumes less than one day in the same environment.

Recent work on neural sparse retrievers (Bai
et al., 2020; Formal et al., 2021b) projects
contextualized token embeddings into a high-
dimensional wordpiece lexical space through the
BERT pre-trained MLM projector and directly
performs retrieval in wordpiece lexical space.
These models demonstrate that MLM pre-trained
weights can be used to learn effective lexical rep-
resentations for retrieval tasks, a finding that has
not been fully explored in the DPR literature. In-
spired by this work, we explore reusing MLM

437

Figure 2: (a) BERT: next sentence prediction (NSP) and mask language modeling (MLM) (b) DPR: using the
[CLS] embedding for retrieval (c) Aggretriever: aggregating knowledge from both NSP and MLM.

pre-trained weights for DPR fine-tuning and fur-
ther combine the [CLS] vector to fully exploit
textual information in a pre-trained language
model.

3 Aggretriever

In this section, we first introduce our method for
text aggregation to form agg�, which consists of
two steps: pooling and pruning. Then, we describe
how to concatenate the aggregated text represen-
tation agg� and [CLS] into a 768-dimensional
dense vector for fine-tuning and retrieval.

3.1 Text Aggregation Pooling

The goal of text aggregation is to transform
contextualized token embeddings into a single-
vector token representation. Let the input se-
quence q denote a tokenized query sequence with
a length of l, ([CLS], q1, q2, · · · ql,[SEP]), or
alternatively, a passage p of length m, ([CLS],
p1, p2, · · · pm,[SEP]). One simple approach is
to directly pool (mean or max) contextualized
token embeddings from the final layer. Such pool-
ing strategies have been studied in previous work
(Reimers and Gurevych, 2019), but do not ap-
pear to be consistently more effective than just
using the [CLS] token; this is also confirmed in
our ablation study (Section 5.4).

We instead propose to reuse the pre-trained
MLM head to project each contextualized token
embedding eqi into a high-dimensional vector in
the wordpiece lexical space:

pqi = softmax(eqi ·WMLM + bMLM), (2)

where eqi ∈ R
d, WMLM ∈ R

d×|VBERT|, and
bMLM ∈ R

|VBERT| are the weights of the pre-trained
MLM linear projector, and pqi ∈ R

|VBERT| is the
i-th contextualized token represented by a prob-
ability distribution over the 30522 tokens of
BERT wordpiece vocabulary, VBERT. We then
perform weighted max pooling for the sequen-
tial representations (pq1 ,pq2 , · · · ,pql) to obtain
a single-vector lexical representation:

vq[v] = max
i∈(1,2,··· ,l)

wi · pqi [v], (3)

where wi = |eqi · W + b| ∈ R
1 is a positive

scalar and v ∈ {1, 2, · · · , |VBERT|}; W ∈ R
d×1

and b ∈ R
1 are trainable weights. Note that the

scalar wi for each token qi is essential to cap-
ture term importance, which pqi alone cannot
capture since it is normalized by softmax. We
exclude the [CLS] token embedding at this stage
since it is used for next-sentence prediction during
pre-training and thus we argue that it does not
carry much lexical information.

Our design has three advantages: (1) the MLM
head with softmax is used for BERT pre-training;
thus, the output probabilities can accurately model
each contextualized token semantically. (2) In
contrast to directly pooling contextualized embed-
dings, important dimensions of the token repre-
sentations in the high-dimensional space are less
likely to overlap, resulting in non-interfering max-
pooling (Jang et al., 2021). (3) Finally, wi and
pqi disentangle the effects of term importance
from the MLM head. We will study the effective-
ness of this design in Section 5.4 through abla-
tions. Note that compared to previous work on

438

Figure 3: Illustration of text aggregation: (a) pooling
of token representations to form vq; (b) pruning of
vq to form agg�

q (or agg+q). While pruning, agg�q [n]
receives a negative value if the pooled element be-
longs to S−

n ; i.e., the second element in each slice
(red box).

sparse retrieval (Bai et al., 2020; Formal et al.,
2021b), which switches softmax to ReLU to cre-
ate sparse representations, our design sticks to the
original activation function for MLM pre-training
and directly outputs 30522-dimensional dense
lexical vectors (vq).

Figure 3(a) illustrates the generation of vq

with |VBERT| = 10 for simplicity. Ideally, we
can directly compute vq · vp as a lexical match-
ing similarity score for the wordpiece lexical
representations. However, the vectors (vq,vp ∈
R

|VBERT |) are too large for efficient retrieval using
dense vector search libraries such as Faiss. To ad-
dress this issue, we introduce our non-parametric
pruning method to convert vq (vp) into a low-
dimensional vector for dense retrieval.

3.2 Text Aggregation Pruning

We consider vq ∈ R
|VBERT| as a bag-of-words rep-

resentation with each dimension storing the cor-
responding term weight. Thus, dimensions with
low term weights indicate that the corresponding
terms are not important and can be pruned.

Based on this intuition, we propose to prune
term weights in vq by evenly and randomly di-
viding the dimensions (vocabulary) into d slices,
(S1, S2, · · · , Sd), where each slice consists of a
set of |VBERT|

d index positions. Then, we condense

vq into a d-dimensional vector by pruning the
term weights in each slice Sn:

agg+
q [n] = max

v∈Sn

vq[v]; (4)

idq[n] = arg max
v∈Sn

vq[v].

We call the operation in Eq. (4) slice max pool-
ing, where each value in agg+q represents the
weight of the most important term in the slice.1

Slice max pooling is an important operation to
prune the term weights while performing di-
mensionality reduction for dense passage re-
trieval. Other effective approaches to pruning
lexical representations, e.g., top-k pruning (Yang
et al., 2021) and FLOP regularization (Formal
et al., 2021b), do not reduce the vector dimen-
sionality. Thus, they generate sparse represen-
tation models that require inverted indexes for
efficient retrieval.

We call agg+q ∈ R
d the semi-aggregated lex-

ical representation for query q since it only
distributes vectors over the positive orthant and
does not fully use the d-dimensional space. That
is, vq[v] ≥ 0 ∀ v ∈ {1, 2, · · · |VBERT|}; thus,
agg+q [n] ≥ 0 ∀ n ∈ {1, 2, · · · d}. Our goal is to
approximate the dot product between vq and vp

in Eq. (3) by the ones in Eq. (4):

vq · vp ≈
d∑

n=1

(max
v∈Sn

vq[v]) · (max
v∈Sn

vp[v])

=
d∑

n=1

agg+
q [n] · agg+p [n]

= agg+
q · agg+p . (5)

Note that the approximation error in Eq. (5)
partially comes from term misalignment:

idq[n] �= idp[n], (6)

where the values in agg+q [n] and agg+p [n] do not
represent the same term. Alternatively, this can
be explained as fuzzy matching between two lex-
ical representations since the two different word-
piece tokens may interact and contribute to the
dot product. Term misalignment increases as d
becomes smaller with respect to |VBERT|; thus,
the error increases as well, which we show in
Section 5.4.

1Slice mean pooling is less effective in our experiment.

439

To mitigate this error, we distribute the semi-
aggregated lexical representation to the negative
orthants to form what we call the fully aggregated
lexical representation, distributed over the entire
d-dimensional space.

agg�q [n] =

{
agg+q [n] if idq[n] ∈ S+

n

−agg+q [n] if idq[n] ∈ S−
n ,

(7)

where S+
n and S−

n are disjoint subsets of Sn (i.e.,
S+
n ∪ S−

n = Sn and S+
n ∩ S−

n = ∅). That is,
we evenly distribute the elements in Sn to S+

n

and S−
n .

The dot product between two fully aggregated
lexical representations then becomes:

simagg(q, p) � agg�q · agg�p (8)

=

d∑
n=1

{
−agg+q [n] · agg+p [n] if case (a) or (b)

agg+q [n] · agg+p [n] otherwise,

where the cases are:

(a) idq[n] ∈ S+
n ; idp[n] ∈ S−

n ;

(b) idq[n] ∈ S−
n ; idp[n] ∈ S+

n .

That is, the dot product of agg� in Eq. (8) avoids
interactions between misaligned terms in the
above cases (with 50% of probability), which
agg+ in Eq. (5) does not consider. Note that we
do not store the vectors idp and idq to compute
Eq. (8). Figure 3(b) illustrates the difference be-
tween agg+q and agg�q with d = 5, |Sn| = 2 and
|S−

n | = |S+
n | = 1 for simplicity.

3.3 Fine-Tuning and Retrieval

Although agg� can mitigate the issue of term
misalignment, the approximation error cannot be
completely eliminated unless d = |VBERT|. To
enhance retrieval effectiveness, we concatenate
the agg� vector with the [CLS] vector since they
are pre-trained to capture textual representations
in different ways, focusing on the lexical and
semantic, respectively.

In our Aggretriever model, the scoring function
is the dot product of the concatenated vectors:

sim(q, p) � (eq[CLS] ⊕ agg�q) · (ep[CLS] ⊕ agg�p),

where ⊕ means vector concatenation. The vector
eq[CLS] ⊕agg�q captures representations pre-trained
from both NSP and MLM.

MARCO NQ TQA
passages 8,841,823 21,015,325
training queries 532,761 58,880 60,413

test queries
Dev / DL19 / 20 Test Test

6,980 / 43 / 53 3,610 11,313

Table 1: Dataset statistics.

During fine-tuning, we minimize the nega-
tive log-likelihood of a relevant query–passage
pair. Specifically, given a query q, its relevant
passage p+, and a set of negative passages {p−1 ,
p−2 , · · · , p−bs}, we train our model by minimizing
the negative log-likelihood (NLL) of the positive
{q, p+} pair over all the passages, i.e., L is

− log
exp(sim(q, p+))

exp(sim(q, p+)) +
bs∑
j=1

exp(sim(q, p−j))

.

Following Karpukhin et al. (2020), we include
the positive and negative passages from the other
queries in the same batch as the negatives. In
addition, we also use the same NLL loss, Lagg

and L[CLS], to optimize simagg and sim[CLS]

separately. The final loss is as follows:

L+ λ1 · Lagg + λ2 · L[CLS].

We set λ1 and λ2 to 0.5 in all our experiments.
While conducting end-to-end retrieval, we use Flat
IP in Faiss (Johnson et al., 2021) to index the pas-
sage vectors. Note that in our main experiments,
we project eq[CLS] and ep[CLS] to 128 dimensions
through a linear layer and set d = 640 for agg� so
that the dimensionality is 768.

4 Experimental Setup

4.1 Datasets

In-Domain Evaluations. We evaluate in-
domain retrieval effectiveness on web search
and open-domain question answering. Table 1
provides statistics of the datasets.

For web search, we use the MS MARCO pas-
sage ranking dataset introduced by Bajaj et al.
(2016), comprising a corpus with 8.8M passages
and around 500K training queries. We evaluate
model effectiveness on the following query sets:
(1) MARCO Dev, 6980 queries from the devel-
opment set with one relevant passage per query

440

on average. Following the established procedure,
we report RR@10 and R@1000 as the evalua-
tion metrics. (2) TREC DL (Craswell et al., 2019,
2020), created by the organizers of the 2019
(2020) Deep Learning Tracks at the Text REtrieval
Conferences (TRECs), where 43 (53) queries with
graded relevance labels are released. We report
nDCG@10, used by the organizers as the main
metric.

For open-domain question answering, we use
the Wikipedia corpus released by Karpukhin et al.
(2020) and conduct experiments on two query
sets, Natural Questions (NQ; Kwiatkowski et al.,
2019) and Trivia QA (TQA; Joshi et al., 2017).
We directly use the training and test sets re-
leased by Karpukhin et al. (2020) for training
and evaluation, respectively. For this task, we
report hit accuracy at cutoffs 5, 20, and 100,
denoted R@5/20/100.

Zero-Shot Evaluations. We evaluate zero-shot
retrieval effectiveness on open-domain QA with
two query sets, SQuAD (Rajpurkar et al., 2016)
and EntityQuestions (EntityQs; Sciavolino et al.,
2021), which are challenging for dense retrieval
models. We report hit accuracy at cutoffs 20
and 100 (R@20/100). In addition, we use BEIR
(Thakur et al., 2021), consisting of 18 distinct
IR datasets spanning diverse domains and tasks,
including retrieval, question answering, fact
checking, question paraphrasing, and citation pre-
diction. We conduct zero-shot retrieval on 14 of
the 18 datasets that are publicly available.2 We
report nDCG@10 averaged over the 14 datasets.

4.2 Models

Since our approach to text aggregation can be
applied to any existing pre-trained encoder-only
model, we test the effectiveness of Aggretriever
on two pre-trained LM models and two further
pre-trained models: (1) BERT (Devlin et al.,
2018); (2) DistilBERT (Sanh et al., 2019), a 6-
layer transformer distilled from BERT; (3) Con-
denser (Gao and Callan, 2021), a BERT model
further pre-trained with the tasks of auto-encoding
and skip-connection MLM; and (4) coCondenser
(Gao and Callan, 2022), a corpus-aware Con-
denser combining the tasks of skip-connection
MLM and an ICT variant that comes in two

2We exclude BioASQ, Signal-1M, TREC-NEWS, and
Robust04.

separate flavors, further pre-trained on the MS
MARCO and Wikipedia corpora, respectively.
All model checkpoints can be downloaded from
the HuggingFace Model Hub.3 We compare
models fine-tuned using only the [CLS] vec-
tor and based on our approach with the sub-
scripts ‘‘CLS’’ and ‘‘AGG’’, respectively, e.g.,
BERTCLS and BERTAGG. In addition, we also
report the effectiveness of BM25 as a reference
point; these results come from the Pyserini IR
toolkit (Lin et al., 2021a).

For implementation details, we refer readers to
Appendix A.1. It is worth emphasizing that in
our main experiments, we do not leverage any
expensive fine-tuning strategies such as hard neg-
ative mining or knowledge distillation. Thus, we
fine-tune all the DPR models under the same set-
tings for a fair comparison. Additional detailed
comparisons are provided in Appendix A.2.

5 Results

5.1 In-Domain Evaluations

Fine-Tuning with Full Training Data. Table 2
compares in-domain retrieval effectiveness across
the various models. We observe that our ap-
proach consistently improves on DistilBERT and
BERT across all datasets, especially for met-
rics that emphasize top rankings. For example,
DistilBERTAGG sees a three-point and five-point
improvement over DistilBERTCLS on RR@10 and
nDCG@10 for MS MARCO Dev and TREC DL,
respectively, and over two points on R@5 for
both NQ and TQA (row 2 vs 1). Similar trends
can be observed on BERT (row 4 vs 3).

For the further pre-trained models, we observe
that both CondenserAGG and coCondenserAGG

yield effectiveness gains on MS MARCO and
TQA (rows 6 and 8), which suggests that our
approach is orthogonal and additive to further
pre-training methods. We observe that in some
cases, Aggretriever using pre-trained BERT as
the backbone can obtain better retrieval effec-
tiveness than further pre-trained models that are
fine-tuned only on the [CLS] vector. For ex-
ample, BERTAGG outperforms CondenserCLS for
MS MARCO and TQA (row 4 vs 5). This in-
dicates that existing language models pre-trained
on MLM can serve as an effective single-vector

3https://huggingface.co/models.

441

https://huggingface.co/models

MARCO Dev DL19 / 20 NQ Test TQA Test

Model RR@10 R@1K nDCG@10 R@5 R@20 R@100 R@5 R@20 R@100

(a) BM25 0.188 0.858 0.506 / 0.475 0.438 0.629 0.783 0.663 0.764 0.832

(1) DistilBERTCLS 0.308 0.940 0.633 / 0.629 0.660 0.785 0.860 0.698 0.790 0.849

(2) DistilBERTAGG 0.341 0.960 0.682 / 0.674 0.681 0.805 0.869 0.729 0.808 0.857

(3) BERTCLS 0.314 0.942 0.612 / 0.643 0.677 0.799 0.863 0.710 0.796 0.852

(4) BERTAGG 0.343 0.962 0.677 / 0.666 0.696 0.805 0.867 0.735 0.813 0.860

(5) CondenserCLS 0.335 0.954 0.663 / 0.666 0.701 0.814 0.872 0.732 0.812 0.858

(6) CondenserAGG 0.356 0.966 0.674 / 0.697 0.699 0.810 0.873 0.747 0.821 0.864

(7) coCondenserCLS 0.352 0.973 0.674 / 0.684 0.707 0.818 0.878 0.745 0.819 0.867
(8) coCondenserAGG 0.363 0.973 0.678 / 0.697 0.699 0.812 0.875 0.751 0.823 0.867

Table 2: In-domain retrieval effectiveness comparisons. All models are fine-tuned with negatives from
BM25. Bold denotes the best model for that metric.

MARCO Dev

Model RR@10 R@1K

(a) BM25 0.188 0.858

Train Size 1K 10K 1K 10K

(1) DistilBERTCLS 0.145 0.222 0.754 0.865

(2) DistilBERTAGG 0.207 0.260 0.868 0.905

(3) BERTCLS 0.153 0.230 0.778 0.866

(4) BERTAGG 0.207 0.258 0.871 0.906

(5) CondenserCLS 0.191 0.259 0.841 0.903

(6) CondenserAGG 0.211 0.258 0.873 0.899

(7) coCondenserCLS 0.234 0.287 0.935 0.948
(8) coCondenserAGG 0.209 0.280 0.880 0.914

Table 3: In-domain retrieval effectiveness while
fine-tuning models using limited training data.

dense retriever, without further pre-training, us-
ing our proposed methods. Without corpus-aware
further pre-training, CondenserAGG is competitive
with coCondenserCLS on MS MARCO and TQA
(row 6 vs 7).

Fine-Tuning with Limited Data. Table 3 re-
ports retrieval effectiveness when the models are
fine-tuned on subsets of the MS MARCO train-
ing data. Specifically, we randomly sample 1K
and 10K queries from the training queries and
fine-tune the models on each set for 40 epochs.
We first observe that with only 1K training
queries, both DistilBERTCLS and BERTCLS un-
derperform BM25 (rows 1, 3 vs a), while both
DistilBERTAGG and BERTAGG surpass BM25

(rows 2, 4 vs a) and are on par with CondenserCLS

(row 5), indicating that our approach successfully
aggregates text information into a single vector
without any further pre-training. We observe sim-
ilar trends when fine-tuning models with 10K
training queries.

Finally, we find that coCondenserCLS performs
the best when fine-tuning with limited training
data. This is probably because coCondenser’s fur-
ther pre-training is designed for the [CLS] vector
to learn corpus-aware signals from pseudo rele-
vance in addition to skip-connection MLM. Thus,
the [CLS] vector is more ‘‘ready’’ for retrieval
with small training data.

5.2 Zero-Shot Evaluations

Near-Domain Retrieval Effectiveness. In
these experiments, we examine robustness in
a zero-shot retrieval setting. We first consider
transfer to ‘‘near-domain’’ (Wikipedia) datasets,
reported in Table 4. Specifically, we perform
retrieval on test queries from SQuAD and
EntityQs using models fine-tuned on NQ or TQA.

We see that Aggretriever with any backbone
yields sizable gains over its [CLS] counter-
part, with the exception that CondenserAGG (and
coCondenserAGG) underperforms CondenserCLS

(and coCondenserCLS) in SQuAD using NQ as
the source (e.g., row 6 vs 5). It is worth mention-
ing that using TQA as the source, Aggretriever
with any backbone is competitive with BM25
while the other [CLS] models still lag behind
BM25 on the EntityQs test queries. Finally, we
observe that models fine-tuned on TQA have

442

Target (Source) SQuAD (NQ) EntityQs (NQ) SQuAD (TQA) EntityQs (TQA)

Model R@20 R@100 R@20 R@100 R@20 R@100 R@20 R@100

(a) BM25 0.712 0.820 0.714 0.800 0.712 0.820 0.714 0.800

(1) DistilBERTCLS 0.514 0.670 0.518 0.650 0.573 0.725 0.640 0.751

(2) DistilBERTAGG 0.529 0.688 0.564 0.683 0.648 0.775 0.713 0.797

(3) BERTCLS 0.512 0.671 0.534 0.664 0.581 0.722 0.637 0.747

(4) BERTAGG 0.539 0.692 0.562 0.681 0.651 0.779 0.716 0.798

(5) CondenserCLS 0.559 0.705 0.567 0.692 0.605 0.742 0.671 0.775

(6) CondenserAGG 0.541 0.692 0.564 0.684 0.643 0.772 0.716 0.800

(7) coCondenserCLS 0.567 0.715 0.556 0.684 0.629 0.762 0.695 0.791

(8) coCondenserAGG 0.535 0.696 0.584 0.701 0.646 0.777 0.724 0.804

Table 4: Near-domain zero-shot retrieval effectiveness comparisons using NQ or TQA for fine-tuning.
Bold denotes the best model for that metric.

Model BEIR (nDCG@10)

(a) BM25 0.430

Source MARCO NQ TQA

(1) DistilBERTCLS 0.364 0.262 0.266

(2) DistilBERTAGG 0.450 0.277 0.386

(3) BERTCLS 0.382 0.283 0.305

(4) BERTAGG 0.449 0.299 0.394
(5) CondenserCLS 0.393 0.286 0.314

(6) CondenserAGG 0.447 0.295 0.385

(7) coCondenserCLS 0.414 0.277 0.307

(8) coCondenserAGG 0.446 0.280 0.376

Table 5: Multi-domain zero-shot retrieval effec-
tiveness comparisons using various sources for
fine-tuning. Bold denotes the best model for that
metric.

better zero-shot retrieval effectiveness in near-
domain datasets compared to those fine-tuned on
NQ, which is also observed by Ram et al. (2022).

Multi-Domain Retrieval Effectiveness. In ad-
dition, we evaluate zero-shot retrieval effective-
ness on the multi-domain BEIR dataset, reported
in Table 5. We evaluate the models fine-tuned
on three different sources: MS MARCO, NQ,
and TQA. Similarly, Aggretriever shows better
zero-shot retrieval effectiveness compared to its
[CLS] counterpart with any backbone. For ex-
ample, our model consistently and substantially

outperforms the comparable baselines using MS
MARCO and TQA as the source dataset for
fine-tuning. Although models fine-tuned on NQ
show the worst zero-shot retrieval capability,
Aggretriever with any backbone still slightly out-
performs its [CLS] counterpart. It is also worth
mentioning that Aggretriever with any backbone
fine-tuned on MS MARCO outperforms the strong
BM25 baseline.

5.3 Fine-Tuning with Noisy Hard Negatives

In this experiment, we use DistilBERTAGG to
examine Aggretriever’s robustness to fine-tuning
with noisy hard negatives. Following TCT (Lin
et al., 2021b) and RocketQA (Qu et al., 2021),
for each query in the MS MARCO training
set, we retrieve the top-200 candidates using
DistilBERTAGG and further fine-tune the model
by randomly sampling the candidates as nega-
tives for two additional epochs using the same
settings as the previous fine-tuning setup.

The results are listed in Table 6; we directly
copy the numbers of TCT and RocketQA from
the original papers. We notice that hard neg-
atives reduce the effectiveness of both TCT
and RocketQA since there are many false neg-
atives in the candidates, as noted by Qu et al.
(2021). They address this issue using expen-
sive training strategies: knowledge distillation,
denoising, and cross-batch negative sampling. On
the other hand, DistilBERTAGG obtains competi-
tive retrieval effectiveness without any expensive
training strategies. This experiment demonstrates

443

MARCO Dev

Model batch size RR@10 R@1K
RocketQA (Qu et al., 2021)
BM25 Neg. 8K 0.333 –
+ Hard Neg. 4K 0.260 –
+ Denoise 4K 0.364 –
+ Data Aug. 4K 0.370 0.979
TCT (Lin et al., 2021b)
BM25 Neg. + KD 96 0.344 0.967
+ Hard Neg. 96 0.237 0.929
+ KD 96 0.359 0.970
DistilBERTAGG

BM25 Neg. 64 0.341 0.960
+ Hard Neg. 64 0.360 0.967

Table 6: Fine-tuning with noisy hard negatives.

that Aggretriever is robust and able to extract
useful information when fine-tuned with hard
negatives.

5.4 Ablation Study

In this experiment, we use DistilBERTAGG fine-
tuned on the MS MARCO dataset to conduct
an ablation study. In addition to MARCO Dev,
to understand the zero-shot effectiveness of each
condition, we conduct retrieval on a subset of
BEIR (denoted BEIR small), consisting of five
datasets from different domains: NFCorpus, FiQA,
ArguAna, SCIDOCS, and SciFact. We report
nDCG@10 averaged over these five datasets.

Dimensionality Ablation. We first study the ef-
fects of dimensionality on the [CLS] and agg�
vectors in Table 7. We find that [CLS] alone
slightly outperforms agg� alone (row 1 vs 4) on
in-domain evaluation while the reverse trend is
seen on zero-shot evaluation. This observation in-
dicates that the [CLS] and agg� vectors encode
text in different ways and that combining them
further improves retrieval effectiveness (row 5).
Compared to [CLS] alone and agg� alone, we
still see a slight improvement for in-domain eval-
uation at 256 dimensions (row 6 vs 1 and 4).
Holding the number of dimensions constant (rows
1–4), the best condition (row 3) indicates that
the agg� vector requires more space than the
[CLS] vector.

Dim. MARCO Dev BEIR small

[CLS] agg� RR@10 R@1K nDCG@10

(1) 768 0 0.308 0.940 0.259
(2) 640 128 0.327 0.954 0.307
(3) 128 640 0.341 0.960 0.355
(4) 0 768 0.307 0.926 0.328
(5) 768 768 0.350 0.966 0.358
(6) 128 128 0.320 0.946 0.300
(7) 0 30522 0.345 0.956 0.363

Table 7: DistilBERTAGG dimensionality ablation.

Finally, we report the retrieval effectiveness of
the original wordpiece lexical representations be-
fore pruning (row 7), which can be considered
the effectiveness upper bound of agg�. Although
agg� with 768 dimensions has lower effective-
ness (row 4 vs 7), combined with [CLS], Aggre-
triever reduces the gap (rows 3, 5 vs 7), with better
retrieval efficiency in terms of smaller index size
and lower retrieval latency. For example, on the
MS MARCO dataset, representing each passage
as a 768-dimensional vector in a Faiss Flat in-
dex with 32 (16) bits requires 26 (13) GB and
100 ms/q retrieval latency on a single V100
GPU, while the 30522-dimensional vectors (with-
out pruning) require around 40 times more index
storage and are not practical for end-to-end
retrieval.

Pooling Stage Ablation. In the second abla-
tion experiment, we fix [CLS] and agg� to 128
and 640 dimensions, respectively, and compare
different designs of the pooling stage to form
agg�, as discussed in Section 3.1. The results
are reported in the first main block of Table 8;
row 1 is our default condition. In row 2, we re-
move the term importance component and assign
a term weight of one for weighted max pool-
ing. A substantial drop in retrieval effectiveness
can be observed. In row 3, we remove MLM
projection and represent each query (or passage)
token with the 30522-dimensional indicator vec-
tor in Eq. (2); that is, pqi = xj ∈ {0, 1}|VBERT|

for j ∈ {token id(qi)}. We notice that skip-
ping the MLM projector modestly harms retrieval
effectiveness. This means that most textual in-
formation can be captured without the MLM
projector, but it does help. This is sensible since

444

Pooling Pruning MARCO Dev BEIR small
MLM Weight RR@10 R@1K nDCG@10

(1) ✓ ✓ full aggregation 0.341 0.960 0.355

(2) ✓ ✗ full aggregation 0.308 0.937 0.308

(3) ✗ ✓ full aggregation 0.332 0.953 0.355

(4) ✓ ✓ semi aggregation 0.341 0.960 0.322

(5) ✓ ✓ linear(|VBERT| → 640) 0.327 0.959 0.313

(6) AVERAGE linear(768 → 640) 0.300 0.933 0.270

(7) RepBERT (Zhan et al., 2020) – 0.306 0.942 0.264

Table 8: DistilBERTAGG text aggregation ablation. We project [CLS] to 128 dimensions and concat-
enate with a 640-dimensional embedding pooled and pruned using different strategies. AVERAGE
denotes average pooling over all 768-dimensional contextualized token embeddings other than [CLS].

the 30522-dimensional indicator vector still re-
tains each original query (or passage) term. A
comparison of row 2 and row 3 shows that learned
term weights for each token are more important
than the term semantic distribution (projected by
MLM) over the wordpiece vocabulary.

Pruning Stage Ablation. In the second main
block of Table 8, we study the effects of prun-
ing wordpiece lexical representations on Aggre-
triever. For example, we semi-aggregate (linearly
project) the lexical representations into 640-
dimensional dense vectors, as shown in row 4 (5).
We observe that our non-parametric pruning ap-
proaches are better than the learned ones (rows
1, 4 vs 5). Although agg+ shows the same re-
trieval effectiveness as agg� on in-domain eval-
uation, a substantial drop can be observed on
out-of-domain evaluation (row 1 vs 4). This result
demonstrates that our fully aggregated represen-
tations better preserve information from lexical
representations and appear to be more robust to
domain shifts.

We observe that directly projecting averaged
contextualized embedding (excluding the [CLS]),
denoted AVERAGE, into 640 dimensions, and
then concatenating with [CLS] (row 6), does
not perform well, indicating that projecting con-
textualized token embeddings into the high-
dimensional wordpiece lexical space before
pooling is key to preserving lexical information.
Finally, we also try average pooling over all con-
textualized embeddings (including the [CLS]),
which corresponds to RepBERT (Zhan et al.,
2020). This yields negligible effectiveness differ-

Figure 4: In-domain versus zero-shot effectiveness
comparisons between textual representations under
different numbers of dimensions.

ence from AVERAGE concatenated with [CLS]
(row 7 vs 6); i.e., 0.306 (RR@10) and 0.264
(nDCG@10) on MARCO dev and BEIR small,
respectively.

To further understand the differences between
pruned lexical representations (rows 1, 4, 5 in
Table 8), we fine-tune DistilBERT using each
representation alone (without using [CLS]) with
128, 256, and 768 dimensions on the MS MARCO
dataset and compare their retrieval effectiveness
on MS MARCO Dev and BEIR small in Figure 4.
We observe that agg� performs better than agg+
under all conditions, demonstrating that distribut-
ing representations to the full vector space can
mitigate the problem of term misalignment (rect-
angles vs triangles) mentioned in Section 3.2,
especially when the number of dimensions is
small. Although the linearly projected lexical rep-
resentations (diamonds) show better in-domain
retrieval effectiveness than our non-parametric

445

pruning approaches (agg+ and agg�) with 128
and 256 dimensions, agg� still exhibits better
zero-shot retrieval effectiveness. This indicates
that the learned linear projector helps compress
textual information into low-dimensional space
in a way that is biased toward the training data.

In addition, in Figure 4, we also show the re-
trieval effectiveness of [CLS] and AVERAGE
(solid and hollow circles) as comparisons. We
observe that although all 768-dimensional textual
representations reach similar in-domain retrieval
effectiveness, [CLS] and AVERAGE show poor
zero-shot retrieval effectiveness on BEIR small
compared to the other models pruned from 30K-
dimensional lexical representations. We hypothe-
size that [CLS] and AVERAGE capture textual
information in a different manner than our lex-
ical representations. This explains why fusing
[CLS] with pruned lexical representations per-
forms better than AVERAGE (rows 1, 4, 5 vs 6
in Table 8).

However, [CLS] and AVERAGE do not ex-
hibit much retrieval effectiveness drop on both in-
domain and zero-shot evaluations when reducing
the number of dimensions. This is probably be-
cause lexical representations contain fine-grained
textual information in 30K-dimensional lexical
space while [CLS] and AVERAGE embeddings
capture high-level textual information in low-
dimensional semantic space. This result also ex-
plains the optimal balance in Table 7, where agg�
requires more space than [CLS] when restricting
the total vector dimension to 768.

5.5 Query Encoding Latency
Although different single-vector dense retrievers
with the same vector dimensionality have similar
retrieval latency under the same software and en-
vironment when performing top-k retrieval, query
encoding latency is also an important component
to consider. In this experiment, we compare the
query encoding latency of DistilBERTAGG and
DistilBERTCLS. We measure the time required to
encode the 6980 queries from MARCO Dev with
batch size one on the CPU and GPU, using one
thread on a Linux machine with a 2.2 GHz Intel
Xeon Silver 4210 CPU and a single Tesla V100
GPU (32GB), respectively. We report the latency
at 1st, 50th, and 99th percentiles in Table 9.

We observe that query encoding with Aggre-
triever is slightly slower than its [CLS] coun-
terpart on the GPU (row 2 vs 1). On the CPU,

latency (1st / 50th / 99th perc.)

CPU GPU

(1) DistilBERTCLS 93 / 103 / 122 ms 15 / 16 / 18 ms

(2) DistilBERTAGG 155 / 163 / 191 ms 18 / 19 / 24 ms

(3) w/o MLM 103 / 109 / 138 ms 16 / 19 / 20 ms

Table 9: Query encoding latency comparisons.

the gap is much larger, especially for tail queries.
However, from row 3 (the same condition as row
3 in Table 8), we see that skipping the MLM head
projection step reduces the query encoding latency
with only a small retrieval effectiveness loss. For
a real-world application, this might be a sensible
option, bringing query encoding latency roughly
in line with the [CLS]-only model.

5.6 Comparison with Sparse Retrievers

In our final set of experiments, we compare Ag-
gretriever and sparse retrievers since we borrow
ideas from existing learned sparse retrieval mod-
els such as SPLADE-max (Formal et al., 2021a),
which uses a different activation function after the
MLM projector and adds sparsity regularization to
generate sparse lexical representations for inverted
indexes. For comparison to a sparse retriever with-
out MLM projection, we use uniCOIL without
expansions from T5 (Nogueira and Lin, 2019).
Both models are fine-tuned on MS MARCO with
BM25 negatives; thus, they represent reasonably
fair comparisons to DistilBERTAGG and its variant
without MLM, respectively (although uniCOIL
uses BERT as a backbone). We index and eval-
uate SPLADE-max and uniCOIL using the code
provided by Formal et al. (2021a)4 and Pyserini
(Lin et al., 2021a), respectively.5

Results are shown in Table 10. We first observe
that DistilBERTCLS shows competitive in-domain
retrieval effectiveness but underperforms sparse
retrievers on out-of-domain evaluations (row 1
vs 5). This indicates that sparse retrieval using
lexical matching has better generalization across
retrieval tasks than dense retrieval with [CLS]
alone. On the other hand, DistilBERTAGG and its
variant show equally good generalization capabil-
ity compared to the sparse retrievers (rows 2, 3

4https://github.com/naver/splade.
5Note that the BEIR figures for SPLADE-max reported

in Formal et al. (2021a) do not include CQADupStack and
use Tóuche-2020 (v1) instead of Tóuche-2020 (v2).

446

https://github.com/naver/splade

MARCO Dev BEIR
RR@10 R@1K nDCG@10

(1) DistilBERTCLS 0.308 0.940 0.364
(2) DistilBERTAGG 0.341 0.960 0.450
(3) w/o MLM 0.332 0.953 0.445
(4) SPLADE-max 0.340 0.965 0.447
(5) w/o MLM∗ 0.315 0.924 0.441
∗ uniCOIL w/o expansion (Lin and Ma, 2021) can be

considered a variant of SPLADE-max w/o MLM.

Table 10: Comparison with sparse retrievers.

vs 4, 5). We attribute the transferability of Ag-
gretriever to agg�, which effectively aggregates
and preserves information from wordpiece lexical
representations.

Finally, we observe that without the MLM pro-
jector, the effectiveness of the sparse retrievers
degrades, especially on in-domain evaluation (row
4 vs 5), while agg� only sees a slight degradation
(row 2 vs 3). We hypothesize that the MLM projec-
tor helps sparse retrievers learn semantic matching
as well as exact term matching. In contrast, Ag-
gretriever can still learn semantic matching, even
without the MLM projector, because it benefits
from fusion with the [CLS] vector.

6 Related Work

Dense Retrieval. The most related line of re-
search to our own work is the literature on how
to effectively fine-tune a single-vector dense re-
triever. On the one hand, some researchers propose
computationally expensive fine-tuning techniques
such as hard negative mining strategies (Xiong
et al., 2021; Zhan et al., 2021b), knowledge distil-
lation (Lin et al., 2021b; Hofstätter et al., 2021),
or their combination (Qu et al., 2021). On the
other hand, others leverage further pre-training to
improve the subsequent fine-tuning (Lee et al.,
2019; Gao et al., 2021b; Lu et al., 2021; Gao
and Callan, 2021; Izacard et al., 2021; Gao
and Callan, 2022; Liu and Shao, 2022). As far as
we are aware, our work is the first to discuss how
to fine-tune dense retrieval models to effectively
aggregate textual information from the pre-trained
MLM head rather than directly using the [CLS]
vector or contextualized embeddings from max or
average pooling (Reimers and Gurevych, 2019).

Sparse Retrieval. Previous work (Bai et al.,
2020; Mallia et al., 2021; Formal et al., 2021b;
Lin and Ma, 2021) has demonstrated that pro-
jecting contextualized token embeddings into a
high-dimensional vector in the wordpiece vocab-
ulary space is an effective way to represent token-
level information from transformers for lexical
matching. These models directly feed the high-
dimensional vectors into an inverted index for
retrieval. Thus, sparsity control for effectiveness–
efficiency tradeoffs involves additional consider-
ations (Mackenzie et al., 2021). In contrast, our
approach converts high-dimensional vectors into
low-dimensional ones where top-k retrieval can
be performed directly using ANN search libraries
(Guo et al., 2020; Johnson et al., 2021).

Hybrid Retrieval. Our work can be character-
ized as hybrid since we ‘‘fuse’’ semantic and
lexical representations into a single dense vector.
Recent work (Gao et al., 2021a; Hofstätter et al.,
2022; Shen et al., 2022; Lin and Lin, 2022)
proposes to jointly train [CLS] and token-level
representations for semantic and lexical matching,
respectively. The two kinds of representations
require different implementations for top-k re-
trieval, so multiple software stacks are required to
perform retrieval. In contrast, our representations
retain the best of semantic and lexical matching,
but entirely as dense vectors. Thus, retrieval can
be performed in a simple execution environment.

7 Conclusion and Future Work

In this paper, we present Aggretriever, a single-
vector dense retrieval model that exploits all
contextualized token embeddings from the in-
put to BERT. We introduce a simple approach
to aggregate the contextualized token embed-
dings into a dense vector, agg�. Experiments show
that agg� combined with the standard [CLS]
vector achieves better retrieval effectiveness than
using the [CLS] vector alone for both in-domain
and zero-shot evaluations. Our work demon-
strates that MLM pre-trained transformers can
be fine-tuned into effective dense retrievers with-
out further pre-training or expensive fine-tuning
strategies.

Our work leads to a few open questions for
future research: (1) Since we have demonstrated
that Aggretriever still benefits from further pre-
training, can we design additional pre-training
tasks tailored directly to our model? The design

447

of these tasks, of course, needs to be mindful
of the computational costs. (2) Can we apply
current state-of-the-art compression techniques
to Aggretriever? Zhan et al. (2021a, 2022) has
shown that 768-dimensional dense representa-
tions can be effectively compressed into much
smaller vectors. However, it is still unknown if
these techniques can be applied to Aggretriever
to retain both in-domain and zero-shot retrieval
effectiveness. (3) Finally, can we apply Aggre-
triever to multi-lingual retrieval? Because, in a
multi-lingual BERT model, the MLM head can
project into tokens in multiple languages, we can
envision a natural extension. However, as shown
in Section 5.5, MLM projection is expensive, and
the issue becomes worse when using a pre-trained
multi-lingual model since the vocabulary size is
usually even larger.

Acknowledgments

This research was supported in part by the Canada
First Research Excellence Fund and the Natu-
ral Sciences and Engineering Research Council
(NSERC) of Canada. We thank the anonymous
referees who provided useful feedback to improve
this work.

A Appendix

A.1 Implementation Details

We implement our models using Tevatron (Gao
et al., 2022) and apply its default training settings
in most tasks. For MS MARCO, we train models
for three epochs with a learning rate 5e − 6, and
for each batch, we include 8 queries. Each of the
queries is paired with a randomly sampled positive
passage and 7 negative passages mined using
BM25. The maximum query and passage lengths
are set to 32 and 128, respectively. Note that we
use the official training set and corpus6 instead of
the ones in Tevatron, which are further processed
by Qu et al. (2021). For open-domain QA, we
follow the original settings used by Karpukhin
et al. (2020) except for two modifications: (1)
we use shared instead of independent weights
between the query and passage encoders; (2) we
set the maximum query and passage lengths to
32 and 156 for faster fine-tuning and inference.

6https://microsoft.github.io/msmarco
/TREC-Deep-Learning-2019.

w/o pre-training w/ pre-training

D
istilB

ER
T

A
G

G

TA
S-B

C
L-D

R
D

coC
ondenserA

G
G

coC
ondenser

C
ontriever

G
TR

-B
ase

KD ✗ ✓ ✓ ✗ ✗ ✗ ✓

HNM ✗ ✗ ✓ ✗ ✓ ✓ ✓

batch size >1K ✗ ✗ ✗ ✗ ✗ ✓ ✓

MARCO RR@10
Dev 0.341 0.344 0.381 0.363 0.382∗ 0.341 0.366

BEIR nDCG@10
TREC-COVID 0.661 0.481 0.584 0.751 0.712 0.596 0.539

NFCorpus 0.297 0.319 0.315 0.323 0.325 0.328 0.308

NQ 0.474 0.463 0.500 0.490 0.487 0.498 0.495

HotpotQA 0.616 0.584 0.589 0.609 0.563 0.638 0.535

FiQA-2018 0.292 0.300 0.308 0.305 0.276 0.329 0.349

ArguAna 0.417 0.429 0.413 0.438 0.299 0.446 0.511

Tóuche-2020 (v2) 0.263 0.162 0.203 0.213 0.191 0.230 0.205

Quora 0.834 0.835 0.826 0.851 0.856 0.865 0.881

DBPedia 0.362 0.384 0.381 0.380 0.363 0.413 0.347

SCIDOCS 0.138 0.149 0.146 0.143 0.137 0.165 0.149

FEVER 0.781 0.700 0.734 0.600 0.495 0.758 0.660

Climate-FEVER 0.210 0.228 0.204 0.155 0.144 0.237 0.241

SciFact 0.630 0.643 0.621 0.650 0.615 0.677 0.600

CQADupStack 0.318 0.314 0.325 0.338 0.320 0.345 0.357
Avg.nDCG@10 0.450 0.428 0.439 0.446 0.413 0.466 0.441

∗ These numbers are not comparable due to the use of a ‘‘non-standard’’ MS

MARCO passage corpus that has been augmented with title.

Table 11: Comparisons with existing DPR models.

Note that we use one and four Tesla V100 GPUs
(32GB) for model fine-tuning on MS MARCO
and open-domain QA, respectively. For BEIR
evaluation, we use the APIs provided by Thakur
et al. (2021) and set maximum query and passage
input lengths to 512.7

A.2 Comparison with Existing DPR Models

Table 11 compares Aggretriever with existing
dense retrievers fine-tuned with more expen-
sive strategies; i.e., cross-encoder knowledge
distillation (KD), hard negative mining (HNM),
and large in-batch negatives, on both in-domain
and out-of-domain evaluations. The two base-
line models without further pre-training are: (1)
TAS-B (Hofstätter et al., 2021), which distills
ColBERT and a cross-encoder to DPR with
an efficient topic-aware sampling strategy; (2)
CL-DRD (Zeng et al., 2022), which further im-
proves TAS-B by combining curriculum learning,
HNM, and cross-encoder KD. Three models with
further pre-training are included: (1) coCondenser
(Gao and Callan, 2022), already discussed in
Section 4.2; (2) Contriever (Izacard et al., 2021),
which leverages pre-training by combining ad-
vanced contrastive learning techniques with an
Inverse Cloze Task (ICT) variant; (3) GTR-Base

7https://github.com/beir-cellar/beir.

448

https://microsoft.github.io/msmarco/TREC-Deep-Learning-2019
https://microsoft.github.io/msmarco/TREC-Deep-Learning-2019
https://github.com/beir-cellar/beir

(Ni et al., 2021), which trains a T5-Base encoder
model that combines pre-training, KD, and HNM.
For TAS-B, Contriever, and GTR-Base, we di-
rectly copy numbers from Izacard et al. (2021)
and Ni et al. (2021), respectively. For CL-DRD8

and coCondenser,9 we use the models provided
by the authors to conduct in-domain and out-
of-domain evaluations ourselves. Note that the
coCondenser model provided by the authors is
fine-tuned in another round with self-mined
hard negatives. Furthermore, they use a ‘‘non-
standard’’ MS MARCO corpus where each pas-
sage is concatenated with a title; thus, the MS
MARCO Dev results are different from the val-
ues for coCondenserCLS reported in Table 2.

First, we observe that DistilBERTAGG is not
only competitive with TAS-B on in-domain eval-
uation but also outperforms both TAS-B and
CL-DRD on out-of-domain evaluation, without
needing supervision from an expensive cross-
encoder teacher. Secondly, Contriever yields the
best out-of-domain results at the cost of in-domain
effectiveness. On the other hand, coCondenserAGG

reaches the same level of retrieval effectiveness
as GTR-Base without leveraging any expensive
fine-tuning strategies. Fine-tuning Aggretriever
with KD, HNM, and large batch size is possi-
ble to further improve retrieval effectiveness, but
these techniques are orthogonal to our proposed
model.

References

Yang Bai, Xiaoguang Li, Gang Wang, Chaoliang
Zhang, Lifeng Shang, Jun Xu, Zhaowei Wang,
Fangshan Wang, and Qun Liu. 2020. SparTerm:
Learning term-based sparse representation for
fast text retrieval. arXiv:2010.00768.

Payal Bajaj, Daniel Campos, Nick Craswell,
Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan
Majumder, Andrew McNamara, Bhaskar Mitra,
Tri Nguyen, Mir Rosenberg, Xia Song, Alina
Stoica, Saurabh Tiwary, and Tong Wang.
2016. MS MARCO: A human generated ma-
chine reading comprehension dataset. arXiv:
1611.09268.

Wei-Cheng Chang, Felix X. Yu, Yin-Wen
Chang, Yiming Yang, and Sanjiv Kumar.
8https://github.com/HansiZeng/CL-DRD.
9https://huggingface.co/Luyu/co-condenser

-marco-retriever.

2020. Pre-training tasks for embedding-based
large-scale retrieval. In Proceedings of ICLR.

Nick Craswell, Bhaskar Mitra, and Daniel
Campos. 2019. Overview of the TREC 2019
deep learning track. In Proceedings of TREC.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz,
and Daniel Campos. 2020. Overview of the
TREC 2020 deep learning track. In Proceed-
ings of TREC.

Jacob Devlin, Ming-Wei Chang, Kenton Lee,
and Kristina Toutanova. 2018. BERT: Pre-
training of deep bidirectional transformers for
language understanding. arXiv:1810.04805.

Thibault Formal, Carlos Lassance, Benjamin
Piwowarski, and Stéphane Clinchant. 2021a.
SPLADE v2: Sparse lexical and expansion
model for information retrieval. arXiv:2109
.10086. https://doi.org/10.1145/3404835
.3463098

Thibault Formal, Benjamin Piwowarski, and
Stéphane Clinchant. 2021b. SPLADE: Sparse
lexical and expansion model for first stage rank-
ing. In Proceedings of SIGIR, pages 2288–2292.
https://doi.org/10.1145/3404835
.3463098

Luyu Gao and Jamie Callan. 2021. Condenser:
A pre-training architecture for dense retrieval.
In Proceedings of EMNLP, pages 981–993.
https://doi.org/10.18653/v1/2021
.emnlp-main.75

Luyu Gao and Jamie Callan. 2022. Unsupervised
corpus aware language model pre-training for
dense passage retrieval. In Proceedings of ACL,
pages 2843–2853. https://doi.org/10
.18653/v1/2022.acl-long.203

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021a.
COIL: Revisit exact lexical match in informa-
tion retrieval with contextualized inverted list.
In Proceedings of NAACL, pages 3030–3042.
https://doi.org/10.18653/v1/2021
.naacl-main.241

Luyu Gao, Xueguang Ma, Jimmy Lin, and
Jamie Callan. 2022. Tevatron: An efficient
and flexible toolkit for dense retrieval.
arxiv.2203.05765.

Tianyu Gao, Xingcheng Yao, and Danqi Chen.
2021b. SimCSE: Simple contrastive learning

449

https://github.com/HansiZeng/CL-DRD
https://huggingface.co/Luyu/co-condenser-marco-retriever
https://huggingface.co/Luyu/co-condenser-marco-retriever
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.18653/v1/2021.emnlp-main.75
https://doi.org/10.18653/v1/2021.emnlp-main.75
https://doi.org/10.18653/v1/2022.acl-long.203
https://doi.org/10.18653/v1/2022.acl-long.203
https://doi.org/10.18653/v1/2021.naacl-main.241
https://doi.org/10.18653/v1/2021.naacl-main.241

of sentence embeddings. In Proceedings of
EMNLP, pages 6894–6910.

Ruiqi Guo, Philip Sun, Erik Lindgren, Quan
Geng, David Simcha, Felix Chern, and Sanjiv
Kumar. 2020. Accelerating large-scale infer-
ence with anisotropic vector quantization. In
Proceedings of ICML.

Sebastian Hofstätter, Sheng-Chieh Lin, Jheng-
Hong Yang, Jimmy Lin, and Allan Hanbury.
2021. Efficiently teaching an effective dense
retriever with balanced topic aware sampling.
In Proceedings of SIGIR, pages 113–122.
https://doi.org/10.1145/3404835
.3462891

Sebastian Hofstätter, Omar Khattab, Sophia
Althammer, Mete Sertkan, and Allan Hanbury.
2022. Introducing neural bag of whole-words
with ColBERTer: Contextualized late interac-
tions using enhanced reduction. arXiv:2203
.13088. https://doi.org/10.1145/3511808
.3557367

Gautier Izacard, Mathilde Caron, Lucas Hosseini,
Sebastian Riedel, Piotr Bojanowski, Armand
Joulin, and Edouard Grave. 2021. Unsuper-
vised dense information retrieval with con-
trastive learning. arXiv:2112.09118.

Kyoung-Rok Jang, Junmo Kang, Giwon Hong,
Sung-Hyon Myaeng, Joohee Park, Taewon
Yoon, and Heecheol Seo. 2021. Ultra-high
dimensional sparse representations with bina-
rization for efficient text retrieval. In Proceed-
ings of EMNLP, pages 1016–1029.

Jeff Johnson, Matthijs Douze, and Hervé Jégou.
2021. Billion-scale similarity search with
GPUs. IEEE Transactions on Big Data,
pages 535–547. https://doi.org/10.1109
/TBDATA.2019.2921572

Mandar Joshi, Eunsol Choi, Daniel Weld, and
Luke Zettlemoyer. 2017. TriviaQA: A large
scale distantly supervised challenge dataset
for reading comprehension. In Proceedings of
ACL, pages 1601–1611. https://doi.org
/10.18653/v1/P17-1147

Vladimir Karpukhin, Barlas Oguz, Sewon
Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020.
Dense passage retrieval for open-domain ques-

tion answering. In Proceedings of EMNLP,
pages 6769–6781. https://doi.org/10
.18653/v1/2020.emnlp-main.550

Tom Kwiatkowski, Jennimaria Palomaki, Olivia
Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin,
Matthew Kelcey, Jacob Devlin, Kenton Lee,
Kristina N. Toutanova, Llion Jones, Ming-Wei
Chang, Andrew Dai, Jakob Uszkoreit, Quoc
Le, and Slav Petrov. 2019. Natural Questions:
A benchmark for question answering research.
Transactions of the Association of Computa-
tional Linguistics, 7:452–466. https://doi
.org/10.1162/tacl_a_00276

Kenton Lee, Ming-Wei Chang, and Kristina
Toutanova. 2019. Latent retrieval for weakly
supervised open domain question answering. In
Proceedings of ACL, pages 6086–6096.

Jimmy Lin and Xueguang Ma. 2021. A few brief
notes on DeepImpact, COIL, and a concep-
tual framework for information retrieval tech-
niques. arXiv:2106.14807.

Jimmy Lin, Xueguang Ma, Sheng-Chieh
Lin, Jheng-Hong Yang, Ronak Pradeep, and
Rodrigo Nogueira. 2021a. Pyserini: A Python
toolkit for reproducible information retrieval
research with sparse and dense representations.
In Proceedings of SIGIR, pages 2356–2362.
https://doi.org/10.1145/3404835
.3463238

Sheng-Chieh Lin and Jimmy Lin. 2022. A dense
representation framework for lexical and se-
mantic matching. arXiv:2206.09912.

Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy
Lin. 2021b. In-batch negatives for knowledge
distillation with tightly-coupled teachers for
dense retrieval. In Proceedings of RepL4NLP,
pages 163–173.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei
Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin
Stoyanov. 2019. RoBERTa: A robustly opti-
mized BERT pretraining approach. arXiv:1907
.11692.

Zheng Liu and Yingxia Shao. 2022. RetroMAE:
Pre-training retrieval-oriented transformers via
masked auto-encoder. arXiv:2205.12035.

450

https://doi.org/10.1145/3404835.3462891
https://doi.org/10.1145/3404835.3462891
https://doi.org/10.1145/3511808.3557367
https://doi.org/10.1145/3511808.3557367
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1145/3404835.3463238
https://doi.org/10.1145/3404835.3463238

Shuqi Lu, Di He, Chenyan Xiong, Guolin Ke,
Waleed Malik, Zhicheng Dou, Paul Bennett,
Tie-Yan Liu, and Arnold Overwijk. 2021. Less
is more: Pretrain a strong Siamese encoder
for dense text retrieval using a weak decoder.
In Proceedings of EMNLP, pages 2780–2791.
https://doi.org/10.18653/v1/2021
.emnlp-main.220

Joel Mackenzie, Andrew Trotman, and Jimmy
Lin. 2021. Wacky weights in learned sparse
representations and the revenge of score-at-
a-time query evaluation. arXiv:2110.11540.

Antonio Mallia, Omar Khattab, Torsten Suel,
and Nicola Tonellotto. 2021. Learning passage
impacts for inverted indexes. In Proceedings
of SIGIR, pages 1723–1727. https://doi
.org/10.1145/3404835.3463030

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai,
Gustavo Hernández Ábrego, Ji Ma, Vincent
Y. Zhao, Yi Luan, Keith B. Hall, Ming-Wei
Chang, and Yinfei Yang. 2021. Large dual
encoders are generalizable retrievers. arXiv:
2112.07899.

Rodrigo Nogueira and Jimmy Lin. 2019. From
doc2query to docTTTTTquery. https://
api.semanticscholar.org/CorpusID
:208612557.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu,
Ruiyang Ren, Wayne Xin Zhao, Daxiang
Dong, Hua Wu, and Haifeng Wang. 2021.
RocketQA: An optimized training approach to
dense passage retrieval for open-domain ques-
tion answering. In Proceedings of NAACL,
pages 5835–5847. https://doi.org/10
.18653/v1/2021.naacl-main.466

Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu.
2020. Exploring the limits of transfer learning
with a unified text-to-text transformer. Journal
of Machine Learning Research, 21(140):1–67.

Pranav Rajpurkar, Jian Zhang, Konstantin
Lopyrev, and Percy Liang. 2016. SQuAD:
100,000+ questions for machine comprehen-
sion of text. In Proceedings of EMNLP,
pages 2383–2392. https://doi.org/10
.18653/v1/D16-1264

Ori Ram, Gal Shachaf, Omer Levy, Jonathan
Berant, and Amir Globerson. 2022. Learning
to retrieve passages without supervision. In
Proceedings of NAACL, pages 2687–2700.
https://doi.org/10.18653/v1/2022
.naacl-main.193

Nils Reimers and Iryna Gurevych. 2019.
Sentence-BERT: Sentence embeddings using
Siamese BERT-networks. In Proceedings of
EMNLP, pages 3982–3992. https://doi
.org/10.18653/v1/D19-1410

Victor Sanh, Lysandre Debut, Julien Chaumond,
and Thomas Wolf. 2019. DistilBERT, a dis-
tilled version of BERT: Smaller, faster, cheaper
and lighter. arXiv:1910.01108.

Christopher Sciavolino, Zexuan Zhong, Jinhyuk
Lee, and Danqi Chen. 2021. Simple entity-
centric questions challenge dense retrievers.
In Proceedings of EMNLP. https://doi
.org/10.18653/v1/2021.emnlp-main
.496

Tao Shen, Xiubo Geng, Chongyang Tao, Can
Xu, Kai Zhang, and Daxin Jiang. 2022. Uni-
fier: A unified retriever for large-scale re-
trieval. arXiv:2205.11194.

Nandan Thakur, Nils Reimers, Andreas Rücklé,
Abhishek Srivastava, and Iryna Gurevych.
2021. BEIR: A heterogeneous benchmark for
zero-shot evaluation of information retrieval
models. In Proceedings of NIPS.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung
Tang, Jialin Liu, Paul N. Bennett, Junaid
Ahmed, and Arnold Overwijk. 2021. Approx-
imate nearest neighbor negative contrastive
learning for dense text retrieval. In Proceed-
ings of ICLR.

Jheng-Hong Yang, Xueguang Ma, and Jimmy
Lin. 2021. Sparsifying sparse representations
for passage retrieval by top-k masking. arXiv:
2112.09628.

Hansi Zeng, Hamed Zamani, and Vishwa Vinay.
2022. Curriculum learning for dense re-
trieval distillation. In Proceedings of SIGIR,
pages 1979–1983. https://doi.org/10
.1145/3477495.3531791

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng
Guo, Min Zhang, and Shaoping Ma. 2021a.

451

https://doi.org/10.18653/v1/2021.emnlp-main.220
https://doi.org/10.18653/v1/2021.emnlp-main.220
https://doi.org/10.1145/3404835.3463030
https://doi.org/10.1145/3404835.3463030
https://api.semanticscholar.org/CorpusID:208612557
https://api.semanticscholar.org/CorpusID:208612557
https://api.semanticscholar.org/CorpusID:208612557
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/2022.naacl-main.193
https://doi.org/10.18653/v1/2022.naacl-main.193
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2021.emnlp-main.496
https://doi.org/10.18653/v1/2021.emnlp-main.496
https://doi.org/10.18653/v1/2021.emnlp-main.496
https://doi.org/10.1145/3477495.3531791
https://doi.org/10.1145/3477495.3531791

Jointly optimizing query encoder and product
quantization to improve retrieval performance.
In Proceedings of CIKM, pages 2487–2496.
https://doi.org/10.1145/3459637
.3482358

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng
Guo, Min Zhang, and Shaoping Ma. 2021b.
Optimizing dense retrieval model training with
hard negatives. In Proceedings of SIGIR,
pages 1503–1512. https://doi.org/10
.1145/3404835.3462880

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng
Guo, Min Zhang, and Shaoping Ma. 2022.
Learning discrete representations via con-
strained clustering for effective and efficient
dense retrieval. In Proceedings of WSDM,
pages 1328–1336. https://doi.org/10
.1145/3488560.3498443

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Min Zhang,
and Shaoping Ma. 2020. RepBERT: Contextu-
alized text embeddings for first-stage retrieval.
arXiv:2006.15498.

452

https://doi.org/10.1145/3459637.3482358
https://doi.org/10.1145/3459637.3482358
https://doi.org/10.1145/3404835.3462880
https://doi.org/10.1145/3404835.3462880
https://doi.org/10.1145/3488560.3498443
https://doi.org/10.1145/3488560.3498443

	Introduction
	Background and Motivation
	Aggretriever
	Text Aggregation Pooling
	Text Aggregation Pruning
	Fine-Tuning and Retrieval

	Experimental Setup
	Datasets
	Models

	Results
	In-Domain Evaluations
	Zero-Shot Evaluations
	Fine-Tuning with Noisy Hard Negatives
	Ablation Study
	Query Encoding Latency
	Comparison with Sparse Retrievers

	Related Work
	Conclusion and Future Work
	Appendix
	Implementation Details
	Comparison with Existing DPR Models

