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Abstract

Probing has become a go-to methodology for
interpreting and analyzing deep neural mod-
els in natural language processing. However,
there is still a lack of understanding of the
limitations and weaknesses of various types
of probes. In this work, we suggest a strat-
egy for input-level intervention on naturalistic
sentences. Using our approach, we intervene
on the morpho-syntactic features of a sen-
tence, while keeping the rest of the sentence
unchanged. Such an intervention allows us
to causally probe pre-trained models. We
apply our naturalistic causal probing frame-
work to analyze the effects of grammatical
gender and number on contextualized rep-
resentations extracted from three pre-trained
models in Spanish, the multilingual versions
of BERT, RoBERTa, and GPT-2. Our exper-
iments suggest that naturalistic interventions
lead to stable estimates of the causal effects
of various linguistic properties. Moreover, our
experiments demonstrate the importance of
naturalistic causal probing when analyzing
pre-trained models.

https://github.com/rycolab
/naturalistic-causal-probing

1 Introduction

Contextualized word representations are a by-
product of pre-trained neural language models
and have led to improvements in performance on
a myriad of downstream natural language process-
ing (NLP) tasks (Joshi et al., 2019; Kondratyuk,
2019; Zellers et al., 2019; Brown et al., 2020).
Despite this performance improvement, though, it
is still not obvious to researchers how these rep-
resentations encode linguistic information. One
prominent line of work attempts to shed light on
this topic through probing (Alain and Bengio,
2017), also referred to as auxiliary prediction (Adi
et al., 2017) or diagnostic classification (Hupkes
et al., 2018). In machine learning parlance, a probe
is a supervised classifier that is trained to predict

a property of interest from the target model’s rep-
resentations. If the probe manages to predict the
property with high accuracy, one may conclude
that these representations encode information
about the probed property.

While widely used, probing is not without its
limitations.1 For instance, probing a pre-trained
model for grammatical gender can only tell us
whether information about gender is present in
the representations,2 it cannot, however, tell us
how or if the model actually uses information
about gender in its predictions (Ravichander et al.,
2021; Elazar et al., 2021; Ravfogel et al., 2021;
Lasri et al., 2022). Furthermore, supervised prob-
ing cannot tell us whether the property under
consideration is directly encoded in the represen-
tations, or if it can be recovered from the represen-
tations alone due to spurious correlations among
various linguistic properties. In other words, while
we might find correlations between a probed
property and representations through supervised
probing techniques, we cannot uncover causal
relationships between them.

In this work, we propose a new strategy for
input-level intervention on naturalistic data to ob-
tain what we call naturalistic counterfactuals,
which we then use to perform causal probing.
Through such input-level interventions, we can
ascertain whether a particular linguistic property
has a causal effect on a model’s representations.
A number of prior papers have attempted to tease
apart causal dependencies using either input-level
or representation-level interventions. For instance,
work on representational counterfactuals has
investigated causal dependencies via interventions
on neural representations. While quite versatile,
representation-level interventions make it hard—

1See Belinkov (2021) for an overview.
2See Pimentel et al. (2020b), Hewitt et al. (2021), and

Pimentel and Cotterell (2021) for fomalizations of this state-
ment under information-theoretic frameworks.
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if not impossible—to determine whether we are
only intervening on our property of interest. An-
other proposed method, templated counterfac-
tuals, does perform an input-level intervention
strategy, which is guaranteed to only affect the
probed property. Under such an approach, the re-
searcher first creates a number of templated sen-
tences (either manually or automatically), which
they then fill with a set of minimal-pair words
to generate counterfactual examples. However,
template-based interventions are limited by de-
sign: They do not reflect the diversity of sentences
present in natural language, and, thus, lead to
biased estimates of the measured causal effects. Nat-
uralistic counterfactuals improve upon template-
based interventions in that they lead to unbiased
estimates of the causal effect.

In our first set of experiments, we employ
naturalistic causal probing to estimate the average
treatment effect (ATE) of two morpho-syntactic
features—namely, number and grammatical
gender—on a noun’s contextualized representa-
tion. We show the estimated ATE’s stability across
corpora. In our second set of experiments, we find
that a noun’s grammatical gender and its number
are encoded by a small number of directions in
three pre-trained models’ representations: BERT,
RoBERTa, and GPT-2.3 We further use natural-
istic counterfactuals to causally investigate gender
bias in RoBERTa. We find that RoBERTa is
much more likely to predict the adjective her-
moso(a) (beautiful) for feminine nouns and racio-
nal (rational) for masculine. This suggests that
RoBERTa is indeed gender-biased in its adjective
predictions.

Finally, through our naturalistic counterfactu-
als, we show that correlational probes overesti-
mate the presence of certain linguistic properties.
We compare the performance of correlational
probes on two versions of our dataset: one un-
altered and one augmented with naturalistic coun-
terfactuals. While correlational probes achieve
very high (above 90%) performance when pre-
dicting gender from sentence-level representa-
tions, they only perform close to chance (around
60%) on the augmented data. Together, our results
demonstrate the importance of a naturalistic causal
approach to probing.

3We study the Spanish version of these models, if it exists,
or the multilingual version if there is no Spanish version.

2 Probing

There are several types of probing methods that
have been proposed for the analysis of NLP mod-
els, and there are many possible taxonomies of
those methods. For the purposes of this paper, we
divide previously proposed probing models into
two groups: correlational and causal probes. On
one hand, correlational probes attempt to uncover
whether a probed property is present in a model’s
representations. On the other hand, causal probes,
roughly speaking, attempt to uncover how a model
encodes and makes use of a specific probed prop-
erty. We compare and contrast correlational and
causal probing techniques in this section.

2.1 Correlational Probing
Correlational probing is any attempt to correlate
the input representations with the probed prop-
erty of interest. Under correlational probing, the
performance of a probe is viewed as the degree
to which a model encodes information in its rep-
resentations about some probed property (Alain
and Bengio, 2017). At various times, correlational
results have been used to claim that language
models have knowledge of various morphologi-
cal, syntactic, and semantic phenomena (Adi et al.,
2017; Ettinger et al., 2016; Belinkov et al., 2017;
Conneau et al., 2018, inter alia). Yet the valid-
ity of these claims has been a subject of debate
(Saphra and Lopez, 2019; Hewitt and Liang, 2019;
Pimentel et al., 2020a,b; Voita and Titov, 2020).

2.2 Causal Probing
A more recent line of work aims to answer the
question: What is the causal relationship between
the property of interest and the probed model’s
representations? In natural language, however,
answering this question is not straightforward:
sentences typically contain confounding factors
that render analyses tedious. To circumvent this
problem, most work in causal probing relies on
interventions, that is, the act of setting a variable
of interest to a fixed value (Pearl, 2009). Im-
portantly, this must be done without altering any
of this variable’s causal parents, thereby keeping
their probability distributions fixed.4 As a byprod-
uct, these interventions generate counterfactuals,

4Consider a set of three random variables with a causal
structure X → Y → Z (where X causes Y , which causes
Z). If we simply conditioned on Y = 1, we would be left
with the conditional distribution p(x, z | Y = 1) = p(x |
Y = 1)p(z | Y = 1). If we perform an intervention on
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namely, examples where a specific property of
interest is changed while everything else is held
constant. Counterfactuals can then be used to
perform a causal analysis. Prior probing papers
have proposed methods using both representa-
tional and templated counterfactuals, as we dis-
cuss next.

Representational Counterfactuals. A few re-
cent causal probing papers perform interventions
directly on a model’s representations (Giulianelli
et al., 2018; Feder et al., 2021; Vig et al., 2020;
Tucker et al., 2021; Ravfogel et al., 2021; Lasri
et al., 2022; Ravfogel et al., 2022a). For example,
Elazar et al. (2021) use iterative null space pro-
jection (INLP; Ravfogel et al., 2020) to remove
an analyzed property’s information, for example,
part of speech, from the representations. Although
representational interventions can be applied to
situations where other forms of intervention are
not feasible, it is often impossible to make sure
only the information about the probed property is
removed or changed.5 In the absence of this guar-
antee, any causal conclusion should be viewed
with caution.

Templated Counterfactuals. Other work (Vig
et al., 2020; Finlayson et al., 2021), like us, has
leveraged input-level interventions. However, in
these cases, the interventions are carried out using
templated minimal-pair sentences, which differ
only with respect to a single analyzed property.
Using these minimal pairs, they estimate the effect
of an input-level intervention on individual atten-
tion heads and neurons. One benefit of template-
based approaches is that they create a highly
controlled environment, which guarantees that the
intervention is done correctly, and which may lead
to insights that would be impossible to gain from
natural data. However, since the templates are
typically designed to analyze a specific property,
they cover a narrow set linguistic phenomena,
which may not reflect the complexity of language
in naturalistic data.

Y = 1, on the other hand, we are left with a distribution
of p(x, z | do(Y ) = 1) = p(x)p(z | Y = 1); thus X’s
distribution is not altered by Y .

5There are, however, methods to mitigate this issue,
e.g., Ravfogel et al. (2022b) recently proposed an improved
(adversarial) method to remove information from a set of
representations that greatly reduces the number of removed
dimensions.

Naturalistic Counterfactuals. In this paper,
following Zmigrod et al. (2019), we propose a new
and less complex strategy to perform input-level
interventions by creating naturalistic counterfac-
tuals that are not derived from templates. Instead,
we derive the counterfactuals from the dependency
structure of the sentence. By creating counterfac-
tuals on the fly using a dependency parse, we
avoid the biases of manually creating templates.
Furthermore, our approach guarantees that we
only intervene on the specific linguistic property
of interest, for example, changing the grammatical
gender or number of a noun.

3 The Causal Framework

The question of interest in this paper is how con-
textualized representations are causally affected
by a morpho-syntactic feature such as gender or
number. To see how our method works, it is eas-
iest to start with an example. Let’s consider the
following pair of Spanish sentences:

(1) El programador talentoso escribió el código.
the.M.SG programmer.M.SG talented.M.SG wrote
the code.
The talented programmer wrote the code.

(2) La programadora talentosa escribió el código.
the.F.SG programmer.F.SG talented.F.SG wrote
the code.
The talented programmer wrote the code.

The meaning of these sentences is equivalent
up to the gender of the noun programador, whose
feminine form is programadora. However, more
than just this one word changes from (1) to (2):
The definite article el changes to la and the
adjective talentoso changes to talentosa. In the
terminology of this paper, we will refer to progra-
mador as the focus noun, as it is the noun whose
grammatical properties we are going to change.
We will refer to the changing of (1) to (2) as a
syntactic intervention on the focus noun. Infor-
mally, a syntactic intervention may be thought of
as taking part in two steps. First, we swap the
focus noun (programador) with another noun that
is equivalent up to a single grammatical property.
In this case, we swap programador with progra-
madora, which differs only in its gender marking.
Second, we reinflect the sentence so that all nec-
essary words grammatically agree with the new
focus noun. The result of a syntactic intervention
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Figure 1: Intervention on the gender of lemma pro-
gramador (masculine → feminine). Changes are
propagated from that noun to its dependent words
accordingly.

is a pair of sentences that differ minimally, that is,
only with respect to this one grammatical property
(Figure 1). Another way of framing the syntactic
intervention is as a counterfactual: What would
(1) have looked like if programador had been
feminine? The rest of this section focuses on for-
malizing the notion of a syntactic intervention and
discussing how to use them in a causal inference
framework for probing.

A Note on Inanimate Nouns. When estimat-
ing the effect of grammatical gender here, we
restrict our investigation to animate nouns, for
example, programadora/programador (feminine/
masculine programmer). Grammatical gender of
inanimate nouns is lexicalized, meaning that each
noun is assigned a single gender, for example,
puente (bridge) is masculine. In other words, there
is not a non-zero probability of assigning each
lemmata to each gender, which violates a condi-
tion called positivity in causal inference literature.
Thus, we cannot perform an intervention on the
grammatical gender of those words, but rather
would need to perform an intervention on the
lemma itself. We refer to Gonen et al. (2019) for
an analysis of the effect of gender on inanimate
nouns’ representations. Note that a similar lexi-
calization can also be observed in a few animate
nouns, for example, madre/padre (mother/father).
In such cases, to separate the lemma from gender,
we assume that these words share a hypothetical
lemma, which in our example represents par-
enthood, and combining that with gender would
give us the specific forms (e.g., madre/padre).

3.1 The Causal Model

We now describe a causal model that will allow us
to more formally discuss syntactic interventions.

Notation and Variables. We denote random
variables in upper-case letters and instances with
lower-case letters. We bold sequences: bold
lower-case letters represent a sequence of words
and bold upper-case letters represent a sequence of
random variables. Let f = 〈f1, . . . , fT 〉 be a sen-
tence (of length T ) where each ft is a word form.
In addition, let r be the list of contextual represen-
tations r = 〈r1, . . . , rT 〉 where each rt ∈ R

h, and
is in one-to-one correspondence with the sentence
f , that is, rt is ft’s contextual representations. Fur-
thermore, let � = 〈�1, . . . , �T 〉 be a list of lemmata
and m̃ = 〈m1, . . . ,mT 〉 a list of morpho-syntactic
features co-indexed with f ; �t is the lemma of
ft and mt is its morpho-syntactic features. We
call m = 〈mt1 , . . . ,mtK 〉 the minimal list of
morpho-syntactic features, where each tk is an
index between 1 to T . In essence, we drop features
of the tokens that are dependent on other to-
kens’ morphology. In our example (1) this means
we only include the morpho-syntactic features of
programador and código, thus m = 〈m2,m6〉.6
We denote the morpho-syntactic feature of inter-
est as m∗, which, in this work, represents either
the gender g∗ or number n∗ of the focus noun. We
further denote the lemma of the focus noun as �∗.

Causal Assumptions. Our causal model is in-
troduced in Figure 2. It encodes the causal rela-
tionships between U,L,M ,F , and R. Explicitly,
we assume the following causal relationships:

• M and L are causally dependent on U .
The underlying meaning that the writer of
a sentence wants to convey determines the
used lemmas and morpho-syntactic features;

• In general, Lt can causally affect Mt. Take
the gender of inanimate nouns as an example,
where the lemma determines the gender;

• F is causally dependent on L and M . Word
forms are a combination of lemmata and
morpho-syntactic features;

• R is causally dependent on F . Contex-
tualized representations are obtained by
processing the sentences through the probed
model.

6In this work, we only focus on two morpho-syntactic
features: gender and number. To analyze other features, the
minimal list should be expanded—e.g., to analyze verb tense,
m3 should be added to the list.
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Figure 2: Causal graph for the Spanish sentence El programador talentoso escribió el código. before (on the left)
and after (on the right) an intervention on the grammatical gender of the focus noun.

Dependency Trees. In order to measure the
causal effect of the gender of the focus noun (g∗)
on the contextualized representation (r), all of its
causal dependencies must be considered. As our
causal graph shows (in Figure 2), g∗ not only
has a causal effect on the focus noun’s form, but
also on the definite article el and the adjective
talentoso. Yet, not all word forms in a sentence
are affected; for instance, the definite article el
in the noun phrase el código. Luckily, within a
given sentence, such relationships are naturally
encoded by that sentence’s dependency tree. The
dependency graph d of a sentence f is a directed
graph created by connecting each word form ft
for 1 ≤ t ≤ T to its syntactic parent. We use
the information encoded in d by leveraging the
fact that a word form ft is causally dependent
on its syntactic parent. In essence, a dependency
tree d implicitly encodes a function dt[m] which
returns the subset of morphological properties that
causally affect the form ft. Thus, we are able to
express the complete joint probability distribution
of our causal model as follows:

p(f ,m, �, u) (1)
= p(u) p(m, � | u) p(f | m, �)

= p(u) p(m, � | u)
T∏
t=1

p(ft | dt[m], �t)

Abstract Causal Model. We can now simplify
the causal model from Figure 2 into Figure 3.
For simplicity, we isolate the lemma and morpho-

Figure 3: Causal model showing dependencies be-
tween the underlying meaning (U ), lemma (L∗) and
morpho-syntactic features (M∗) of the focus noun,
context (Z), sentences (F ), and contextualized repre-
sentations (R).

syntactic feature of interest L∗ and M∗ and ag-
gregate the other lemmata and morpho-syntactic
features into an abstract variable, which we call Z
and refer to as the context. Furthermore, we only
show the aggregation of word forms and repre-
sentations as F and R in the abstract model. We
will assume for now, and in most of our experi-
ments, that the output of the causal model (R in
Figure 3) represents the contextualized represen-
tation of the focus noun. However, as we gener-
alize later, the output of the causal model can be
any function of word forms F , such as: The rep-
resentation of other words in the sentence, the
probability distribution assigned by the model to
a masked word, or even the output of a down-
stream task. We note that Figure 3 can be easily
re-expanded into Figure 2 for any specific utter-
ance by using its dependency tree.
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3.2 Naturalistic Counterfactuals

In causal inference literature, the do(·) operator
represents an intervention on a causal diagram.
For instance, we might want to intervene on the
gender of the focus noun (thus using gender G∗
as the morpho-syntactic feature of interest M∗).
Concretely, in our example (Figure 2), do(G∗ =
FEM) means intervening on the causal graph by
removing all the causal edges going into G∗ from
U and L∗ and setting G∗’s value to a specific
realization FEM. The result of this intervention
on a sampled sentence f is a new counterfac-
tual sentence f ′. As our causal graph suggests,
the relationship between words in a sentence is
complex, occurring at multiple levels of abstrac-
tion; swapping the gender of a single word—while
leaving all other words unchanged—may not re-
sult in grammatical text. Consequently, one must
approach the creation of counterfactuals in natural
language with caution. Specifically, we rely on
syntactic interventions to generate our naturalistic
counterfactuals.

Syntactic Intervention. We develop a heuristic
algorithm to perform our interventions, shown in
Appendix B. Given a sentence and its dependency
tree, the algorithm generates a counterfactual ver-
sion of the sentence, that is, approximating the
do(·) operation. This algorithm processes the de-
pendency tree of each sentence in a depth-first
search recursive manner. In each iteration, if the
node in process is a noun, it is marked as the
focus noun7 and a new copy of the sentence is
created, which will be the base of the counterfac-
tual sentence. Then, the intervention is performed,
altering the focus noun and all dependent tokens
in the copied sentence.8 Notably, when we syn-
tactically intervene on the grammatical gender or
number of a noun, we do not alter potentially in-
compatible semantic contexts. Take sentence (3)
as an example, where the focus noun is mujer
and we intervene on gender. Its counterfactual
sentence (4) is semantically odd and unlikely,
but still meaningful. We can thus estimate the

7Specifically, for gender intervention we only mark the
noun as the focus if it is an animate noun.

8This is a simplified version of the algorithm where we
omit the rule-based re-inflection functions for nouns, adjec-
tives, and determiners. We also handle contractions, such as
a + el → al, which is not mentioned in this pseudo-code.

causal effect of grammatical gender in the con-
textual representations—breaking the correlation
between morpho-syntax and semantics.

(3) La mujer dio a luz a 6 bebés.
the.F.SG woman.F.SG gave birth to 6 babies.
The woman gave birth to 6 babies.

(4) El hombre dio a luz a 6 bebés.
the.M.SG man.M.SG gave birth to 6 babies.
The man gave birth to 6 babies.

3.3 Measuring Causal Effects
In this section, we define the causal effect of a
morpho-syntactic feature. We then present esti-
mators for these values in the following section.
While we focus on grammatical gender here, our
derivations are similarly applicable to number and
other morpho-syntactic features.

Given a specific focus–context pair (�∗, z), the
causal effect of gender G∗ on the representations
is called the individual treatment effect (ITE;
Rosenbaum and Rubin, 1983) and is defined as:

Δ(�∗, z) = (2)

E
F

[
tgt(F ) | G∗=MSC, L∗=�∗,Z=z

]
−E

F

[
tgt(F ) | G∗=FEM, L∗=�∗,Z=z

]
where tgt(·) is a deterministic function that im-
plements the model being probed, for example,
a pretrained model like BERT, taking a form F
as input and outputting R. Since F is itself a
deterministic function of a 〈G∗, L∗,Z〉 triple, we
can rewrite this equation as:9

Δ(�∗, z) = (3)
tgt(MSC, �∗, z)− tgt(FEM, �∗, z)

As can be seen from Equation (3), the ITE is
the difference in the representation given that
the focus noun of the sentence is masculine vs.
feminine.

To get a more general understanding of how
gender affects these representations, however, it
is not enough to just look at individual treatment
effects. It is necessary to consider a holistic metric
across the entire language. The ATE is one such
metric, and is defined as the difference between
the following expectations:

ψATE = E
F

[
tgt(F ) | do(G∗ = MSC)

]
(4)

−E
F

[
tgt(F ) | do(G∗ = FEM)

]
9We overload tgt(·) to receive either F or 〈G∗, L∗,Z〉.
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In words, the ATE is the expected causal effect
of one random variable on another (in this case
gender on the model’s representations). Comput-
ing this expectation, however, is not as simple as
conditioning it on gender. As there are backdoor
paths10 from the treatment (gender) to the effect
(the representations), we rely on the backdoor
criterion (Pearl, 2009) to compute this expecta-
tion. Simply put, we first need to find a set of
variables that block every such backdoor path.
We then condition our expectation on them. As
shown in Proposition 1 (in the Appendix), the set
of variables satisfying the backdoor criterion in
our case is {L∗,Z}. Therefore, we can rewrite
Equation (4) by conditioning our expectation over
{L∗,Z}:

ψATE = (5)

E
L∗,Z

[
E
F

[
tgt(F ) | G∗ = MSC, L∗,Z

]]

− E
L∗,Z

[
E
F

[
tgt(F ) | G∗ = FEM, L∗,Z

]]
which we can again rewrite as:

ψATE = (6)
E

L∗,Z
[tgt(MSC, L∗,Z)− tgt(FEM, L∗,Z)]

Furthermore, plugging Equation (3) into Equa-
tion (6):

ψATE = E
L∗,Z

[
Δ(L∗,Z)

]
(7)

reveals that Equation (5) is just the ITE in
expectation. Thus, the ATE is an appropriate
language-wide measure of the effect of gender
on contextual representations.

4 Approximating the ATE

In this section, we show how to estimate
Equation(6) from a finite corpus of sentences S .

4.1 Naı̈ve Estimator
Each sentence in our corpus can be written as a
triple 〈g∗, �∗, z〉. We now discuss how to use such
a corpus to estimate Equation (6). Specifically, we
first compute the sample mean using two subsets

10A backdoor path is a causal path from an analyzed
variable to its effect which contains an arrow to the treatment
(i.e., an arrow going backwards). For instance, consider
random variables with a causal structure Y → X → Z and
Y → Z (where Y causes X, and both X and Y cause Z).
X ← Y → Z forms a backdoor path (Definition 3; Pearl,
2009).

of sentences: one with only masculine focus nouns
SMSC and the other with feminine ones SFEM. We
then compute their difference:

ψnaı̈ve = (8)
1

|SMSC|
∑

〈 ,�∗,z〉∈SMSC

tgt(MSC, �∗, z)

− 1

|SFEM|
∑

〈 ,�∗,z〉∈SFEM

tgt(FEM, �∗, z)

We note, however, that this is a very naı̈ve estima-
tor.11 Since SMSC (and respectively SFEM) includes
only the fraction of sentences with masculine fo-
cus nouns, restricting the sample mean to this
set of instances is equivalent to using samples
z, �∗ ∼ p(z, �∗ | MSC), rather than z, �∗ ∼ p(z, �∗)
(as should be done for ATE). Notably, this is
equivalent to ignoring the do operator in Equa-
tion (4). Consequently, Equation (8) introduces
a purely correlational baseline. In the following
section, we present our (better) causal estimator.

4.2 Paired Estimator

We now use our naturalistic counterfactual sen-
tences to approximate the ATE. Specifically, by
relying on our syntactic interventions, we can ob-
tain both a feminine and masculine form of each
sentence (�∗, z) sampled from the corpus. Con-
cretely, we use the following paired estimator:

ψpaired = (9)
1

|S|
∑

〈 ,�∗,z〉∈S

[
tgt(MSC, �∗, z)︸ ︷︷ ︸

(1)

− tgt(FEM, �∗, z)︸ ︷︷ ︸
(2)

]

where, depending on g∗, the model’s output tgt(·)
in (1) and (2) will be extracted from a pre-trained
model using either the original or counterfactual
sentences.

4.3 A Closer Look at our Estimators

A closer look at our paired estimator in Equation
(9) shows that it is an unbiased Monte Carlo
estimator of the ATE presented in Equation (6).
In short, if we assume our corpus S was sampled
from the target distribution, we can use this corpus
as samples �∗, z ∼ p(�∗, z). For each �∗, z pair,
we can then generate sentences with both MSC and
FEM grammatical genders to estimate the ATE.

11This is referred to as the naı̈ve or unadjusted estimator
in the literature (Hernán and Robins, 2020).
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The naı̈ve estimator, on the other hand, will
not produce an unbiased estimate of the ATE.
As mentioned above, by considering sentences in
SMSC or SFEM separately, we implicitly condition on
the gender when approximating each expectation.
This estimator instead approximates a value we
term the average correlational effect (ACE):

ψACE = E
L∗,Z|G∗=MSC

[tgt(MSC, L∗,Z)] (10)

− E
L∗,Z|G∗=FEM

[tgt(FEM, L∗,Z)]

On a separate note, template-based approaches
allow the researcher to investigate causal effects
by using minimal pairs of sentences, each of
which can be used to estimate an ITE (as in Equa-
tion (3)). And, by averaging them, they provide an
estimate of ATE (as in Equation (7)). However,
these minimal pairs are either manually written or
automatically collected using template structures.
Therefore, they cover a narrow (and potentially
biased) set of structures, arguably not following
a naturalistic distribution. In other words, their
corpus S cannot be assumed to be sampled ac-
cording to the distribution p(�∗, z).12 In practice,
templated counterfactuals approximate the treat-
ment effect using an approach identical to the
paired estimators–up to a change of distribution.
This change of distribution, however, may lead to
biased estimates of the ATE..

5 Dataset

We use two Spanish UD treebanks (Nivre
et al., 2020) in our experiments: Spanish-GSD
(McDonald et al., 2013) and Spanish-AnCora
(Taulé et al., 2008). We only analyze gender on
animate nouns and use Open Multilingual Word-
Net (Gonzalez-Agirre et al., 2012) to mark the
animacy. Corpus statistics for the datasets can be
found in Table 1.

5.1 Evaluating Counterfactual Sentences
To evaluate our syntactic intervention algorithm
(introduced in §3.2), we randomly sample a subset
of 100 sentences from our datasets. These sam-
ples are evenly distributed across the two datasets

12This becomes clear when we take a look at the sentences
in one of such template-based datasets. For instance, all sen-
tences in the Winogender dataset (Rudinger et al., 2018)—
used by Vig et al. (2020)—have very similar sentential
structures. Such biases, however, are not necessarily prob-
lematic and might be imposed by design to analyze specific
phenomena.

Gender Number

train dev test MSC FEM SING PLUR

AnCora
✓ ✓ ✗ 1,029 203 14,602 6,692
✗ ✗ ✓ 107 21 1,540 693

GSD ✓ ✓ ✗ 403 135 9,141 3,993

Table 1: Aggregated dataset statistics.

(AnCora and GSD), morpho-syntactic features
(gender and number), and categories within each
feature (masculine, feminine, singular, and plural).
A native Spanish speaker assessed the gram-
maticality of sampled sentences. Our syntactic
intervention algorithm was able to accurately gen-
erate counterfactuals for 73% of the sentences.13

The accuracy for the gender and number inter-
ventions are 76% and 70%, respectively. Due to
the subtleties discussed in disentangling syntax
from semantics and the complex sentence struc-
tures found in naturalistic data, we believe this
error is within an acceptable range and leave
improvements to future work.

5.2 Template-Based Dataset

To compare our approach to templated counter-
factuals, we translate two datasets for measuring
gender bias: Winogender (Rudinger et al., 2018)
and WinoBias (Zhao et al., 2018). As shown by
Stanovsky et al. (2019), simply translating these
templates to Spanish leads to biased translations,
where professions are translated stereotypically
and the context is ignored. Following Stanovsky
et al., we thus put either handsome and pretty
before nouns to enforce the gender constraint after
translation. Consider, for instance, the sentence:
‘‘The developer was unable to communicate with
the writer because he only understands the code.’’
We rewrite it as ‘‘The handsome developer. . .’’.
Similarly, if the pronoun was she, we would write
‘‘The pretty developer. . .’’. As an extra constraint,
we want to ensure the gender of the writer stays the
same before and after the intervention. Therefore,
we make two copies of the sentence: One where
writer is translated as escritora (feminine writer),
enforced by replacing writer with pretty writer,
and one where writer is translated as escritor

13Approximating our estimate of this accuracy with a
normal distribution, we obtain a 95% confidence interval
(Wald interval) which ranges from 64% to 82% (Brown
et al., 2001).
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Figure 4: Cosine similarities of the ATE on BERT
representations. N. represents ψnaı̈ve; P. represents
ψpaired; and T. represents ψpaired estimated on the
template-based dataset.

(masculine writer), enforced by replacing writer
with handsome writer. We translate the result-
ing pairs of sentences using the Google Translate
API and drop the sentences with wrong gender
translations. In the end, we obtain 2740 minimal
pairs.

6 Insights From ATE Estimators

In the following experiments, we first use the es-
timators introduced in §4 to approximate the ATE
of number and grammatical gender on contextual-
ized representations. We look at how stable these
ATE estimates are across datasets, and whether
they change across words with different parts of
speech. We then analyze whether the ATE (as an
expected value) was an accurate description of
how representations actually change in individual
sentences. Finally, we compute the ATE of gender
on the probability of predicting specific adjectives
in a sentence, thereby measuring the causal effect
of gender in adjective prediction.

6.1 Variations Across ATEs

Variation Across Datasets. Using our ATE es-
timators, we compute the average treatment effect
of both gender and number on BERT’s contex-
tualized representations (Devlin et al., 2019) of
focus nouns.14 We compute ψpaired and ψnaı̈ve

estimators. Figure 4 presents their cosine similari-
ties. We observe high cosine similarities between
paired estimators across datasets,15 but lower co-
sine similarities with the naı̈ve estimator. This
suggests that, while the causal effect is stable

14More specifically, BERT-BASE-MULTILINGUAL-CASED in the
Transformers library (Wolf et al., 2020).

15To make sure that the imbalance in the dataset before
intervention doesn’t have a significant effect on results, we
create a balanced version of the dataset, where we observe
similar results.

Figure 5: Cosine similarity of ATE estimators com-
puted on focus nouns, adjectives, and determiners using
BERT representations.

across treebanks, the correlational effect is more
susceptible to variations in the datasets, for exam-
ple, semantic variations due to the domain from
which treebanks were sampled.

Templated vs. Naturalistic Counterfactuals.
As an extra baseline, we estimate the ATE using
a paired estimator with the template-based dataset
introduced in §5.2. We observe a low cosine sim-
ilarity between our naturalistic ATE estimates
and the template-based ones. This shows that
sentences from template-based datasets are sub-
stantially different from naturalistic datasets, thus
fail to provide unbiased estimates in naturalistic
settings.

Variation Across Part-of-Speech Tags. Using
the same approach, we additionally compute the
ATEs on adjectives and determiners. Figure 5
presents our naı̈ve and paired ATE estimates,
computed on words with different parts of speech.
These results suggest that gender and number
do not affect the focus noun or its dependent
words in the same way. While the ATE on focus
nouns and adjectives are strongly aligned, the
cosine similarity between ATEs on focus nouns
and determiners is smaller.16

6.2 Masked Language Modeling Predictions
We now analyze the effect of our morpho-
syntactic features on masked language modeling
predictions. Specifically, we analyze RoBERTa
(Conneau et al., 2020)17 in these experiments, as it
has better performance than BERT in masked pre-
diction. We thus look at how grammatical gender

16Relatedly, Lasri et al. (2022) recently showed BERT
encodes number differently on nouns and verbs.

17More specifically, we use XLM-ROBERTA-BASE.
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MProbs(h′ ) MProbs(ĥψnaı̈ve ) MProbs(ĥψpaired
)

G
E

N
D

E
R

⎧⎨
⎩

DET: MProbs(h′) 4.85± 2.39 1.09± 1.4 0.67± 1.14
ADJ: MProbs(h′) 2.29± 2 1.04± 1.05 0.9 ± 1.12
FOCUS: MProbs(h′) 3.75± 2.67 1.74± 1.11 1.53± 0.93

N
U

M
B

E
R

⎧⎨
⎩

DET: MProbs(h′) 6.93± 2.52 1.92± 2.87 2.05± 2.64
ADJ: MProbs(h′) 5.63± 2.75 2.25± 2.2 2.5 ± 2.17
FOCUS: MProbs(h′) 5.50± 3.02 2.25± 2.14 2.41± 1.9

Table 2: Mean and standard deviation of Jensen–
hannon divergence between the masked probabil-
ity distributions of focus nouns, determiners, and
adjectives over the corpus.

and number affect the probability that RoBERTa
assigns to each word in its output vocabulary.

We start by masking a word in our sentence: ei-
ther the focus noun, a dependent determiner, or an
adjective. We then obtain this word’s contextual
representation h. Second, we apply a syntactic
intervention to this sentence, and, following simi-
lar steps, obtain another representation h′. Third,
we use these representations to obtain the prob-
abilities RoBERTa assigns to the words in its
vocabulary MProbs(h) and MProbs(h′). Finally,
we obtain these same probability assignments,
but using ATE to estimate the counterfactual
representations:

MProbs(ĥψpaired), ĥψpaired = h± ψpaired (11)

MProbs(ĥψnaı̈ve), ĥψnaı̈ve = h± ψnaı̈ve (12)

We now look at how probability assignments
change as a function of our interventions. Specifi-
cally, Table 2 shows Jensen–Shannon divergences
between MProbs(·) computed on top of different
representations. We can make a number of ob-
servations based on this table. First, for gender,
these distributions change more when predicting
determiners and focus nouns than adjectives. We
speculate that this may be because many Span-
ish adjectives are syncretic, that is, they have
the same inflected form for masculine and femi-
nine (e.g., inteligente [intelligent], or profesional
[professional]). Second, the distributions change
more after an intervention on number than on gen-
der. Third, when we use either of our estimators
to approximate the counterfactual representation,
the divergences are greatly reduced. These results
show that the ATE values do describe (at least
to some extent) the change of representations in
individual sentences.

6.3 Gender Bias in Adjectives
As shown by Bartl et al. (2020) and Gonen et al.
(2022), the results of studies on gender bias
in English are not completely transferable to
gender-marking languages. We analyze the causal
effect of gender on specific masked adjective
probabilities, predicted by the RoBERTa model.
To this end, we manually create a list of 30 ad-
jectives (the complete list is in Appendix A) in
both masculine and feminine forms. We sample a
sentence f from a subset of the dataset in which
the focus noun has one dependent adjective a,
and mask this adjective. We then define a new
function, tgt(·), to measure the ATE on adjective
probabilities. Specifically, we write:

tgta(f) = ln pθ(a | f) (13)
= ln pθ(a | g∗, �∗, z)

where a represents an adjective in our list (also
exists in RoBERTa’s vocabulary V) and pθ(a |
f) is the probability RoBERTa assigns to that
adjective.18 We plug this new function into our
paired ATE estimator in Equation (9). As this
prediction is somewhat susceptible to noise, we
replace the mean in Equation (9) with the median.
Specifically, this is equivalent to computing:

ψ
(a)
paired = median

〈 ,�∗,z〉∈S

[
ln

pθ(a | MSC, �∗, z)

pθ(a | FEM, �∗, z)

]
(14)

In this equation, if ψ(a)
paired > 0, the predicted prob-

ability that the adjective appears in a sentence
where it is dependent on a masculine focus noun
will be typically higher than in a sentence with a
feminine focus noun. Whereas if ψ(a)

paired < 0 the
reverse will hold. Therefore, we say a is biased
towards masculine gender if ψ(a)

paired > 0 and it is

biased towards feminine gender if ψ(a)
paired < 0. As

shown in Figure 6, rich (rica/rico) and rational
(racional) are more biased towards masculine
gender, while beautiful (hermosa/hermoso) is
biased towards feminine gender.

7 Insights From Naturalistic
Counterfactuals

In the following experiments, we rely on a
dataset augmented with naturalistic counterfactu-
als. We first explore the geometry of the encoded

18When an adjective in the list has two forms depending on
the gender (e.g., hermosa/hermoso), we sum the probabilities
for masculine and feminine forms.
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Figure 6:ψ(a)
paired values computed using Equation (14) to measure causal gender bias in masked adjective prediction.

Figure 7: (top) Percentage of the gender and number variance explained by the first 10 PCA components. (bottom)
The projection of 20 pairs of focus noun’s representations on the first principal component.

morpho-syntactic features. We then run a more
classic correlational probing experiment, high-
lighting the importance of a causal framework
when analyzing representations.

7.1 Geometry of Morpho-Syntactic Features

In this experiment, we follow Bolukbasi et al.’s
(2016) methodology to isolate the subspace cap-
turing our morpho-syntactic features’ information.
First, we create a matrix with the representations of
all focus nouns in our counterfactually augmented
dataset. Second, we pair each noun’s representa-
tion with its counterfactual representation (after
the intervention). Third, we center the matrix of
representations by subtracting each pair’s mean.
Finally, we perform principal component analysis
on this new matrix.

As Figure 7 shows, in BERT and RoBERTa, the
first principal component explains close to 20%
of the variance caused by gender and number. In
GPT-2 (Radford et al., 2019),19 more than half of
the variance is captured by the first or the first
two principal components.20 This result is in line

19More specifically, we use GPT2-SMALL-SPANISH.
20These results are not obtained due to the randomness of

a finite sample of high dimensional vectors. Neither are they
due to the structure of the model. To show this, we present
two random baselines: random vectors of the same size |S|

with prior work (e.g., Biasion et al., 2020, on
Italian word embeddings), and suggests that these
morpho-syntactic features are linearly encoded in
the representations.

To further explore the gender and number
subspaces, we project a random sample of 20
sentences (along with their counterfactuals) onto
the first principal component. Figure 7 (bot-
tom) shows that the three models we probe
can (at least to a large extent) differentiate both
morpho-syntactic features using a single dimen-
sion. Notably, this first principal component is
strongly aligned with the estimate ψpaired; they
have a cosine similarity of roughly 0.99 in all
these settings.

7.2 Analysis of Correlational Probing

We now use a dataset augmented with naturalistic
counterfactuals to empirically evaluate the entan-
glement of correlation and causation discussed in
§2, which arises when using diagnostic probes to
probe the representations. Again, we probe three
contextual representations: BERT, RoBERTa, and
GPT-2. We train logistic regressors (LogReg-
Probe) and support vector machines (SVMProbe)
to predict either gender or number of the focus

(as green traces) and representations extracted from models
with randomized weights (as gray traces) in Figure 7.
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Figure 8: Accuracy scores of gender and number probes on the original and augmented datasets.

noun from its contextual representation. Further,
we probe the representations in two positions: the
focus noun and the [CLS] token (or a sentence’s
last token, for GPT-2).21

Accuracy of correlational probes on the original
dataset is shown in Figure 8 as green points. Both
gender and number probes reach a near-perfect
accuracy on focus nouns’ representations. Fur-
thermore, all correlational gender probes reach a
high accuracy in [CLS] representations, suggest-
ing that gender can be reliably recovered from
them.

Next, we evaluate trained probes on counter-
factually augmented test sets (shown as yellow
points in Figure 8). We see that there is a drop in
performance in all settings, and, more specifically,
the accuracy of probes on [CLS] representations
drops significantly when evaluated on the coun-
terfactual test set. This suggest that the previous
results using correlational probes overestimate
the extent to which gender and number can be
predicted from the representations.

Finally, we also train supervised probes on a
counterfactually augmented dataset in order to
study whether we can achieve the levels of per-
formance attested in the literature (shown as gray
points in Figure 8). Since these probes are trained
on a dataset augmented with counterfactuals, they
are not as susceptible to spurious correlations; we
thus call them the causal probes. Although there is
a considerable improvement in accuracy, there is

21BERT and RoBERTa treat [CLS] as a special token
whose representation is supposed to aggregate information
from the whole input sentence. In GPT-2, the last token
in a sentence should also contain information about all its
previous tokens.

still a large gap between correlational and causal
probes’ accuracies. Together, these results imply
that correlational probes are sensitive to spurious
correlations in the data (such as the semantic con-
text in which nouns appear), and do not learn to
predict grammatical gender robustly.

8 Conclusion

We propose a heuristic algorithm for syntactic
intervention which, when applied to naturalistic
data, allows us to create naturalistic counterfactu-
als. Although similar analyses have been run by
prior work, using either templated or represen-
tational counterfactuals (Elazar et al., 2021; Vig
et al., 2020; Bolukbasi et al., 2016, inter alia),
our syntactic intervention approach allows us to
run these analyses on naturalistic data. We fur-
ther discuss how to use these counterfactuals in a
causal setting to probe for morpho-syntax. Exper-
imentally, we first showed that ATE estimates are
more robust to dataset differences than either our
naı̈ve (correlational) estimator, or template-based
approaches. Second, we showed that ATE can (at
least partially) predict how representations will
be affected after intervention on gender or num-
ber. Third, we employ our ATE framework to
study gender bias, finding a list of adjectives that
are biased towards one or other gender. Fourth,
we find that the variation of gender and number
can be captured by a few principal axes in the
nouns’ representations. And, finally, we highlight
the importance of causal analyses when probing:
When evaluated on counterfactually augmented
data, correlational probe results drop significantly.
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Ethical Concerns

Pretrained models often encode gender bias. The
adjective bias experiments in this work can pro-
vide further insights into the extent to which these
biases are encoded in multilingual pretrained mod-
els. As our paper focuses on (grammatical) gender
as a morpho-syntactic feature, it focuses on a bi-
nary notion of gender, which is not representative
of the full spectrum of human gender expression.
Most of the analysis in this paper focuses on mea-
suring grammatical gender, not gender bias. We
thus advise caution when interpreting the findings
from this work. Nonetheless, we hope the causal
structure formalized here, together with our anal-
yses, can be of use to bias mitigation techniques
in future (e.g., Liang et al., 2020).

A List of Adjectives

We use 30 different Spanish adjectives in our
experiments: hermoso/hermosa (beautiful), sexy
(sexy), molest/molesta (upset), bonito/bonita
(pretty), delicado/delicada (delicate), rápido
/rápida (fast), joven (young), inteligente (in-
telligent), divertido/divertida (funny), fuerte
(strong), duro/dura (hard), alegre (cheerful),
protegido/protegida (protected), excelente (ex-
cellent), nuevo/nueva (new), serio/seria (serious),
sensible (sensitive), profesional (professional),
emocional (emotional), independiente (indepen-
dent), fantástico/fantástica (fantastic), brutal
(brutal), malo/mala (bad), bueno/buena (good),
horrible (horrible), triste (sad), amable (nice),
tranquilo/tranquila (quiet), rico/rica (rich),
racional (rational).
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B Algorithm for Heuristic Intervention

Algorithm 1
1: procedure REINFLECTTREE(node, parent, state)
2: isFocusNoun← false
3: if state == NORMAL and node is a valid noun :
4: REINFLECTNOUN(node) � Change the noun and set the morpho-syntactic feature to the desired value
5: isFocusNoun ← true
6: if node is subject :
7: REINFLECTVERB(parent) � Change verb
8: if state == DIR : � Current node is a direct dependent of a focus noun
9: if node is a determiner :

10: REINFLECTDET(node) � Change determiner

11: if node is an adjective modifier :
12: REINFLECTADJ(node) � Change adjective

13: if node is a nominal subject :
14: REINFLECTNOUN(node) � Change noun
15: nsubj← true

16: if node is a copula :
17: REINFLECTCOP(node) � Change copula
18: if state == INDIR and node is an adjective modifier and parent is an adjective modifier : � Current node is a

descendant of a focus noun
19: REINFLECTADJ(node)
20: for child ∈ children(node) :
21: if isFocusNoun or nsubj :
22: REINFLECTTREE(child, node, DIR )
23: else if state == DIR or state == INDIR :
24: REINFLECTTREE(child, node, INDIR )
25: else
26: REINFLECTTREE(child, node, NORMAL )
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C Theory

Proposition 1. In this proposition we show that the average treatment effect is equivalent to the
difference of two expectations with no do-operator:

E
F

[
tgt(F ) | do (G∗ = MSC)

]
− E

F

[
tgt(F ) | do (G∗ = FEM)

]
(15)

= E
L∗,Z

[
E
F

[
tgt(F ) | G∗ = MSC, L∗,Z

]]
− E

L∗,Z

[
E
F

[
tgt(F ) | G∗ = FEM, L∗,Z

]]

Proof. First, we note the existence of two backdoor paths in our model Figure 3: M∗ ← U → Z →
F → R and M∗ ← U → L∗ → F → R. We can easily check that Z blocks the first and L∗ blocks the
second path, and neither Z nor L∗ are descendants of M∗. Therefore {L∗,Z} satisfies the back-door
criterion. To make the proof simpler, we show that the first term of the left-hand side of Equation (15)
equals the first term in the right-hand side of Equation (15) and then we obtain the full result by
symmetry. We proceed as follows:

E
F

[
tgt(F ) |do (G∗ = MSC)

]
(16)

=
∑
�∗∈L

∑
z∈Z

E
F

[
tgt(F ) | do(G∗ = MSC), �∗, z)

]
p(�∗, z) (marginalize �∗ and z)

=
∑
�∗∈L

∑
z∈Z

E
F

[
tgt(F ) | G∗ = MSC, �∗, z)

]
p(�∗, z) (backdoor criterion)

= E
L∗,Z

[
E
F

[
tgt(F ) | G∗ = MSC, L∗,Z

]]
(rewrite as an expectation)
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