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Abstract

Sequence-to-sequence language models can be
used to produce abstractive summaries which
are coherent, relevant, and concise. Still, model
sizes can make deployment in latency-sensitive
or web-scale implementations difficult. This
paper studies the relationship between model
size, structured pruning, inference efficiency,
and summarization accuracy on widely used
summarization datasets. We show that model
accuracy is tied to the encoder size while in-
ference efficiency is connected to the decoder.
Using asymmetric pruning can lead to nearly
3x improvement in inference latency with 1
point loss in Rouge-2. Moreover, we find both
the average degradation and the role of asym-
metry to be consistent across model sizes and
variations in datasets. We release our code!,
training regimes, and associated model ? for
broad usage to encourage usage and experimen-
tation.

1 Introduction

The application of sequence-to-sequence lan-
guage models has become an important tool
for natural language processing tasks such as
machine translation (Sutskever et al., 2014),
audio transcription (Radford et al., 2022), and
abstractive summarization (Raffel et al., 2020).
Sequence-to-sequence models effectively turn
each of these aforementioned tasks into two-step
problems: extraction and generation, and heavily
condition the generation on the input.
Besides ensuring on-topic responses sequence to
sequence models have the added benefit of being
able to map inputs to targets with varying lengths
* Corresponding author: dcampos3 @illinois.edu
"https://github.com/spacemanidol/Efficient-Web-Scale-
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Figure 1: Impact of Asymmetrical Pruning on inference
speedups and ROUGE-2 degradation on Query Indepen-
dent Web Summarization. Inference Time is the mean
inference time for a batch size of 1 on an A10 GPU over
seven iterations.

and modalities in ways encoder or decoder-only
systems cannot.

When used for abstractive summarization,
sequence-to-sequence modeling has two steps,
extraction using the encoder and generation using
the decoder, which usually involves repeated
execution until an end-of-sequence token is
emitted. Since the encoder runs once on the input
(Sutskever et al., 2014) its cost of execution is
proportional to the batch size. The cost of decoder
execution can be highly variable based on the
generation length (Tay et al., 2021). Despite the
broad study of sequence-to-sequence models
(Raffel et al., 2020) and how they compress (Li
et al.,, 2022), the role of model symmetry as
applied to inference efficiency and model accuracy
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is lacking.

Recent advances in scaling language models have
led to a wide study on scaling laws as applied
to language model performance (Kaplan et al.,
2020), training data size (Hoffmann et al., 2022),
machine translation (Henighan et al., 2020), and
even reinforcement learning (Neumann and Gros,
2022).

We build on this work and study the impact of
scaling on abstractive summarization and what
role model asymmetry has in it. This asymmetry
can manifest in various ways, such as the number
of layers and hidden units in the encoder and
decoder and the type of attention mechanisms
used.

In this paper, we explore the role of asymmetry in
the number of layers in encoder-decoder language
modeling for summarization and its impact on
the performance of these models. As shown in
Figure 1, the symmetry of pruning drives the
impact on accuracy and inference speedups for
sequence-to-sequence models.

The following research questions drive our work:

* What scaling laws can be observed in abstrac-
tive summarization?

* What impact does encoder-decoder asymme-
try have on abstractive summarization accu-
racy?

* What impact does encoder-decoder asymme-
try have on abstractive summarization infer-
ence efficiency?

* What is asymmetries impact on accuracy
and inference efficiency does scale have in
encoder-decoder models for abstractive sum-
marization?

It is in answering these questions that we deliver
the following contributions:

* We present the first robust study on scaling
laws applied to the compression of sequence-
to-sequence modeling.

* We demonstrate that the asymmetric inference
cost of sequence-to-sequence models leads
to asymmetric pruning for optimal inference
efficient compression.
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* We empirically demonstrate on a wide variety
of benchmarks how Asymmetric Compres-
sion can lead to a 2.7x inference speedup with
no loss in accuracy on the XSUM dataset.

2 Related Work

Transformer Based Language Models such as
BERT (Devlin et al., 2019) and T5 (Raffel et al.,
2020) provide contextual language representations
built on the Transformer architecture (Vaswani
et al., 2017) which can be specialized and adapted
for specific tasks and domains (Lee et al., 2020).
Using these models, it becomes relatively easy to
excel at a broad range of natural language process-
ing tasks such as question answering, text classifi-
cation, and sentiment analysis.

Scaling Laws has become an increasingly impor-
tant area of study as models’ size and training data
grows. Performance of the transformer-based lan-
guage model improves with the relation to model
size (Radford, 2018) and that larger models outper-
form smaller models (Brown et al., 2020) on most
NLP tasks. Increasing the training corpus size can
lead to large improvements in performance, and
model sizes can have a optimal training data size
(Hoffmann et al., 2022). Li et al. (2020) (Li et al.,
2020) explore the relationship between model size
and training efficiency finding larger models train
faster and are more robust to pruning and quantiza-
tion (Na et al., 2022).

Asymmetrical in sequence-to-sequence models
broadly refers to non-uniformity between encoder
and decoder model shape or attributes. Training
and inference procedures should match as closely
as possible (Ranzato et al., 2015) (Mihaylova
and Martins, 2019) as improvements in training
loss during optimization result in improvements
in model performance during Inference. While
this may lead to the best model performance, it
ignores the variable inference cost of sequence-to-
sequence models.

During Inference, latency is dominated by the
asymmetric execution of the language model. The
auto-encoding encoder executes once over the en-
tire input sequence, while the auto-regressive de-
coder executes iteratively until an end-of-sequence
token is produced.

Kasai et al. demonstrated how the sequence-to-
sequence language model performance for ma-



Table 1:

Information about the architecture and attributes of the FLAN-TS models

Model Size(MBs) | Parameters | Encoder Layers

Parameters Encoder

Decoder Layers | Parameters decoder | Ratio End:Dec | Hidden Size

Flan-t5-small 3 | 146 60511616 | 8 35332800

8 41628352 0.849 512

Flan-t5-base * | 472 222903552 | 12 109628544

12 137949312 0.795 768

Flan-t5-large > | 1500 750251008 | 24 341231104

24 441918976 0.772 1024

chine translation is dominated by the encoder depth
(Kasai et al., 2020). Tay et al. 2021 extend this
work by finding a DeepNarrow which shows that
for broad language modeling, it is possible to have
50% fewer parameters and a 40% faster inference
with no loss in accuracy (Tay et al., 2021).
Efficient Inference for language modeling is a
growing area of study that broadly focuses on re-
ducing the inference cost without losses in accu-
racy.

Unstructured Pruning has been broadly studied
(Han et al., 2015) (Sanh et al., 2020) (Kurti¢ et al.,
2022) (Zafrir et al., 2021) (Campos et al., 2022)
but realizing speedups can be difficult.

Structured Pruning removes fundamental structural
components in a language model such as individ-
ual attention heads (Voita et al., 2019) or entire
model layers such as transformer encoders (Sanh
et al., 2019). Rosenfeld et al. 2020 demonstrate
that unstructured pruning impacts follow scaling
laws (Rosenfeld et al., 2020) where larger models
can be pruned with greater ease.

Compressing Sequence-to-sequence is a grow-
ing area of study where approaches from regular,
efficient Inference has shown some transfer abil-
ity. Shleifer et al. show that it is possible to gain
1.93x speedup on a BART summarization model
by applying structural pruning (Shleifer and Rush,
2020) but find compression approaches differ in
their success depending on the dataset. Leveraging
semi-structured pruning, Lagunas et al. can gain
a 1.19 speedup (Lagunas et al., 2021) for minor
losses in accuracy. While they find that the en-
coder is easier to prune than the decoder, they do
not use this evidence of asymmetry to speed up
performance further.

Li et al. investigate how to enable quantization,
finding that without specialized distillation dur-
ing quantization, performance collapses (Li et al.,
2022). Leveraging that generation occurs itera-
tively, and some tokens are easier to generate than
other CALM (Schuster et al., 2022) apply early
exiting to improve inference speed by 1.4x. While
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existing work has found interest in asymmetry, it
has not been studied directly, nor has relationships
in model scale been explored.

While there are other approaches such as knowl-
edge distillation (Hinton et al., 2015) (Sanh et al.,
2019) (Jiao et al., 2020), quantization (Zafrir et al.,
2019), early exiting (Xin et al., 2020) and token
pruning (Kim et al., 2021) these are not the fo-
cus on our work as understanding the impact of
many variables together limits the depth of our ex-
ploration. We leave further study of the interplay
between summarization and quantization, unstruc-
tured pruning, structured pruning, and knowledge
distillation for future work.

3 Scale and Abstractive Summarization

3.1 Background

Sequence-to-sequence language models such as
BART (Lewis et al., 2021), T5 (Raffel et al., 2020),
and PEGASUS (Zhang et al., 2020) combine trans-
former encoders and decoders to produce models
which can adapt to novel tasks and reach top perfor-
mance on tasks ranging from information retrieval
(Nogueira et al., 2020) to summarization (Raffel
et al., 2020).

We focus on the instruction-tuned FLAN-T5 mod-
els (Wei et al., 2021) as their performance is com-
petitive and they feature wide variations in model
size ranging from 60 million to 11 billion parame-
ters and given the cost of training the larger vari-
ants, focus on the small, base, and large variants.
Details on model size and architecture can be found
in table 1.

Abstractive summarization is a method of se-
quence compression where a source document D
is transformed into a target document d,,,, which
is shorter but faithful to the input.

Datasets of use are a combination of public
and academic benchmarks and a proprietary web
search dataset. The CNN/DailyMail (CNNDM)
(See et al., 2017) and XSUM (Narayan et al., 2018)
datasets are based on the summarization of English
new language models. The Query Independent
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Figure 2: Model Size vs. Gain to summarization accu-
racy as measured by the relative Gain in rouge-2 vs. the
small model.

Web Summary (QIWS) is a proprietary corpus of
abstractive summaries of web pages that are used
to create informative contextual snippets for search
engine users. It is important to note the differ-
ences in compression factor in each dataset as each
impact how decoder-driven inference latency is.
Further information on the makeup of each dataset
can be found in table 11.

Metrics For each dataset, we evaluate model
performance by measuring the ROUGE-1 (R-1),
ROUGE-2 (R-2), ROUGE-L (R-L), RougeSum-
L (RSL) © (Lin, 2004), and Generation Length
(GenL) on the test portion of the dataset. To aid
the reproducibility and extension of our work, we
experiment using HuggingFace’s Transformers ,
release our training and pruning scripts ® and model
variants for datasets that are publicly available
datasets °.

3.2 Scaling Laws for Abstract Summarization

To study the role of scale in abstractive summariza-
tion, we train small, base, and large models of the
three datasets mentioned above. We do not study

Rouge-L is sentence level vs. RougeSum-L is summary
level

https://github.com/huggingface/transformers

8https://github.com/spacemanidol/Efficient-Web-Scale-
Absractive-Summarization

“https://huggingface.co/spacemanidol
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the XL (3B) and XXL (11B) as they are expensive
and slow to train.

For all of our experiments, we train on various
hardware but fix the batch size to 64 using gradient
accumulation and leverage the hyperparameters
in 12. While further hyperparameter optimization
and instruction tuning would likely lead to further
gains in accuracy, our work is not focused on
absolute Gains but on the relative relation of scale.

As shown in 2, 13, 14, and 15, there is a substan-

tial role between scale and performance, but there
is a substantial variation across datasets.
Datasets with short candidate summaries, such as
XSUM, see nearly three times the impact compared
to the long summaries of QIWS and CNNDM. Dur-
ing qualitative evaluations, the role of scale can eas-
ily be observed as smaller models generate more
short keyword summaries while introducing scale
makes responses more natural.

3.3 Inference Benchmark

To evaluate the impact of asymmetry on inference,
we run experiments on the throughput of each
model. Using an A10 GPU and the models from
our QIWS datasets, we evaluate performance with
a max sequence length of 1024, a max summary of
256, and batch sizes 1, 8, and 16 using native infer-
ence in PyTorch. We report the mean and standard
deviation of timings on seven runs.

In comparing the impact of scale on R-2 vs. the
effects on latency across batch sizes in 2, 4, 3 it
becomes clear that larger models are more expen-
sive to execute significantly as batch sizes increase.
This is because of potential differences in output
length within a batch as the batch completes when
all sequences have produced an EOS token. To
alleviate this issue bottleneck, improved stream-
ing methods for improved batching have been pro-
posed (Yang et al., 2020) but can be challenging to
manage.

4 To Asymmetry and Beyond

While prior work has studied how to improve in-
ference and tangentially explored the asymmetry
between the encoder and decoder, we study that
explicitly and across model scales. We focus our
studies on structural pruning as inference gains
are easy to realize, and this approach is highly



Table 2: Impact of scale on inference throughput for abstractive summarization models trained on the XSUM
dataset. Latency is measured in MS/batch and the impact is the impact to latency vs. the small model

Model | R-2 Gain BS 1 Latency | Impact | BS 8 Latency | Impact | BS 16 Latency | Impact
small 17.55 | 0.00% 138 1 230 1 330 1

base 19.77 | 12.63% | 199 1.44 550 2.39 931 2.82
large 21.15 | 20.51% | 445 3.22 1480 6.43 2700 8.18

Table 3: Impact of scale on inference throughput for abstractive summarization models trained on the QIWS dataset.
Latency is measured in MS/batch and the impact is the impact to latency vs. the small model

Model | R-2 Gain BS 1 Latency | Impact | BS 8 Latency | Impact | BS 16 Latency | Impact
small 29.03 | 0 524 1 653 1 729 1

base 3419 | 17.77% | 746 1.42 1060 1.62 1310 1.80
large 37.37 | 28.72% | 1,430 2.73 2240 3.43 3320 4.55

Table 4: Impact of scale on inference throughput for abstractive summarization models trained on the CNNDM
dataset.Latency is measured in MS/batch and the impact is the impact to latency vs. the small model

Model | R-2 Gain BS 1 Latency | Impact | BS 8 Latency | Impact | BS 16 Latency | Impact
small 11.09 | 0 171 1.00 252 1.00 344 1.00
base 15.69 | 41.50% | 255 1.49 550 2.18 845 2.46
large 1634 | 47.41% | 525 3.07 1370 5.44 2300 6.69

Table 5: Relation between scale and asymmetry on
model performance on the QIWS dataset. As shown by
the results in bold pruning only the decoder leads to
less degradation than just the encoder or both, across
all scales.

Base
R-2
34.19
34.00
34.50
33.70
31.93
28.05

Small
R-2

29.03
28.90
28.56
27.94
24.85
15.41

Large
R-2

37.37
37.59
36.56
35.74
35.13
33.69

R
100.00%
99.55%
98.40%
96.24%
85.61%
53.08%

R
100.00%
99.44%
100.91%
98.58%
93.38%
82.03%

R
100.00%
100.59%
97.84%
95.64%
94.01%
90.15%

enc dec

oo ||| | ]
A EESENEY

27.92
27.75
25.20
23.67
18.23

98.18%
96.69%
94.28%
80.35%
74.78%

36.39
35.90
34.22
33.42
30.31

97.38%
96.07%
91.58%
89.43%
81.11%

96.17%
95.60%
86.82%
81.55%
62.79%

33.57
33.06
32.23
27.47
25.57

T ENE
N E-N RN E-NE-Y

26.82
26.62
23.12
19.14
6.09

92.38%
91.72%
79.64%
65.92%
20.99%

32.88
32.81
28.70
26.53
19.64

96.18%
95.96%
83.95%
77.60%
57.43%

36.32
35.98
33.00
30.78
22.77

97.20%
96.29%
88.31%
82.38%
60.94%

LR ENE
IS ESE

compatible with other methods like quantization
and unstructured pruning. We do not study how
asymmetry is impacted by unstructured pruning or
quantization as these methods are difficult to com-
bine optimized libraries like FasterTransformers'©.
Following Shleifer et al., we adopt the "Shink and
then fine" (STF) tune approach for compression.
First, a model is trained until convergence on a
fine-tuning summarization task. Then, entire lay-
ers are removed from the encoder, decoder, or both,
and the model is further fine-tuned until it has re-

"https://github.com/NVIDIA/FasterTransformer
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converged. We do not study the use of knowledge
distillation to avoid the additional training over-
head without guaranteed improvements following
Shleifer et al.’s results.

Each model we study has a uniform number of
encoder and decoder layers, so we prune only the
encoders, decoders, and a symmetric combination
of the two combinations. We used our three scales
of uncompressed models (small, base, large), and
we pruned the model in multiples of 1 on the en-
coder, the decoder, and both. After pruning, mod-
els are fine-tuned again and evaluated. This means
that for each dataset, we have 16 variants for each
model size leading to 48 models per dataset and
144 models overall.

Given the wide number of models and the cost
of multiple seeds or model-specific optimization,
we train each model once and do not optimize the
parameters for each model. While this leads to a
worse-than-ideal performance, our goal is not to
hyper-optimize models but explore where there is
high sensitivity. To save space, we use the short-
hand l¢y. and .. to refer to the number portion of
transformer encoder and decoder layers (out of 6),
and R refers to the percentage performance recall
vs. uncompressed baseline. Detailed results have
been moved to the A.3 to save space.



Table 6: Relation between scale and asymmetry on
model performance on the CNNDM dataset. As shown
by the results in bold as the model size grows the impact
of pruning becomes more muted

Small Base Large

Tone | laee | R2 R R-2 R R2 R

6 6 17.55 100.00% 19.77 100.00% 21.15 100.00%
6 5 17.68 100.74% 19.92 100.76% 21.30 100.69%
6 4 17.27 98.36% 19.85 100.42% 21.32 100.81%
6 3 16.40 93.43% 18.85 95.37% 21.08 99.66 %

6 2 15.35 87.42% 18.68 94.51% 20.67 91.73%

6 1 11.33 64.57% 16.48 83.38% 19.49 92.12%

5 6 17.69 100.81% 19.92 100.76% 21.13 99.88%

4 6 17.35 98.84% 19.67 99.50% 20.83 98.47%

3 6 16.80 95.70% 18.85 95.37% 20.53 97.06%

2 6 15.54 88.51% 18.22 92.14% 19.74 93.33%

1 6 13.31 75.83% 17.06 86.27% 18.68 88.31%

5 5 17.07 97.23% 19.72 99.74% 21.23 100.34%
4 4 16.20 92.28% 19.17 96.99% 20.90 98.81%

3 3 14.91 84.95% 17.46 88.29% 20.13 95.16%

2 2 11.97 68.17% 15.87 80.26% 18.47 87.30%

1 1 6.05 34.45% 12.23 61.88% 1551 73.32%

Table 7: Scale and Pruning on XSUM dataset

Small Base Large

Tone | laee | R2 R R2 R R2 R

6 6 11.09 100.00% 15.69 100.00% 16.34 100.00%
6 5 11.61 104.74% 15.27 97.35% 19.80 121.16%
6 4 11.43 103.12% 14.91 95.03% 19.30 118.09%
6 3 11.24 101.36% 15.40 98.17% 18.92 115.77%
6 2 10.53 94.98% 15.19 96.82% 17.96 109.93%
6 1 6.03 54.42% 13.73 87.53% 16.47 100.76%
5 6 11.18 100.82% 15.92 101.47% 19.43 118.88%
4 6 10.61 95.68% 14.10 89.91% 18.33 112.16%
3 6 10.11 91.16% 13.84 88.21% 16.90 103.39%
2 6 8.59 77.52% 12.10 77.12% 14.97 91.61%
1 6 7.70 69.43% 10.27 65.47% 12.52 76.63%
5 5 10.73 96.76% 15.72 100.22% 19.18 117.38%
4 4 10.19 91.96% 14.30 91.15% 17.56 107.43%
3 3 9.50 85.69% 12.44 79.32% 15.89 97.21%
2 2 7.31 65.91% 10.67 68.05% 12.15 74.34%
1 1 4.00 36.09% 7.74 49.35% 8.96 54.86%

.
4.1 Scale and Pruning

Role of scale and compression on CNNDM

Looking at abridged results in 5, 6, and 7, there
is a clear scaling law as smaller models see much
larger drops in performance when compressed
to the same degree. For example, on the QIWS
dataset, compression to % of the layers on the
encoder and decoder cause an 80% drop in R-2 on
a small model but only 40% on the larger model.
This scale comparison is 65% to 26% on CNNDM
and 64% to 45% on XSUM datasets.

Similar scaling results hold with encoder or
decoder pruning, where compressing large models
lead to a 5x lower loss in performance than small
models. As the model’s size grows, the impact of
decoder vs. encoder-only pruning becomes more
muted. On the CNNDM dataset, the gap between
the decoder only and encoder only pruned to % is
10% with the FLAN-TS small but only 4% with
the large variant. When comparing asymmetric
and symmetric, the gap is even further pronounced
where the small gap is 30% while the large is 20%.
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Figure 3: Relationship between model compression,
model size, and summarization accuracy measured by
rouge-2 vs. Number Layers. smallepcoger refers to a
FLAN-TS5 small which has only pruned the encoder,

96 smallgecoger for only the decoder, and smallpyy, for the

encoder and decoder



As shown in Figure 3, the impact of compression
becomes more muted as the model size grows. In
other words, larger models are more compressible
and amenable to asymmetry in this compression.
The impact of asymmetry is easiest to understand
as it is not surprising that complete pruning of a
model leads to higher losses than partial pruning
across datasets and model sizes. While this finding
is not immediately surprising, evaluating the
inference costs becomes important.

4.2 Inference Benchmarks

We evaluate the impact of asymmetry in a similar
method to our scale experiments. Using an A10
GPU, we evaluate performance for summarization
on a portion of each model’s respective evaluation
datasets with a max sequence length of 1024, a
max summary length of 256, and batch sizes 1, 8,
and 16. We choose these batch sizes to represent
streaming workloads (batch size 1), real-time re-
sults for the top results from a search query (batch
size 8i), and max throughput given the A10’s mem-
ory budget (batch size 16)

QIWS CNN/DailyMail XSUM

Impact
336%
5.99%
9.85%

Speedup
1.80
2.44
383

Impact
0.34%
207%
7.88%

Speedup
1.6
2.03
2.70

lene Impact
15.77%
9.93%

0.76%

Speedup
164
2.07
271

model symmetrically leads to realizable inference
improvements of up to 5x at the expense of sum-
marization accuracy.

Alternatively, when only the decoder is pruned, it is
possible to see most of the inference speedups seen
during constant pruning with a substantially lower
impact on accuracy. On the CNN/DM dataset,
constant pruning leads to 8% better inference but
losses nearly four times the performance of non-
uniform compression.

Small Base Large
lence | lgec | Impact Speedup | Impact Speedup | Impact Speedup
6 6 -3.76% 1.79 -1.42% 1.76 -4.36% 1.80
6 6 -14.39% | 2.69 -6.62% | 2.13 -5.99% 2.44
6 6 -46.92% | 3.97 -17.97% | 3.69 -9.85% 3.83
3 3 -13.18% | 1.02 -5.72% 1.04 -8.42% 1.04
2 2 -18.45% | 1.02 -19.65% | 1.05 -10.57% | 1.04
1 1 -37.21% | 1.03 -25.22% | 1.06 -18.89% | 1.06
3 3 -20.36% | 1.40 -16.05% | 1.86 -11.69% | 191
2 2 -34.08% | 1.30 -22.40% | 2.48 -17.62% | 2.20
1 1 -79.01% | 391 -42.57% | 3.95 -39.06% | 2.44

Table 9: Relationship between accuracy and speedup
of encoder only, decoder only, encoder and decoder
pruning on FLAN-TS models on QIWS concerning
model size. Speedup is measured by comparing the
improvements in latency for batch size one vs. the un-
compressed baseline. The impact is the relative loss of
Rouge-2 of compressed models vs. the uncompressed
baseline.

[3 | 6 | -842% | 104 | -204% | L14 | 339% | Ll6 | lenc | lacc | Impact | Speedup (BS1) | Speedup (BS8) | Speedup (BS16)
2 6 [ -1057% | 1.04 | 667% | 1.19 [ 839% | 121 6 3 -0.34% 1.65 1.18 1.15
‘ 1 ‘ 6 ‘ -18.89% ‘ 1.06 ‘ -11.69% ‘ 1.27 ‘ -23.37% ‘ 1.30 6 2 -2.27% 2.03 1.25 1.22
| 3 | 3 | -11.69% | 191 | -484% | 194 | 279% | 206 | [J 1 -1.88% | 270 1.36 129
2 2 [ 17.62% | 2.20 [ 1270% | 278 | 25.66% | 283 | R
[T [T | 39.06% | 244 | 26.68% | 496 | -45.14% | 484 | g ; _ég‘;gﬁ Hg 122 igg
6 1 -11.69% | 1.27 221 243
Table 8: Relationship between accuracy and speedup 3 |3 | 484% | 194 .96 97
of encoder only, the decoder only, encoder and de- 2 [2 [-1270% | 2.78 2.88 292
1 1 -26.68% | 4.96 5.54 5.64

coder pruning on FLAN-TS Large models on CNN/DM,
XSUM, and QIWS. Speedup is measured by compar-
ing the improvements in latency for batch size one vs.
the uncompressed baseline. The impact is the relative
loss of Rouge-2 of compressed models vs. the uncom-
pressed baseline.

Looking at the focused set of results for large mod-
els across datasets in table 8 on the impact of R-2
vs. inference speedup, we can see a clear relation-
ship between asymmetry and inference efficiency.
While detailed inference results can be found in
the appendix A.4 on this focused set of results,
we can see that pruning only the encoder leads to
no more than 30% improvement in inference effi-
ciency at a sizable loss in accuracy. Pruning the

97

Table 10: Relationship between accuracy and speedup
of encoder only, decoder only, encoder and decoder
pruning on FLAN-T5 large models on CNN with vari-
ation in inference batch size. Speedup is measured by
comparing the improvements in latency vs. the uncom-
pressed baseline at various batch sizes. The impact is
the relative loss of Rouge-2 of compressed models vs.
the uncompressed baseline.

5 Discussion

5.1 Scale, Inference, and Pruning

As shown in table 9, the gains found by pruning are
extremely consistent independently with scaling.
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Figure 4: Role of scale and compression on generation
length

Pruning only the encoder leads to a 4-6% improve-
ment in latency, and pruning just the decoder leads
to 400%, as does uniform compression. This is
expected as structural pruning removes a constant
portion of the network, which leads to consistent
latency gains irrespective of model scale.

5.2 Scale, Pruning and Generated length

Despite expecting a significant trend in the role of
scale and pruning in a generation, we do not see
any noticeable trends. As shown in figures 6 and
4, there is no discernible trend of the Role of scale
and pruning in generation length. There is a minor
jump in generation length from FLAN-TS small
to FLAN-TS base across all datasets but no such
jump from FLAN-T5 base to FLAN-TS large. We
believe this is because the smaller models are less
fluent and need more tokens to ensure accurate cov-
erage. As models scale, this is no longer needed,
and the models converge to a uniform summary
length.

5.3 Asymmetry with large batches

Despite the allures of asymmetrical pruning, it is
not without fault. As shown in table 10 and Fig-
ure 5, the improvements in inference efficiency
are heavily influenced by the batch size. When
the batch size is minimal, the difference in the
type of non-uniformity has a significant impact

Impact of batch size on inference speedups
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Figure 5: Relationship between inference batch size
and realized inference speedup with uniform and no
uniform pruning of FLAN-T5 large on CNNDM
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on inference efficiency. As batches scale, the
speedup from encoder only or decoder only be-
comes much closer and becomes minor when com-
pared to uniform methods. This indicates why
further work on improving generative inference
methods is highly relevant, as this problem im-
pacts other efficiency-driven processes like CALM
(Schuster et al., 2022).

6 Conclusion and Future Work

In this work, we explore the role of symmetry in
the pruning of sequence-to-sequence models for ab-
stractive summarization, finding that pruning asym-
metrically can lead to inference speedups with low
losses in accuracy. Our work also explores the rela-
tionship between model scale and the sensitivity to
pruning, finding that larger models see lower losses
when pruned. This compresses FLAN-TS models
to deliver 3x inference gains with a 1 Rouge-2
point loss.

In future work, we seek to study how pseudo la-
beling, early exiting, and quantization can be com-
bined to improve further the inference efficiency
of sequence-to-sequence models.
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A Appendix
A.1 Training Details

In all of our experiments, we leverage the parame-
ters shown in 12 on the datasets shown in 11

A.2 Scale and Abstractive summarization

The role of model scale on performance on the
QIWS, CNN/DM, and XSUM datasets can be
found in tables 14,13, and 15

A.3 Asymmetry in Summarization

The role of the model scale, structural pruning,
and asymmetry on performance on the QIWS,
CNN/DM, and XSUM datasets can be found in
tables 22,23,24,16,17,18,19,20, and 21.

A.4 Inference Benchmarks

Detailed variations in latency measurements across
batch size, scale, structural pruning, and asymme-
try on performance on the QIWS, CNN/DM, and
XSUM datasets can be found in tables 25,26, 27,
28,29, 30, 33, 31, and 32.

A.5 Responsible NLP Research -
Reproducibility Checklist

A.5.1 Scientific Artifacts

Datasets. We perform our experimentation on
well-established benchmarks using many broad
domains and a proprietary web summarization
dataset. We do not perform any modification or
augmentation on public benchmarks in any dataset.

11
101

Models. The model used as a starting point for all
of our experiments is the family of flan-t5 models,
publicly available via HuggingFace Hub 3. All
other models presented in this paper are openly-
available in the hugging face hub.

A.5.2 Computational Experiments

Our experimentation on finetuning our compressed
models uses a single 40GB A100. Finetuning time
varies across datasets ranging from 1 hour for T5-
small to 24 hours for T5-Large.

A.5.3 Computational Packages

All of our experimentation is done using public
libraries and datasets to ensure extensibility and
reproducibility. Our investigation is done using
HuggingFace’s Transformers 4 and Datasets '°.

Bhttps://huggingface.co/bert-base-uncased
Yhttps://github.com/huggingface/transformers
Bhttps://github.com/huggingface/datasets



Table 11: Statistics for the abstractive summarization datasets which we study. Source and Summary refer to the
number of words in each, and the compression factor is the ratio between the two on the train portion of the dataset.

Dataset Train Validation | Test Source | Summary | Compression
CNNDM T | 287,113 | 13,368 11,490 | 691.87 | 51.57 14.80
XSUM 2 204,045 | 11,332 11,334 | 373.86 | 21.09 18.70
QIWS 10000 1000 1000 1410.12 | 73.78 19.11

HyperParameter ‘ Value

Training Length ‘ 3,10 Epochs

Initial learning rate le-4

Learning rate schedule constant

Batch size ‘ 64

Weight Decay | 0.01,0.05,0.1

Table 12: Training Hyperparameters for summarization
experiments
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Model | R-1 Impact | R-2 Impact | RSL Impact | R-L Impact | Genl | Impact
small 50.22 | 0.00% 29.03 | 0.00% 45.87 | 0.00% 40.19 | 0.00% 62.79 | 0.00%
base 54.84 | 9.20% 3419 | 17.77% | 50.38 | 9.83% 44.68 | 11.18% | 6291 | 0.19%
large 57.81 | 15.11% | 37.37 | 28.72% | 53.14 | 15.84% | 48.16 | 19.84% | 62.85 | 0.10%

Table 13: Impact of Scale on summarization performance on QIWS dataset

Model | R-1 Impact | R-2 Impact | RSL Impact | R-L Impact | Genl | Impact
small | 39.31 | 0.00% 17.55 | 0.00% 36.50 | 0.00% 27.97 | 0.00% 77.62 | 0.00%

base 42.14 | 7.20% 19.77 | 12.63% | 39.32 | 7.75% 30.15 | 7.80% 71.86 | -7.42%
large 4399 | 11.90% | 21.15 | 20.51% | 41.12 | 12.68% | 31.64 | 13.11% | 71.01 | -8.51%

Table 14: Impact of Scale on summarization performance on CNNDM dataset

Model | R-1 Impact | R-2 Impact | RSL Impact | R-L Impact | Genl | Impact
small 33.2675 | 0.00% 11.09 | 0.00% 26.17 | 0.00% 26.17 | 0.00% 28.01 | 0.00%
base 38.7782 | 16.56% | 15.69 | 41.45% | 31.14 | 19.01% | 31.15 | 19.04% | 25.92 | -7.48%
large 39.7125 | 19.36% | 16.34 | 47.36% | 31.72 | 21.21% | 31.72 | 21.23% | 26.74 | -4.54%

Table 15: Impact of Scale on summarization performance on XSUM dataset

Table 16: The relation between pruning asymmetry and symmetry for a FLAN-T5 small model on the
CNN/DailyMail Abstractive Summarization Dataset

3
2}
a
Q
o

R-1 Impact R-2 Impact RSL Impact R-L Impact GenL | Impact
39.31 | 0.00% 17.55 | 0.00% 36.50 | 0.00% 27.97 | 0.00% 77.62 | 0.00%
39.33 | 0.04% 17.68 | 0.74% 36.54 | 0.13% 28.21 | 0.87% 76.46 | -1.49%
38.75 | -1.42% 17.27 | -1.64% 36.01 | -1.32% 2791 | -0.23% 78.63 | 1.31%
37.18 | -5.42% 1640 | -6.57% 3446 | -5.58% 2722 | -2.70% 75.69 | -2.48%
3547 | -9.76% 1535 | -12.58% | 32.78 | -10.17% | 26.28 | -6.06% 75.08 | -3.27%
29.27 | -25.55% | 11.33 | -35.43% | 26.97 | -26.09% | 22.33 | -20.18% | 67.99 | -12.40%
39.59 | 0.71% 17.69 | 0.81% 36.80 | 0.83% 28.08 | 0.39% 77.81 | 0.25%
39.12 | -0.47% 1735 | -1.16% 36.38 | -0.31% 27.73 | -0.88% 76.22 | -1.80%
38.57 | -1.87% 16.80 | -4.30% 35.79 | -1.92% 27.15 | -2.92% 78.13 | 0.67%
36.82 | -6.32% 1554 | -11.49% | 34.00 | -6.84% 2579 | -7.78% 77.77 | 0.20%
3358 | -14.58% | 13.31 | -24.17% | 30.96 | -15.16% | 23.72 | -15.19% | 70.79 | -8.79%
38.59 | -1.82% 17.07 | -2.77% 3580 | -1.91% 27.55 | -1.52% 7793 | 0.41%
37.31 | -5.08% 1620 | -7.72% 34.60 | -5.19% 26.83 | -4.07% 79.83 | 2.85%
3528 | -10.25% | 1491 | -15.05% | 32.54 | -10.85% | 25.74 | -7.98% 74.61 | -3.88%
30.79 | -21.66% | 11.97 | -31.83% | 28.03 | -23.19% | 22.88 | -18.19% | 78.53 | 1.18%
21.30 | -45.80% | 6.05 -65.55% | 19.57 | -46.39% | 16.62 | -40.56% | 60.03 | -22.66%
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Table 17: The relation between pruning asymmetry and symmetry for a FLAN-TS base model on the
CNN/DailyMail Abstractive Summarization Dataset

lenc | ldec | R-1 Impact R-2 Impact RSL Impact R-L Impact GenL | Impact
12 12 42.14 | 0.00% 19.77 | 0.00% 39.32 | 0.00% 30.15 | 0.00% 71.86 | 0.00%
12 10 42.49 | 0.84% 19.92 | 0.76% 39.62 | 0.75% 30.27 | 0.40% 74.38 | 3.51%
12 8 42.28 | 0.34% 19.85 | 0.42% 3948 | 0.41% 30.35 | 0.64% 70.74 | -1.56%
12 6 41.30 | -1.99% 18.85 | -4.63% 38.44 | -2.25% 29.16 | -3.28% 74.76 | 4.04%
12 4 40.31 | -4.34% 18.68 | -5.49% 3771 | -4.10% 2945 | -2.33% 67.52 | -6.04%
12 2 36.75 | -12.80% | 16.48 | -16.62% | 34.22 | -12.97% | 27.61 | -8.43% 67.67 | -5.82%
10 12 4249 | 0.84% 19.92 | 0.76% 39.62 | 0.75% 30.27 | 0.40% 7438 | 3.51%
8 12 4227 | 0.31% 19.67 | -0.50% 3941 | 0.22% 29.99 | -0.52% 74.34 | 3.45%
12 41.30 | -1.99% 18.85 | -4.63% 3844 | -2.25% 29.16 | -3.28% 74.76 | 4.04%
12 40.51 | -3.86% 18.22 | -7.86% 37.66 | -4.23% 28.42 | -5.75% 77.04 | 7.21%
12 39.03 | -7.38% 17.06 | -13.73% | 36.15 | -8.08% 27.23 | -9.69% 73.36 | 2.09%
0 10 42.19 | 0.13% 19.72 | -0.26% 39.38 | 0.14% 30.12 | -0.11% 73.56 | 2.37%
8 41.64 | -1.18% 19.17 | -3.01% 38.83 | -1.26% 29.60 | -1.84% 74.59 | 3.80%
6 39.33 | -6.67% 17.46 | -11.71% | 36.67 | -6.74% 28.07 | -6.92% 7227 | 0.57%
4 36.99 | -12.23% | 15.87 | -19.74% | 34.43 | -12.43% | 26.63 | -11.68% | 69.08 | -3.87%
2 3099 | -26.45% | 12.23 | -38.12% | 28.43 | -27.71% | 23.28 | -22.79% | 66.70 | -7.18%
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Table 18: The relation between pruning asymmetry and symmetry for a FLAN-TS large model on the
CNN/DailyMail Abstractive Summarization Dataset

lene | lgee | R-1 Impact R-2 Impact RSL Impact R-L Impact GenL | Impact
24 24 43.99 | 0.00% 21.15 | 0.00% 41.12 | 0.00% 31.64 | 0.00% 71.01 | 0.00%
24 20 44,15 | 0.37% 21.30 | 0.69% 41.31 | 0.46% 31.73 | 0.31% 71.20 | 0.26%
24 16 44,10 | 0.27% 21.32 | 0.81% 41.29 | 0.39% 31.83 | 0.60% 70.19 | -1.16%
24 12 4374 | -0.57% 21.08 | -0.34% 40.97 | -0.38% 31.60 | -0.13% 69.99 | -1.44%
24 8 4335 | -1.45% 20.67 | -2.27% 40.58 | -1.32% 31.29 | -1.11% 72.88 | 2.63%
24 4 41.42 | -5.84% 19.49 | -7.88% 38.78 | -5.69% 30.35 | -4.06% 70.39 | -0.89%
20 24 44.10 | 0.26% 21.13 | -0.12% 41.28 | 0.38% 31.58 | -0.17% 71.04 | 0.04%
16 24 4376 | -0.52% 20.83 | -1.53% 40.92 | -0.49% 31.22 | -1.31% 71.59 | 0.80%
12 24 4333 | -1.50% 20.53 | -2.94% 4043 | -1.68% 30.82 | -2.58% 73.28 | 3.20%
8 24 4246 | -3.48% 19.74 | -6.67% 39.64 | -3.60% 2998 | -5.23% 7347 | 3.46%
4 24 41.25 | -6.23% 18.68 | -11.69% | 38.30 | -6.86% 28.78 | -9.04% 76.05 | 7.08%
20 20 44.10 | 0.25% 21.23 | 0.34% 41.25 | 0.32% 31.65 | 0.05% 70.90 | -0.16%
16 16 43.69 | -0.67% 20.90 | -1.19% 40.86 | -0.64% 31.30 | -1.06% 71.85 | 1.18%
12 12 42.81 | -2.67% 20.13 | -4.84% 39.97 | -2.80% 30.58 | -3.33% 72.81 | 2.53%
8 8 40.57 | -7.78% 1847 | -12.70% | 37.82 | -8.04% 28.96 | -8.46% 73.39 | 3.34%
4 4 36.11 | -1791% | 15.51 | -26.68% | 33.48 | -18.59% | 26.30 | -16.88% | 68.58 | -3.43%

Table 19: The relation between pruning asymmetry and symmetry for a FLAN-T5 small model on the Query
Independent Web Snippets Abstractive Summarization Dataset
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R-1 Impact R-2 Impact RSL Impact R-L Impact GenL | Impact
50.22 | 100.00% | 29.03 | 100.00% | 45.87 | 100.00% | 40.19 | 100.00% | 62.79 | 100.00%
50.20 | 99.96% 28.90 | 99.55% 45.80 | 99.83% 40.45 | 100.65% | 62.81 | 100.03%
49.74 | 99.04% 28.56 | 98.40% 45.55 | 99.30% 40.27 | 100.20% | 62.68 | 99.83%
48.59 | 96.74% 27.94 | 96.24% 44.65 | 97.33% 39.27 | 97.70% 62.67 | 99.82%
45.36 | 90.32% 24.85 | 85.61% 41.38 | 90.21% 36.92 | 91.87% 62.68 | 99.84%
34.47 | 68.64% 15.41 | 53.08% 31.00 | 67.58% 27.68 | 68.88% 61.68 | 98.24%
49.32 | 98.21% 2792 | 96.17% 44.72 | 97.48% 39.10 | 97.28% 62.90 | 100.18%
49.08 | 97.72% 27.75 | 95.60% 44.29 | 96.56% 38.76 | 96.45% 62.87 | 100.13%
46.40 | 92.39% 25.20 | 86.82% 41.81 | 91.14% 36.71 | 91.34% 62.74 | 99.93%
45.08 | 89.77% 23.67 | 81.55% 40.44 | 3531% 3531 | 87.85% 62.82 | 100.06%
39.81 | 79.26% 18.23 | 62.79% 35.39 | 77.14% 29.97 | 74.56% 62.83 | 100.07%
48.47 | 96.51% 26.82 | 92.38% 43.88 | 95.66% 38.38 | 95.49% 62.81 | 100.04%
47.55 | 94.68% 26.62 | 91.72% 43.13 | 94.02% 37.99 | 94.51% 62.67 | 99.81%
42.33 | 84.28% 23.12 | 79.64% 39.89 | 86.95% 33.39 | 83.08% 62.71 | 99.88%
39.69 | 79.02% 19.14 | 65.92% 3549 | 77.36% 30.90 | 76.89% 62.79 | 100.00%
2298 | 45.75% 6.09 20.99% 20.52 | 44.74% 18.36 | 45.69% 61.90 | 98.58%
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Table 20: The relation between pruning asymmetry and symmetry for a FLAN-TS base model on the Query
Independent Web Snippets Abstractive Summarization Dataset

lenc | ldec | R-1 Impact R-2 Impact RSL Impact R-L Impact GenL | Impact
12 12 54.84 | 0.00% 34.19 | 0.00% 50.38 | 0.00% 44.68 | 0.00% 62.91 | 0.00%

12 10 55.02 | 0.33% 34.00 | -0.56% 50.20 | -0.35% 44.67 | -0.02% 62.79 | -0.19%
12 8 5597 | 2.05% 3450 | 0.91% 51.12 | 1.48% 4490 | 0.48% 62.75 | -0.24%
12 6 54.54 | -0.55% 33.70 | -1.42% 4994 | -0.87% 44.19 | -1.11% 62.81 | -0.16%
12 4 52.64 | -4.01% 31.93 | -6.62% 4728 | -6.16% 4298 | -3.81% 62.85 | -0.09%
12 2 49.02 | -10.61% | 28.05 | -17.97% | 4498 | -10.71% | 40.36 | -9.68% 62.89 | -0.02%
10 12 5423 | -1.11% 3357 | -1.82% 49.93 | -0.89% 44.00 | -1.52% 62.87 | -0.05%
8 12 54.02 | -1.50% 33.06 | -3.31% 4949 | -1.76% 43.80 | -1.96% 62.85 | -0.09%
6 12 48.74 | -11.13% | 32.23 | -5.72% 48.74 | -3.26% 4292 | -3.95% 62.82 | -0.14%
12 4793 | -12.61% | 27.47 | -19.65% | 46.21 | -8.28% 39.77 | -11.00% | 62.79 | -0.19%
12 4745 | -13.48% | 25.57 | -2522% | 43.20 | -14.26% | 37.69 | -15.66% | 62.77 | -0.22%
0 10 54.25 | -1.08% 32.88 | -3.82% 49.51 | -1.72% 4324 | -3.23% 62.82 | -0.13%
8 53.89 | -1.73% 32.81 | -4.04% 49.32 | -2.10% 43.77 | -2.04% 62.82 | -0.14%
6 50.26 | -8.34% 28.70 | -16.05% | 45.62 | -9.45% 40.05 | -10.37% | 62.82 | -0.13%
4 4777 | -12.89% | 26.53 | -22.40% | 43.34 | -13.97% | 37.85 | -1529% | 62.84 | -0.10%
2 39.59 | -27.80% | 19.64 | -42.57% | 35.80 | -28.95% | 31.38 | -29.78% | 62.85 | -0.09%

| | OV 00| =| 19| &

14
104



Table 21: The relation between pruning asymmetry and symmetry for a FLAN-TS large model on the Query
Independent Web Snippets Abstractive Summarization Dataset

lene | lgee | R-1 Impact R-2 Impact RSL Impact R-L Impact GenL | Impact
24 24 57.81 | 100.00% | 37.37 | 100.00% | 53.14 | 100.00% | 48.16 | 100.00% | 62.85 | 100.00%
24 20 5821 | 100.69% | 37.59 | 100.59% | 53.44 | 100.58% | 48.46 | 100.62% | 62.80 | 99.91%
24 16 57.25 | 99.04% 36.56 | 97.84% 52.71 | 99.19% 47.71 | 99.06% 62.83 | 99.97%
24 12 56.78 | 98.21% 35.74 | 95.64% 52.34 | 98.49% 46.81 | 97.18% 62.78 | 99.88%
24 8 56.19 | 97.19% 35.13 | 94.01% 51.59 | 97.08% 45.68 | 94.85% 62.79 | 99.90%
24 4 54.53 | 94.32% 33.69 | 90.15% 50.00 | 94.10% 44.65 | 92.71% 62.83 | 99.97%
20 24 57.34 | 99.19% 36.39 | 97.38% 52.66 | 99.10% 47.28 | 98.18% 62.81 | 99.93%
16 24 56.26 | 97.33% 35.90 | 96.07% 51.04 | 96.04% 46.82 | 97.22% 62.81 | 99.93%
12 24 55.31 | 95.67% 34.22 | 91.58% 50.60 | 95.23% 45.11 | 93.66% 62.88 | 100.04%
8 24 54.80 | 94.79% 33.42 | 89.43% 49.95 | 94.00% 44.11 | 91.59% 62.70 | 99.76%
4 24 51.40 | 88.92% 30.31 | 81.11% 46.49 | 87.48% 41.12 | 85.38% 62.70 | 99.75%
20 20 56.81 | 98.28% 36.32 | 97.20% 52.21 | 98.25% 46.82 | 97.21% 62.69 | 99.74%
16 16 56.10 | 97.05% 3598 | 96.29% 51.05 | 96.07% 45.89 | 95.28% 62.71 | 99.76%
12 12 54.16 | 93.70% 33.00 | 88.31% 49.58 | 93.31% 44.80 | 93.02% 62.77 | 99.87%
8 8 51.77 | 89.55% 30.78 | 82.38% 47.31 | 89.03% 41.32 | 85.79% 62.73 | 99.81%
4 4 45.70 | 79.06% 22.77 | 60.94% 41.36 | 77.84% 36.09 | 74.94% 62.70 | 99.76%

Table 22: The relation between pruning asymmetry and symmetry for a FLAN-TS small model on the Extreme
Summarization (XSUM) Abstractive Summarization Dataset

R-1 Impact R-2 Impact RSL Impact R-L Impact GenL | Impact
33.27 | 0.00% 11.09 | 0.00% 26.17 | 0.00% 26.17 | 0.00% 28.01 | 0.00%
33.79 | 1.56% 11.61 | 4.74% 26.73 | 2.14% 26.74 | 2.18% 27.79 | -0.78%
3347 | 0.61% 1143 | 3.12% 26.64 | 1.81% 26.65 | 1.83% 2740 | -2.18%
33.04 | -0.69% 11.24 | 1.36% 26.26 | 0.36% 26.27 | 0.38% 28.08 | 0.26%
3148 | -5.36% 10.53 | -5.02% 25.39 | -2.99% 25.38 | -3.01% 26.58 | -5.13%
23.16 | -30.39% | 6.03 -45.58% | 19.02 | -27.32% | 19.02 | -27.33% | 36.68 | 30.93%
3331 | 0.13% 11.18 | 0.82% 26.16 | -0.04% 26.16 | -0.06% 28.31 | 1.08%
3255 | -2.15% 10.61 | -4.32% 25.50 | -2.55% 2550 | -2.55% 2835 | 1.19%
31.82 | -4.36% 10.11 | -8.84% 2492 | -4.78% 2492 | -4.77% 2843 | 1.50%
29.65 | -10.87% | 8.59 -22.48% | 23.02 | -12.02% | 23.02 | -12.03% | 27.90 | -0.39%
28.46 | -14.46% | 7.70 -30.57% | 22.09 | -15.60% | 22.09 | -15.59% | 27.87 | -0.50%
32.50 | -2.29% 10.73 | -3.24% 25.67 | -1.90% 25.68 | -1.88% 28.07 | 0.19%
31.77 | -4.50% 10.19 | -8.04% 25.14 | -3.94% 25.14 | -3.95% 28.09 | 0.29%
3042 | -8.57% 9.50 -14.31% | 24.16 | -7.66% 24.16 | -7.67% 2791 | -0.38%
26.71 | -19.70% | 7.31 -34.09% | 21.38 | -18.30% | 21.38 | -18.31% | 26.35 | -5.93%
19.54 | -41.26% | 4.00 -63.91% | 16.00 | -38.86% | 16.00 | -38.87% | 35.73 | 27.54%
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Table 23: The relation between pruning asymmetry and symmetry for a FLAN-T5 base model on the Extreme
Summarization (XSUM) Abstractive Summarization Dataset

lenc | ldec | R-1 Impact R-2 Impact RSL Impact R-L Impact GenL | Impact
12 12 38.78 | 0.00% 15.69 | 0.00% 31.14 | 0.00% 31.15 | 0.00% 25.92 | 0.00%
12 10 38.46 | -0.83% 1527 | -2.65% 30.70 | -1.43% 30.71 | -1.42% 26.72 | 3.11%
12 8 38.11 | -1.72% 1491 | -497% 30.34 | -2.59% 30.34 | -2.60% 27.64 | 6.65%
12 6 38.55 | -0.58% 1540 | -1.83% 30.87 | -0.87% 30.88 | -0.87% 2742 | 5.80%
12 4 38.04 | -1.91% 15.19 | -3.18% 30.63 | -1.64% 29.65 | -4.82% 2640 | 1.85%
12 2 35.39 | -8.74% 1373 | -12.47% | 28.96 | -7.02% 28.96 | -7.03% 27.55 | 6.32%
10 12 39.04 | 0.68% 1592 | 1.47% 31.22 | 0.24% 31.23 | 0.25% 26.89 | 3.75%
8 12 37.05 | -4.45% 14.10 | -10.09% | 29.29 | -5.95% 29.30 | -5.93% 27.68 | 6.82%
6 12 36.45 | -6.01% 13.84 | -11.79% | 28.96 | -7.02% 28.96 | -7.02% 27.21 | 4.99%
12 3432 | -11.48% | 12.10 | -22.88% | 26.99 | -13.35% | 26.99 | -13.34% | 27.20 | 4.94%
12 31.88 | -17.78% | 10.27 | -34.53% | 24.85 | -20.21% | 24.85 | -20.22% | 28.22 | 8.88%
0 10 38.80 | 0.05% 15.72 | 0.22% 31.07 | -0.25% 31.08 | -0.23% 26.92 | 3.88%
8 3721 | -4.04% 14.30 | -8.85% 29.55 | -5.13% 29.54 | -5.15% 2740 | 5.72%

6 3492 | -9.95% 12.44 | -20.68% | 27.56 | -11.51% | 27.57 | -11.50% | 27.72 | 6.96%

4 3248 | -16.24% | 10.67 | -31.95% | 2549 | -18.15% | 25.50 | -18.14% | 27.98 | 7.98%

2 2744 | -2923% | 7.74 -50.65% | 21.95 | -29.51% | 21.96 | -29.52% | 29.38 | 13.38%
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Table 24: The relation between pruning asymmetry and symmetry for a FLAN-TS large model on the Extreme
Summarization (XSUM) Abstractive Summarization Dataset

lene | lgee | R-1 Impact R-2 Impact RSL Impact R-L Impact GenL | Impact
24 24 39.71 | 0.00% 16.34 | 0.00% 31.72 | 0.00% 31.72 | 0.01% 26.74 | 0.00%
24 20 43.18 | 8.74% 19.80 | 21.17% 3521 | 11.01% 3522 | 11.04% 2591 | -3.10%
24 16 42.73 | 7.59% 19.30 | 18.10% 3476 | 9.58% 3476 | 9.59% 26.40 | -1.29%
24 12 4234 | 6.61% 18.92 | 15.78% 34.52 | 8.84% 3453 | 8.87% 2549 | -4.68%
24 8 41.30 | 4.00% 17.96 | 9.94% 33.73 | 6.34% 3375 | 6.39% 25.02 | -6.45%
24 4 39.55 | -0.40% 16.47 | 0.77% 3225 | 1.66% 32.25 | 1.68% 26.30 | -1.64%
20 24 4277 | 771% 19.43 | 18.90% 34.83 | 9.82% 34.84 | 9.83% 26.18 | -2.09%
16 24 41.55 | 4.63% 1833 | 12.17% 33.64 | 6.05% 33.65 | 6.07% 26.33 | -1.53%
12 24 39.95 | 0.61% 16.90 | 3.40% 32.13 | 1.29% 32.14 | 1.31% 27.14 | -100.00%
8 24 37.57 | -5.39% 1497 | -8.38% 29.94 | -5.61% 29.94 | -5.60% 25.99 | -100.00%
4 24 3481 | -12.35% | 12.52 | -23.36% | 27.32 | -13.86% | 27.32 | -13.86% | 27.61 | -100.00%
20 20 42.48 | 6.98% 19.18 | 17.39% 34.62 | 9.13% 34.62 | 9.13% 25.84 | -3.36%
16 16 40.78 | 2.69% 17.56 | 7.44% 32.99 | 4.00% 33.00 | 4.02% 26.47 | -1.00%
12 12 38.94 | 6.98% 15.89 | -2.78% 31.21 | -1.61% 31.22 | -1.58% 26.59 | -0.57%
8 8 34.65 | -12.75% | 12.15 | -25.65% | 27.36 | -13.76% | 27.36 | -13.73% | 28.16 | 5.30%
4 4 20.82 | -2491% | 8.96 -45.14% | 23.59 | -25.62% | 23.60 | -25.60% | 28.10 | 5.09%

Table 25: Role of model symmetry in inference efficiency on FLAN-TS small model on the QIWS dataset

lenc | ldec | R-2 Impact BS1 | STD | Speedup | BS8 | STD | Speedup | BS16 | STD | Speedup
8 8 29.03 | 0.00% 524 | 395 1.00 653 2.49 | 1.00 729 5.12 | 1.00
8 6 28.90 | -0.45% 406 1.28 1.29 514 5.02 | 1.27 583 247 | 1.25
8 5 28.56 | -1.60% 348 2.34 1.51 455 1.6 1.44 527 1.85 | 1.38
8 4 27.94 | -3.76% 293 3.35 1.79 394 6.32 | 1.66 469 265 | 1.55
8 2 24.85 | -14.39% | 195 1.61 2.69 353 338 | 1.85 426 6.38 | 1.71
8 1 1541 | -46.92% | 132 0.959 | 3.97 211 2.82 | 3.09 389 294 | 1.87
6 8 2792 | -3.83% 512 5.15 1.02 626 | 4.19 | 1.04 684 281 | 1.07
5 8 27.75 | -4.40% 508 3.56 1.03 617 491 | 1.06 666 4.16 | 1.09
4 8 2520 | -13.18% | 514 | 3.55 1.02 603 4.52 | 1.08 639 2.08 | 1.14
2 8 23.67 | -18.45% | 514 | 514 1.02 585 536 | 1.12 608 445 1 1.20
1 8 1823 | -37.21% | 510 | 5.81 1.03 574 | 421 | 1.14 595 7.06 | 1.23
6 6 26.82 | -7.62% 407 5.26 1.29 496 877 | 1.32 548 1.97 | 1.33
5 5 26.62 | -8.28% 346 6.84 1.51 430 | 3.54 | 1.52 480 124 | 1.52
4 4 23.12 | -20.36% | 375 4.25 1.40 441 6.92 | 148 478 10.6 | 1.53
2 2 19.14 | -34.08% | 402 | 2.05 1.30 452 9.84 | 1.44 476 829 | 1.53
1 1 6.09 -79.01% | 134 | 6.2 3.91 527 3.03 | 1.24 549 134 | 1.33

Table 26: Role of model symmetry in inference efficiency on FLAN-T5 base model on the QIWS dataset

lenc | ldec | R-2 Impact BS1 | STD | Speedup | BS8 | STD | Speedup | BS 16 | STD Speedup
12 12 34.19 | 0.00% 746 11 1.00 1060 | 2.84 | 1.00 1310 6.8 1.00
12 10 34.00 | -0.56% 625 327 | 1.19 943 4.69 | 1.12 1200 4.8 1.09
12 8 3450 | 0.91% 523 2.19 | 143 814 423 | 1.30 1070 5.34 1.22
12 6 33.70 | -1.42% 425 1.92 | 1.76 652 3.39 | 1.63 970 4.79 1.35
12 4 31.93 | -6.62% 350 132 | 2.13 510 3.1 2.08 815 2 1.61
12 2 28.05 | -17.97% | 202 141 | 3.69 451 292 | 235 762 0911 | 1.72
10 12 3357 | -1.82% 710 6.2 1.05 995 2.74 | 1.07 1290 4.2 1.02
8 12 33.06 | -3.31% 690 572 | 1.08 953 572 | 1.11 1270 43 1.03
6 12 32.23 | -5.72% 716 8 1.04 944 722 | 1.12 1080 5.29 1.21
4 12 2747 | -19.65% | 710 1.75 | 1.05 911 10.1 | 1.16 1,000 | 8.84 1.31
2 12 25.57 | -25.22% | 706 54 1.06 862 7.11 | 1.23 921 7.04 1.42
10 10 32.88 | -3.82% 633 11.6 | 1.18 915 11 1.16 1120 5.51 1.17
8 8 32.81 | -4.04% 512 498 | 1.46 737 9.78 | 1.44 911 4.98 1.44
6 6 28.70 | -16.05% | 401 3.16 | 1.86 572 473 | 1.85 702 1.57 1.87
4 4 26.53 | -22.40% | 301 292 | 248 415 3.01 | 2.55 509 0.997 | 2.57
2 2 19.64 | -42.57% | 189 1.98 | 3.95 312 2.88 | 3.40 389 0.892 | 3.37
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Table 27: Role of model symmetry in inference efficiency on FLAN-TS large model on the QIWS dataset

lenc | ldec | R-2 Impact BS1 | STD | Speedup | BS8 | STD | Speedup | BS16 | STD | Speedup
24 24 37.37 | 0.00% 1430 | 6.08 | 1.00 2240 | 4.81 1.00 3320 1.02 | 1.00
24 20 37.59 | 0.59% 1210 | 4.73 | 1.18 1990 | 6.89 1.13 3010 | 2.63 | 1.10
24 16 36.56 | -2.16% 1000 | 2.70 | 1.43 1750 | 5.92 1.28 2710 1.57 | 1.23
24 12 3574 | -4.36% 795 6.61 | 1.80 1510 | 1040 | 1.48 2400 1.59 | 1.38
24 8 35.13 | -5.99% 585 499 | 244 1260 | 7.14 1.78 2090 | 7.17 | 1.59
24 4 33.69 | -9.85% 373 1.16 | 3.83 1030 | 10.50 | 2.17 1790 1.72 | 1.85
20 24 36.39 | -2.62% 1410 | 3.66 | 1.01 2130 | 10.90 | 1.05 3090 | 598 | 1.07
16 24 3590 | -3.93% 1395 | 3.52 | 1.03 2060 | 9.89 1.09 2880 | 3.32 | 1.15
12 24 3422 | -8.42% 1380 | 5.20 | 1.04 1900 | 9.65 1.18 2630 | 0.81 | 1.26
8 24 33.42 | -10.57% | 1370 | 5.49 | 1.04 1790 | 19.00 | 1.25 2400 1.34 | 1.38
4 24 30.31 | -18.89% | 1350 | 7.33 | 1.06 1670 | 5.30 1.34 2170 | 2.79 | 1.53
20 20 36.32 | -2.80% 1200 | 5.37 | 1.19 1880 | 7.89 1.19 2780 1.15 | 1.19
16 16 3598 | -3.71% 1020 | 3.49 | 1.40 1530 | 5.62 1.46 2230 1.80 | 1.49
12 12 33.00 | -11.69% | 749 5.30 | 1.91 1160 | 2.94 1.93 1710 | 0.89 | 1.94
8 8 30.78 | -17.62% | 650 332 | 220 970 278 2.31 1550 | 0.79 | 2.14
4 4 2277 | -39.06% | 585 223 | 244 890 3.21 2.52 1450 | 0.92 | 2.29

Table 28: Role of model symmetry in inference efficiency on FLAN-TS5 small model on the CNNDM dataset

lenc | ldec | R-2 Impact BS1 | STD Speedup | BS8 | STD Speedup | BS 16 | STD Speedup
8 8 17.55 | 0.00% 138 5.05 1.00 230 7.61 1.00 330 3.71 1.00
8 6 17.68 | 0.74% 133 0.292 1.04 211 0.425 1.09 300 0.954 1.10
8 5 17.27 | -1.64% 116 0.196 1.19 193 0.448 1.19 279 0.537 1.18
8 4 16.40 | -6.57% 98.1 | 0.242 1.41 174 0.153 1.32 259 0.424 1.27
8 2 15.35 | -12.58% | 63.2 | 0.207 2.18 137 0.1 1.68 218 0.303 1.51
8 1 11.33 | -35.43% | 457 | 0.106 3.02 118 0.0827 | 1.95 198 0.148 1.67
6 8 17.69 | 0.81% 166 0.303 0.83 230 1.42 1.00 303 1.06 1.09
5 8 17.35 | -1.16% 165 0.267 0.84 219 0.521 1.05 283 1.13 1.17
4 8 16.80 | -4.30% 164 0.185 0.84 211 0.89 1.09 265 1.85 1.25
2 8 15.54 | -11.49% | 162 332 0.85 191 0.332 1.20 226 625 1.46
1 8 13.31 | -24.17% | 161 0.626 0.86 180 0.423 1.28 206 0.55 1.60
6 6 17.07 | -2.77% 131 0.617 1.05 192 0.247 1.20 261 0.768 1.26
5 5 16.20 | -7.72% 113 0.306 1.22 164 0.642 1.40 220 1.36 1.50
4 4 1491 | -15.05% | 95.1 | 0.0955 | 1.45 135 0.21 1.70 182 0.268 1.81
2 2 11.97 | -31.83% | 57.8 | 0.27 2.39 78.9 | 0.078 2.92 103 0.238 3.20
1 1 6.05 -65.55% | 39.1 | 0.136 3.53 50.2 | 0.132 4.58 63.4 0.0845 | 5.21

Table 29: Role of model symmetry in inference efficiency on FLAN-T5 base model on the CNNDM dataset

lenc | ldec | R-2 Impact BS1 | STD | Speedup | BS8 | STD | Speedup | BS 16 | STD | Speedup
12 12 19.77 | 0.00% 199 3.74 | 1.00 550 3.81 | 1.00 931 2.09 1.00
12 10 19.92 | 0.76% 179 331 | 1.11 524 16.2 | 1.05 889 4.41 1.05
12 8 19.85 | 0.42% 155 450 | 1.28 493 14 1.12 884 3.61 1.05
12 6 18.85 | -4.63% 126 1.95 | 1.58 449 5.88 | 1.22 800 4.59 1.16
12 4 18.68 | -5.49% 99.2 | 1.02 | 2.01 405 1.41 | 1.36 737 5.06 1.26
12 2 1648 | -16.62% | 753 | 0.85 | 2.64 372 1.98 | 1.48 697 4.55 1.34
10 12 19.92 | 0.76% 198 | 475 | 1.01 495 145 | 1.11 811 1.18 1.15
8 12 19.67 | -0.50% 196 372 | 1.02 441 7.82 | 1.25 715 4.39 1.30
6 12 18.85 | -4.63% 187 | 481 | 1.06 396 133 | 1.39 613 9.45 1.52
4 12 18.22 | -7.86% 183 3.54 | 1.09 330 | 5.04 | 1.67 509 2.1 1.83
2 12 17.06 | -13.73% | 176 352 | 1.13 272 1.79 | 2.02 400 3.25 2.33
10 10 19.72 | -0.26% 171 321 | 1.16 462 119 | 1.19 776 4.62 1.20
8 8 19.17 | -3.01% 141 297 | 141 37 12.1 | 14.86 628 6.48 1.48
6 6 17.46 | -11.71% | 109 1.71 | 1.83 281 2.61 | 1.96 478 3.55 1.95
4 4 15.87 | -19.74% | 82.5 | 1.24 | 241 198 1.71 | 2.78 329 0.74 2.83
2 2 1223 | -38.12% | 50.7 | 1.30 | 3.93 112 | 259 | 491 178 0.557 | 5.23
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Table 30: Role of model symmetry in inference efficiency on FLAN-T5 LARGE model on the CNNDM dataset

lene | ldec | R2 Impact BS1 | STD | Speedup | BS8 | STD | Speedup | BS16 | STD | Speedup
24 24 21.15 | 0.00% 445 2.35 1.00 1480 | 20.1 | 1.00 2700 | 7.22 | 1.00
24 20 21.30 | 0.69% 390 337 1.14 1390 | 4.24 | 1.06 2590 | 7.7 1.04
24 16 21.32 | 0.81% 335 13.9 1.33 1330 | 7.7 1.11 2470 | 7.42 | 1.09
24 12 21.08 | -0.34% 270 3.28 1.65 1250 | 11 1.18 2340 | 6.68 | 1.15
24 8 20.67 | -2.27% 219 8.67 2.03 1180 | 8.17 | 1.25 2220 | 425 | 1.22
24 4 19.49 | -7.88% 165 1.81 2.70 1090 | 6.6 1.36 2090 | 9.15 | 1.29
20 24 21.13 | -0.12% 418 13.8 1.06 1320 | 153 | 1.12 2400 | 7.26 | 1.13
16 24 20.83 | -1.53% 421 16.8 1.06 1150 | 16 1.29 2080 | 6.07 | 1.30
12 24 20.53 | -2.94% 391 12.5 1.14 1000 | 21.7 | 1.48 1750 8.18 | 1.54
8 24 19.74 | -6.67% 373 13.1 1.19 882 6.92 | 1.68 1430 | 4.79 | 1.89
4 24 18.68 | -11.69% | 350 | 4.32 1.27 670 15 2.21 1110 | 321 | 243
20 20 21.23 | 0.34% 359 43 1.24 1240 | 153 | 1.19 2260 | 6.73 | 1.19
16 16 2090 | -1.19% 1289 | 2.5 0.35 994 21.6 | 1.49 1820 | 427 | 148
12 12 20.13 | -4.84% 229 12.1 1.94 756 12.6 | 1.96 1370 | 4.6 1.97
8 8 18.47 | -12.70% | 160 31.8 2.78 513 255 | 2.88 926 7.24 | 2.92
4 4 1551 | -26.68% | 89.7 | 0.588 | 4.96 267 2.14 | 554 479 43 5.64

Table 31: Role of model symmetry in inference efficiency on FLAN-TS5 small model on the XSUM dataset

lenc | ldec | R-2 Impact BS1 | STD | Speedup | BS8 | STD Speedup | BS 16 | STD Speedup
8 8 11.09 | 0.00% 135 2.73 | 1.00 227 3.51 1.00 332 1.91 1.00
8 6 11.61 | 4.74% 108 1.70 | 1.25 196 1.94 1.16 303 7.95 1.10
8 5 1143 | 3.12% 94.1 | 3.02 | 143 183 343 1.24 281 6.77 1.18
8 4 11.24 | 1.36% 82.7 | 2.66 | 1.63 168 2.33 1.35 263 2.24 1.26
8 2 10.53 | -5.02% 558 | 1.72 | 242 141 1.53 1.61 234 5.01 1.42
8 1 6.03 -45.58% | 41.1 | 0.64 | 3.28 124 0414 | 1.83 215 4.69 1.54
6 8 11.18 | 0.82% 133 351 | 1.02 204 3.63 1.11 295 5.72 1.13
5 8 10.61 | -4.32% 134 342 | 1.01 193 3.76 1.18 273 104 1.22
4 8 10.11 | -8.84% 130 277 | 1.04 185 13.6 1.23 245 6.45 1.36
2 8 8.59 -22.48% | 126 477 | 1.07 163 6 1.39 203 4.1 1.64
1 8 7.70 -30.57% | 126 338 | 1.07 148 2.02 1.53 180 2.85 1.84
6 6 10.73 | -3.24% 104 045 | 1.30 178 3.24 1.28 254 2.37 1.31
5 5 10.19 | -8.04% 91.6 | 2.10 | 1.47 151 1.78 1.50 219 10.3 1.52
4 4 9.50 -14.31% | 79 338 | 1.71 124 2.42 1.83 178 1.59 1.87
2 2 7.31 -34.09% | 49.5 | 2.56 | 2.73 748 | 1.9 3.03 101 0.719 | 3.29
1 1 4.00 -6391% | 32 1.25 | 422 48.7 | 2.11 4.66 61.9 1.81 5.36

Table 32: Role of model symmetry in inference efficiency on FLAN-T5 base model on the XSUM dataset

lenc | ldec | R-2 Impact BS1 | STD | Speedup | BS8 | STD | Speedup | BS 16 | STD Speedup
12 12 15.69 | 0.00% 205 3.81 | 1.00 546 8.7 1.00 917 4.72 1.00
12 10 15.27 | -2.65% 171 2.79 | 1.20 508 6.39 | 1.07 876 3.02 1.05
12 8 1491 | -497% 150 1.32 | 1.37 476 2.82 | 1.15 830 1.08 1.10
12 6 15.40 | -1.83% 129 433 | 1.59 450 9.33 | 1.21 789 3.73 1.16
12 4 15.19 | -3.18% 101 2.16 | 2.03 411 5.27 | 1.33 744 1.71 1.23
12 2 1373 | -12.47% | 76 1.76 | 2.70 380 343 | 1.44 706 8.13 1.30
10 12 1592 | 1.47% 200 6.37 | 1.03 494 245 | 1.11 818 1.72 1.12
8 12 14.10 | -10.09% | 195 547 | 1.05 445 20.8 | 1.23 713 1.71 1.29
6 12 13.84 | -11.79% | 190 3.89 | 1.08 396 9.79 | 1.38 612 4.64 1.50
4 12 12.10 | -22.88% | 185 224 | 1.11 337 3.09 | 1.62 505 1.96 1.82
2 12 10.27 | -34.53% | 180 2.08 | 1.14 282 4.03 | 1.94 399 2.85 2.30
10 10 1572 | 0.22% 174 4.09 | 1.18 475 185 | 1.15 772 1.79 1.19
8 8 14.30 | -8.85% 140 1.95 | 1.46 373 221 | 146 625 1.51 1.47
6 6 12.44 | -20.68% | 112 1.71 | 1.83 290 6.77 | 1.88 480 35 1.91
4 4 10.67 | -31.95% | 842 | 3.75 | 2.43 201 1.58 | 2.72 330 443 2.78
2 2 7.74 -50.65% | 51.5 | 3.01 | 3.98 112 1.02 | 4.88 179 0.894 | 5.12
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Table 33: Role of model symmetry in inference efficiency on FLAN-T5 large model on the XSUM dataset

lenc | ldec | R-2 Impact BS1 | STD | Speedup | BS8 | STD | Speedup | BS 16 | STD | Speedup
24 24 16.34 | 0.00% 447 194 | 1.00 1480 | 23 1.00 2700 16.1 1.00
24 20 19.80 | 21.16% | 374 4.84 | 1.20 1410 | 17.5 | 1.05 2580 7.52 | 1.05
24 16 19.30 | 18.09% | 327 194 | 1.37 1320 | 8.18 | 1.12 2460 7.19 | 1.10
24 12 18.92 | 15.77% | 272 791 | 1.64 1240 | 7.06 | 1.19 2340 7.5 1.15
24 8 17.96 | 9.93% 216 7.81 | 2.07 1170 | 114 | 1.26 2210 649 | 1.22
24 4 16.47 | 0.76% 165 311 | 271 1090 | 3.66 | 1.36 2080 7.17 | 1.30
20 24 19.43 | 18.88% | 406 21.5 | 1.10 1310 | 11.5 | 1.13 2390 7.76 | 1.13
16 24 18.33 | 12.16% | 412 20.3 | 1.08 1140 | 6.88 | 1.30 2080 7.01 | 1.30
12 24 16.90 | 3.39% 384 18.8 | 1.16 986 11 1.50 1750 686 1.54
8 24 14.97 | -8.39% 369 8.87 | 1.21 822 15.5 | 1.80 1420 15.5 | 1.90
4 24 12.52 | -23.37% | 345 441 | 1.30 649 326 | 2.28 110 596 | 24.55
20 20 19.18 | 17.38% | 357 11.8 | 1.25 1230 | 13.2 | 1.20 2260 2.16 | 1.19
16 16 17.56 | 7.43% 288 591 | 1.55 995 941 | 1.49 1820 533 | 148
12 12 15.89 | -2.79% 217 3.09 | 2.06 748 325 | 1.98 1370 6.59 | 1.97
8 8 12.15 | -25.66% | 158 6.04 | 2.83 511 9.62 | 2.90 920 2.06 | 2.93
4 4 8.96 -45.14% | 92.3 | 2.88 | 4.84 267 1.51 | 5.54 481 1.69 | 5.61
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