
Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 78–90
July 13, 2023 ©2023 Association for Computational Linguistics

Lessons on Parameter Sharing across Layers in Transformers

Sho Takase∗ Shun Kiyono
LINE Corporation

{sho.takase, shun.kiyono}@linecorp.com

Abstract

We propose a novel parameter sharing method
for Transformers (Vaswani et al., 2017). The
proposed approach relaxes a widely used tech-
nique, which shares the parameters of one layer
with all layers such as Universal Transform-
ers (Dehghani et al., 2019), to improve the
efficiency. We propose three strategies: SE-
QUENCE, CYCLE, and CYCLE (REV) to assign
parameters to each layer. Experimental results
show that the proposed strategies are efficient
in terms of the parameter size and computa-
tional time in the machine translation task. We
also demonstrate that the proposed strategies
are effective in the configuration where we use
many training data such as the recent WMT
competition. Moreover, we indicate that the
proposed strategies are also more efficient than
the previous approach (Dehghani et al., 2019)
on automatic speech recognition and language
modeling tasks.

1 Introduction

Transformer-based methods have achieved notable
performance in various NLP tasks (Vaswani et al.,
2017; Devlin et al., 2019; Brown et al., 2020). In
particular, Brown et al. (2020) indicated that the
larger parameter size we prepare, the better perfor-
mance the model achieves. However, the model
which is composed of many parameters occupies
a large part of a GPU memory capacity. Thus, it
is important to explore a parameter efficient way,
which achieves better performance than a basic
model with the same parameter size.

Parameter sharing is a widely used technique as
a parameter efficient way (Dehghani et al., 2019;
Dabre and Fujita, 2019; Lan et al., 2020). De-
hghani et al. (2019) proposed Universal Trans-
former which consists of parameters for only one
layer of a Transformer-based encoder-decoder, and
uses these parameters N times for an N -layered

∗ A part of this work was done when the author was at
Tokyo Institute of Technology.

Input

1st layer

2nd layer
Share

M=3, N=6の場合

3rd layer

4th layer

5th layer

6th layer

Share

Share

SEQUENCE

Input

1st layer

2nd layer

Share

3rd layer

4th layer

5th layer

6th layer

Share

Share

CYCLE

Input

1st layer

2nd layer
Share

3rd layer

4th layer

5th layer

6th layer

Share

Share

CYCLE (REV)

Figure 1: Examples of three parameter assignment
strategies proposed in this study when we set M = 3
and N = 6.

encoder-decoder. Dabre and Fujita (2019) and
Lan et al. (2020) also used such parameter shar-
ing across layers for their Transformers.

Dehghani et al. (2019) reported that Universal
Transformer achieved better performance than the
vanilla Transformer in machine translation if the
parameter sizes of both models are (almost) the
same. However, when we prepare the same num-
ber of parameters for Universal Transformer and
vanilla Transformer, the dimension sizes of each
layer in Universal Transformer are much larger
than ones in the vanilla Transformer. Thus, Univer-
sal Transformer requires much more computational
time since its weight matrices are larger. For exam-
ple, Universal Transformer requires twice as much
training time as the vanilla Transformer in WMT
English-to-German dataset, which is a widely used
machine translation dataset (see Table 1).

In this paper, we propose a new parameter shar-
ing method that is faster than using the same param-
eters for all layers such as Universal Transformers.
Universal Transformers raise their expressiveness
power by increasing the size of weight matrices
for each layer. On the other hand, stacking (more)
layers is another promising approach to raise ex-
pressiveness power of neural methods (He et al.,
2016). Thus, the most straight-forward way to

78



make Universal Transformers faster is stacking lay-
ers with smaller weight matrices for each layer.
However, the approach using the same parameters
for all layers limits the improvement of stacking
layers (Dabre and Fujita, 2019). Therefore, in-
stead of preparing parameters for only one layer,
we prepare parameters for M layers to construct an
N -layered encoder-decoder, where 1 ≤ M ≤ N .
In other words, the proposed method relaxes the
parameter sharing strategy in previous studies (De-
hghani et al., 2019; Dabre and Fujita, 2019; Lan
et al., 2020). Because this relaxation addresses the
above limitation of improvement by stacking lay-
ers, the proposed method can be fast by stacking
layers with using small weight matrices for each
layer. For the actual parameter assignment strate-
gies, we provide several simple examples (Figure 1)
and investigate their performance empirically. The
main focus of this study is to demonstrate that such
simple strategies can be a better alternative to the
existing parameter sharing strategy used in Univer-
sal Transformers.

We mainly conduct experiments on machine
translation datasets. Experimental results show that
the proposed method achieves slightly better scores
to the previous method, that assigns parameters of
one layer to all layers, with smaller computational
time. In addition, we indicate that the proposed
method outperforms the previous parameter shar-
ing method when we spend almost the same train-
ing time. Moreover, we conduct experiments on au-
tomatic speech recognition and language modeling
tasks (Section 4 and Appendix A). Experimental re-
sults on these tasks also indicate that the proposed
method are also efficient in these situations.

2 Proposed Method

As described in Section 1, we use parameters
for M layers in the construction of an N -layered
Transformer-based encoder-decoder. We provide
three examples for the parameter assignment: SE-
QUENCE, CYCLE, and CYCLE (REV). This section
describes these parameter assignment strategies.

Figure 1 shows examples of three parameter as-
signment strategies for an encoder side when we
set M = 3 and N = 6. Let enci be the i-th layer
of an encoder. Figure 2 describes the algorithm to
assign each parameter to each layer of the encoder.
For the decoder side, we assign each parameter
with the same manner.

Algorithm Encoder Construction
Input: the total number of layers N , number of

independent layers M , sharing strategy TYPE

∈ {SEQUENCE, CYCLE, CYCLE (REV)}
Output: enc1, ..., encN

1: for i in [1, ..., N ] do
2: if i == 1 then
3: enci ← CreateNewLayer
4: else if TYPE == SEQUENCE then
5: if (i− 1) mod ⌊N/M⌋ == 0 then
6: enci ← CreateNewLayer
7: else
8: enci ← enci−1

9: else if TYPE == CYCLE then
10: if i ≤M then
11: enci ← CreateNewLayer
12: else
13: enci ← enc((i−1) mod M)+1

14: else if TYPE == CYCLE (REV) then
15: if i ≤M then
16: enci ← CreateNewLayer
17: else if i ≤ (M × (⌈N/M⌉ − 1)) then
18: enci ← enc((i−1) mod M)+1

19: else
20: enci ← encM−((i−1) mod M)

Figure 2: Proposed parameter assignment strategies for
encoder construction. CreateNewLayer is a function
that creates a new encoder layer.

2.1 SEQUENCE

The simplest strategy is to assign the same param-
eters to sequential ⌊N/M⌋ layers. We name this
strategy SEQUENCE. For example, when we set
M = 3 and N = 6, two sequential layers share
their parameters as illustrated in Figure 1.

2.2 CYCLE

In CYCLE, we stack M layers whose parameters
are independent from each other. Then, we repeat
stacking the M layers with the identical order to
the first M layers until the total number of layers
reaches N . When we set M = 3 and N = 6, we
stack 3 layers twice as illustrated in Figure 1.

2.3 CYCLE (REV)

Liu et al. (2020) and Takase et al. (2022) reported
that higher decoder layers tends to obtain larger

79



gradient norms1. Their report implies that higher
layers require more degrees of freedom than lower
layers for their expressiveness. In other words,
lower layers probably have redundant parameters
compared to higher layers. Thus, we propose the
CYCLE (REV) strategy reusing parameters of lower
layers in higher layers.

In this strategy, we repeat stacking M layers in
the same manner as CYCLE until M ∗(⌈N/M⌉−1)
layers. For the remaining layers, we stack M layers
in the reverse order. When we set M = 3 and
N = 6, we stack 3 layers and then stack the 3
layers in the reverse order as in Figure 1. Thus, the
lowest layer and highest layer share parameters.

3 Experiments on Machine Translation

We investigate the efficiency of the proposed pa-
rameter sharing strategies. In detail, we indicate
that our proposed strategies are faster than Uni-
versal Transformers while achieving comparable
(or better) performance when we use the same pa-
rameter size. In this section, we conduct experi-
ments on machine translation datasets. First, we
focus on the English-to-German translation task
because this task is widely used in the previous
studies (Vaswani et al., 2017; Ott et al., 2018; De-
hghani et al., 2019; Kiyono et al., 2020). We con-
duct comparisons based on following aspects: (i)
comparison with Universal Transformers in terms
of efficiency and (ii) comparison with models with-
out parameter sharing across layers to investigate
whether our proposed strategies can achieve com-
parable (or better) performance to the models with
larger memory footprint.

In addition to the widely used training data, we
conduct experiments on a large amount of train-
ing dataset in the English-to-German translation
task. Then, we investigate if our findings are con-
sistent in other language direction (i.e., German-
to-English) and other language pair (i.e., English-
to-French and French-to-English). We describe
details in the following subsections.

3.1 Standard Setting

3.1.1 Datasets
We used the WMT 2016 training dataset, which
is widely used in previous studies (Vaswani et al.,

1In particular, this property is observed during warm-up
when we use the post layer normalization (Post-LN) setting,
which is originally used in Vaswani et al. (2017) and widely
used in machine translation.

2017; Ott et al., 2018; Takase and Kiyono, 2021).
This dataset contains 4.5M English-German sen-
tence pairs. Following previous studies, we con-
structed a vocabulary set with BPE (Sennrich et al.,
2016b) in the same manner. We set the number of
BPE merge operations at 32K and shared the vocab-
ulary between the source and target languages. We
measured case-sensitive detokenized BLEU with
SacreBLEU (Post, 2018)2.

3.1.2 Methods

For the proposed parameter assignment strategies,
we fixed M = 6 and set N = 12, 18 based on
the Vanilla configuration below. We compare the
proposed strategies with the following baselines.
Vanilla: This is the original Transformer (base)
setting in (Vaswani et al., 2017). To stabilize the
training, we applied Admin (Liu et al., 2020). See
Section 5 for more details of Admin.
Universal: As the parameter sharing strategy
in previous studies such as Universal Transform-
ers (Dehghani et al., 2019), we set M = 13. In
this setting, we increased the dimensions of each
layer for a fair comparison in terms of the num-
ber of parameters. This configuration corresponds
to the Universal Transformer base setting in (De-
hghani et al., 2019). Moreover, we prepared the
model using twice as many layers to investigate the
effect of stacking many layers in Universal Trans-
formers. We call this setting Universal (deep). In
addition, we prepared Universal (small) whose
dimension sizes are the identical to ones of Trans-
former (base).

Furthermore, we prepare two models that consist
of a large number of parameters for reference.
Vanilla (big): This is the original Transformer (big)
setting in (Vaswani et al., 2017).
Vanilla (deep): We stacked layers until N = 18 in
the Vanilla configuration.

2The BLEU score computed by SacreBLEU is often lower
than the score obtained by the procedure of Vaswani et al.
(2017) as reported in Ott et al. (2018). In fact, when we used
the same procedure as Vaswani et al. (2017), SEQUENCE of
M = 6, N = 12 in Table 1 achieved 29.40 in the averaged
BLEU score in newstest2014 and the best model in Table 2
achieved 35.14 in the averaged BLEU score in newstest2014.
However, since Post (2018) encouraged using SacreBLEU for
the compatibility of WMT results, we used SacreBLEU.

3The original Universal Transformers (Dehghani et al.,
2019) use the sinusoidal positional encoding for each layer
and adaptive computation time technique (Graves, 2017) but
we omitted them in this study to focus on the difference among
parameter sharing strategies.

80



Method M N #Params Speed 2010 2011 2012 2013 2014 2015 2016 Avg.
Vanilla 6 6 61M ×2.02 24.14 21.93 22.25 26.14 27.05 29.59 34.23 26.48
Universal 1 6 63M ×1.00 24.37 22.33 22.70 26.40 27.65 30.24 34.60 26.90
Universal (deep) 1 12 63M ×0.52 24.42 22.30 22.61 26.52 27.76 29.75 34.01 26.77
Universal (small) 1 6 24M ×2.52 22.89 21.11 21.29 24.75 24.71 28.16 32.81 25.10
SEQUENCE 6 12 61M ×1.31 24.65 22.32 22.83 26.98 27.88 30.27 34.99 27.13
CYCLE 6 12 61M ×1.31 24.51 22.43 22.69 26.61 27.91 30.37 34.77 27.04
CYCLE (REV) 6 12 61M ×1.31 24.66 22.47 22.87 26.68 27.72 30.37 34.81 27.08
SEQUENCE 6 18 61M ×0.98 24.53 22.44 22.73 26.59 27.73 30.30 34.80 27.02
CYCLE 6 18 61M ×0.98 24.74 22.60 23.04 26.89 28.14 30.54 34.79 27.25
CYCLE (REV) 6 18 61M ×0.98 24.93 22.77 23.09 26.88 28.09 30.60 34.84 27.31

Methods consisting of a large number of parameters for reference
Vanilla (big) 6 6 210M ×0.81 24.31 22.21 22.75 26.39 28.28 30.35 33.40 26.81
Vanilla (deep) 18 18 149M ×0.96 24.54 22.30 22.75 26.57 28.03 30.24 34.19 26.94

Table 1: The number of layers, number of parameters, computational speeds based on the Universal configuration,
BLEU scores on newstest2010-2016, and averaged scores when we trained each method on widely used WMT 2016
English-to-German training dataset. Scores in bold denote the best results for each set. The results of our proposed
strategies are statistically significant (p < 0.05) in comparison with Universal. The lowest part indicates results of
methods consisting of a large number of parameters for reference.

3.1.3 Results
Table 1 shows BLEU scores on newstest2010-2016
for each method. We trained three models with
different random seeds, and reported the averaged
scores. Table 1 also shows the total number of
parameters and computational speeds4. The com-
putational speed is based on the speed of Universal.

(i) Comparison with Universal in terms of effi-
ciency In the comparison between Universal and
Vanilla, Universal achieved better scores although
their parameter sizes are almost the same. This
result is consistent with the report in (Dehghani
et al., 2019). However, the training time of Uni-
versal is more than twice as much as the one of
Vanilla. In addition, Universal (deep) didn’t im-
prove the performance from Universal, and thus
stacking many layers have small effect on BLEU
scores when the model shares parameters of one
layer with all layers.

In contrast, the proposed strategies (SEQUENCE,
CYCLE, and CYCLE (REV)) were faster and
achieved slightly better scores than Universal when
we set M = 6 and N = 12. Thus, our proposed
parameter sharing strategies are more efficient than
Universal in terms of the parameter size and com-
putational time.

In comparison among Universal (small) and the
proposed strategies, Universal (small) was faster5

4We regard processed tokens per second during the training
as the computational speed.

5We used the same dimension sizes for Vanilla and Uni-
versal (small) but their training speeds are different from each
other. Since Universal (small) consists of small parameters,
the computational time for updating is smaller than Vanilla.

but the configuration drastically sacrificed BLEU
scores. These results imply that the strategy in
Universal Transformer, which shares parameters of
one layer with all layers, damages computational
time or the quality of output sequences. In com-
parison with those Universal configurations, our
proposed strategies improved both of the computa-
tional speed and BLEU scores.

Figure 3 illustrates the negative log-likelihood
(NLL) values on newstest2013 for each training
step. In this figure, we used M = 6 and N = 12
for our proposed strategies. This figure shows that
Universal achieved better NLL values in the be-
ginning of the training but the proposed strate-
gies outperformed others when the training step
is larger than 15,000. When we have finished train-
ing, the proposed strategies achieved better NLL
values than Universal (and Vanilla). This result
also indicates that the proposed strategies achieved
better performance. We emphasize that the pro-
posed strategies reached this better performance
with small computational time in comparison with
Universal because the proposed strategies are faster
as in Table 1.

(ii) Comparison with models without parameter
sharing across layers The lowest part of Table
1 indicates results when we prepared more param-
eters. We trained these models to investigate the
performance of models without parameter sharing
across layers. In other words, the purpose of these
settings are comparison with models using larger
memory footprint. As shown in Table 1, the pro-
posed strategies achieved better performance than

81



0 10000 20000 30000 40000 50000
The number of updates

2.0

2.1

2.2

2.3

2.4

2.5
Va

lid
 lo

ss
 (N

LL
)

Vanilla
Universal
Sequence
Cycle
Cycle (Rev)

Figure 3: Negative log-likelihood (NLL) of each method
on newstest2013. For our proposed parameter sharing
strategies, we used M = 6 and N = 12.

models consisting of a large number of parame-
ters in the averaged BLEU scores of newstest2010-
2016. This result implies that the proposed parame-
ter sharing strategies are not only efficient but also
effective in constructing better encoder-decoder
models.

3.2 High Resource Setting

3.2.1 Datasets
In the high resource setting, we constructed 44.2M
translation sentence pairs as a training dataset with
the procedures of (Kiyono et al., 2020) which
achieved the best result in the WMT 2020 news
translation task. In addition, we augmented the
training data by using the back-translation tech-
nique (Sennrich et al., 2016a) in the same manner
as (Kiyono et al., 2020). We obtained 284.3M
pairs as synthetic training data. For evaluation,
we add newstest2018 and 2019 to the set used in
Section 3.1 to because (Kiyono et al., 2020) used
these two test sets. In the same as Section 3.1, we
measured case-sensitive detokenized BLEU with
SacreBLEU.

3.2.2 Methods
We used the original Transformer (big) set-
ting (Vaswani et al., 2017) as our baseline in using
genuine training data. We call this setting Vanilla
in this experiment. Moreover, we also prepared
Universal, which shares the parameters with all
layers, namely, M = 1, N = 6. We increased the
dimensions of each layer in Universal to make their
parameter size almost the same as others. For the
proposed strategies, we used M = 6 and N = 12.

In using both of the genuine and synthetic (back-
translated) datasets, we applied CYCLE (REV) to

the BASE setting in (Kiyono et al., 2020) because
CYCLE (REV) achieved the best BLEU scores on
most test sets in Table 1. We also used M = 6
and N = 12 in this configuration. We compare the
reported scores of the best model in (Kiyono et al.,
2020). Their model is composed of 9 layers (i.e.,
M = 9 and N = 9); thus, it contains considerably
more parameters than ours.

3.2.3 Results
Table 2 shows BLEU scores of each method on
each test set. Similar to the experiments in Section
3.1, we reported the averaged scores of three mod-
els trained with different random seeds. Table 2
also shows the total number of parameters6.

Table 2 shows that the proposed strategies
achieved better BLEU scores than Vanilla and Uni-
versal when we prepared almost the same number
of parameters. This result indicates that the pro-
posed strategies are also parameter efficient in the
high resource setting. In addition, since we used
M = 6 and N = 12 for proposed strategies, they
are also more efficient than Universal in terms of
computational time (see Table 1).

When we used additional synthetic data for train-
ing in the same manner as (Kiyono et al., 2020),
CYCLE (REV) achieved comparable BLEU scores
to the best system of (Kiyono et al., 2020) except
for newstest20197 even though the parameter size
of CYCLE (REV) was smaller than theirs. This re-
sult indicates that CYCLE (REV) is also efficient in
the construction of models for recent competitive
tasks. In addition, this result implies that our pro-
posed strategies can be used in the configuration
where we train many parameters with a tremendous
amount of data such as recent pre-trained language
models, e.g., GPT series (Brown et al., 2020). We
investigate the effect of the proposed strategies on
language models in Appendix A.

3.3 Other Direction and Language Pair
3.3.1 Datasets
We conduct experiments on the other direction and
language pair. For the German-to-English training
dataset, we used the identical data in Section 3.1.
For English-to-French and French-to-English, we

6The parameter sizes of Vanilla (big) in Table 1 and Vanilla
in Table 2 are different from each other due to the difference
of sharing embeddings. Following (Kiyono et al., 2020), we
did not share embeddings in the high resource setting.

7For newstest2019, synthetic data might harm the quality
of a model because models trained with only genuine data
outperformed those trained with both data.

82



Method #Params 2010 2011 2012 2013 2014 2015 2016 2018 2019 Avg.
Genuine training data

Vanilla 242M 26.53 24.09 24.51 28.51 31.40 33.52 39.08 47.11 42.80 33.06
Universal 249M 27.00 24.20 24.96 28.94 31.73 33.53 39.38 47.54 43.11 33.38
SEQUENCE 242M 27.31 24.24 24.86 29.15 31.90 33.84 39.93 48.15 43.12 33.61
CYCLE 242M 27.23 24.45 25.13 29.12 32.10 34.04 39.82 48.11 43.19 33.69
CYCLE (REV) 242M 27.37 24.46 25.14 29.16 32.06 33.98 40.28 48.34 43.43 33.80

+ Synthetic (back-translated) data
Kiyono et al. (2020) 514M - - - - 33.1 - - 49.6 42.7 -
CYCLE (REV) 343M 28.29 24.99 25.98 30.01 33.54 34.93 41.37 49.55 42.18 34.54

Table 2: BLEU scores on newstest2010-2016, 2018, and 2019. We add newstest2018 and 2019 to the set in the
standard setting to compare the top system on WMT 2020 (Kiyono et al., 2020).

German-to-English English-to-French French-to-English
Method M N 2013 2014 2013 2014 2013 2014
Vanilla 6 6 30.48 30.96 33.41 38.41 33.48 36.06
Universal 1 6 31.06 31.32 33.58 38.84 33.83 37.11
SEQUENCE 6 18 31.31 31.97 34.49 40.18 34.26 37.45
CYCLE 6 18 31.46 32.18 34.50 40.17 33.97 37.59
CYCLE (REV) 6 18 31.32 32.12 34.67 40.13 34.16 37.32

Table 3: The number of layers and BLEU scores on each dataset. Each method is composed of almost the same
number of parameters.

used the WMT 2014 training dataset. We applied
the same pre-processing as in (Ott et al., 2018), and
used 35.8M English-French sentence pairs. Each
configuration, we used newstest2013 and new-
stest2014 as valid and test sets, respectively. We
also measured case-sensitive detokenized BLEU
with SacreBLEU in these experiments.

3.3.2 Methods
We compare our proposed strategies with baselines
used in Section 3.1. We used the Transformer
(base) setting with Admin as Vanilla and prepared
Universal which is M = 1, N = 6 with large
dimension sizes for each internal layer. For the pro-
posed strategies, we used M = 6 and N = 18. In
these configurations, the training time of proposed
strategies are almost the same as one of Universal
as described in Table 1.

3.3.3 Results
Table 3 shows BLEU scores of each method on
each dataset. This table indicates that Universal
outperformed Vanilla in all datasets. The proposed
parameter sharing strategies (SEQUENCE, CYCLE,
and CYCLE (REV)) achieved better scores than Uni-
versal in all datasets. These results are consistent
with results in Table 1. These results also indicate
that the proposed strategies are more efficient than
Universal, which shares parameters of one layer
with all layers, because they achieved better per-
formance with almost the same parameter size and

computational time.
In the comparison among the proposed strate-

gies, CYCLE and CYCLE (REV) outperformed SE-
QUENCE on German-to-English but it is difficult
to conclude that CYCLE and CYCLE (REV) are
superior to SEQUENCE on English-to-French and
French-to-English. This result implies that the best
strategy might depend on a language pair8. How-
ever, we emphasize that our proposed strategies out-
performed Universal. For applying our proposed
parameter sharing strategies to other datasets, we
recommend using SEQUENCE as a first step be-
cause it is the easiest to implement.

4 Experiments on Automatic Speech
Recognition

4.1 Datasets

To investigate the effect of our proposed strate-
gies on other modality, we conduct comparisons
on the automatic speech recognition (ASR) task.
We used the de-facto standard English ASR bench-
mark dataset: LibriSpeech (Panayotov et al., 2015).
The dataset contains 1,000 hours of English speech
from audiobooks. We used the standard splits of
LibriSpeech; used all available training data for
training and two configurations (clean and other)
of development and test sets for evaluation. We

8Section 4 and Appendix A imply that a sort of task and
Transformer architectures also have an influence on the per-
formance of proposed strategies.

83



Enc Dec Dev Test
Method M N M N #Params Speed clean other clean other
Vanilla 6 6 6 6 52M ×2.94 3.98 9.06 4.18 9.18
Universal 1 6 1 6 54M ×1.00 3.73 8.85 4.14 8.80
SEQUENCE 8 16 4 8 50M ×1.41 3.16 7.84 3.32 7.71
CYCLE 8 16 4 8 50M ×1.41 3.28 7.86 3.57 7.97
CYCLE (REV) 8 16 4 8 50M ×1.41 3.11 8.10 3.60 8.11

Table 4: The parameter sizes, computational speeds based on the Universal configuration, and word error rates of
each method. For word error rates, lower is better. Scores in bold denote the best results for each set.

applied the same pre-processing as in (Wang et al.,
2020). We measured word error rate on each set.

4.2 Methods

We also compare our proposed strategies with base-
lines in Section 3. As the base architecture, we
used Transformer based speech-to-text model (T-
Md) described in (Wang et al., 2020). In contrast
to the Post-LN architecture, which is the original
Transformer architecture (Vaswani et al., 2017), the
Transformer in T-Md consists of the Pre-LN config-
uration. We prepared 6 layers for the encoder and
decoder in Vanilla and Universal. For proposed
strategies, we stacked more layers for the encoder
side in the same as in (Wang et al., 2020). We pre-
pared N = 16 and M = 8 for the encoder side,
and N = 8 and M = 4 for the decoder side.

4.3 Results

Table 4 shows word error rates of each method
on each dataset. This table indicates that Univer-
sal outperformed Vanilla in all sets. The proposed
parameter sharing strategies (SEQUENCE, CYCLE,
and CYCLE (REV)) achieved better scores than Uni-
versal in all sets even though they are faster than
Universal. These results are consistent with results
in machine translation experiments in Section 3.
Thus, the proposed strategies are also more effi-
cient in the ASR task.

In contrast to machine translation experiments,
SEQUENCE outperformed CYCLE and CYCLE

(REV) in the ASR task. We consider that this re-
sult might be caused by the difference of tasks.
In addition, the cause might be the difference of
layer normalization positions in the Transformer
architecture. We used Post-LN based method (Ad-
min) (Liu et al., 2020) in machine translation exper-
iments, but Pre-LN based method in this ASR task.
Liu et al. (2020) and Takase et al. (2022) demon-
strated that the position of the layer normalization

has a strong effect on the property of Transform-
ers. The experimental results in language modeling
(Appendix A) also imply that SEQUENCE is more
appropriate when we use the Pre-LN based Trans-
former. The main focus of this study is empirical
comparisons to the widely used parameter sharing
strategy, Universal (Dehghani et al., 2019), but we
will address theoretical analyses on the training
dynamics in the future to understand the relation
between parameter sharing strategies and Trans-
former architectures.

5 Related Work

Parameter Sharing In the past decade, various
studies reported that a large amount of training data
improve the performance in NLP tasks (Suzuki and
Isozaki, 2008; Brants et al., 2007; Mikolov et al.,
2013; Sennrich et al., 2016a; Edunov et al., 2018).
Moreover, recent studies indicated that the larger
parameter size we prepare, the better performance
the model achieves when we have a large amount
of training data (Devlin et al., 2019; Brown et al.,
2020). In fact, the best system on the WMT 2020
news translation task is composed of about 10 times
as many parameters as the widely used Transformer
(base) setting (Kiyono et al., 2020). However, due
to the limitation on a GPU memory capacity, we
have to explore a parameter efficient way, which
achieves better performance while saving the pa-
rameter size.

Parameter sharing is a widely used technique as
a parameter efficient way (Dehghani et al., 2019;
Dabre and Fujita, 2019; Xia et al., 2019; Lan et al.,
2020). Dehghani et al. (2019) proposed Universal
Transformer. Their method requires parameters
for only one layer (i.e., M = 1) of a Transformer-
based encoder-decoder, and shares these parame-
ters with N layers. Dabre and Fujita (2019) in-
vestigated the effectiveness of Transformer sharing
parameters of one layer across all layers on various

84



translation datasets. Lan et al. (2020) used this pa-
rameter sharing strategy to construct a parameter
efficient model. As reported in these studies, we
can achieve better performance by the Transformer
sharing parameters of one layer across all layers
when we use the same parameter size as the original
Transformer. However, this strategy requires much
more computational time as described in Table 1
because weight matrices for each layer are much
larger. To solve this problem, we propose a new
parameter sharing strategies that prepare parame-
ters for M layers and assign them into N layers,
where 1 ≤ M ≤ N . Experimental results show
that our proposed strategies are more efficient than
the method sharing parameters of one layer with
across layers (Dehghani et al., 2019; Dabre and
Fujita, 2019; Lan et al., 2020). In addition, experi-
mental results imply that the proposed parameter
sharing strategies are effective to improve the per-
formance. In fact, in language modeling, previous
studies demonstrated that the parameter sharing is
useful to improve the performance (Melis et al.,
2018; Merity et al., 2018; Takase et al., 2018),

Xia et al. (2019) proposed an encoder-decoder
which shares parameters of the encoder part and de-
coder part. Xiao et al. (2019) proposed the method
to share the attention weights to make the compu-
tation of Transformers fast. These techniques are
orthogonal to our proposed method. Thus, we can
combine them to improve the efficiency of parame-
ters and computational time.

Training Acceleration In this study, we explore
a parameter efficient method. On the other hand,
recent studies proposed method to accelerate the
training. Li et al. (2020) proposed a training strat-
egy for a deep Transformer. Their strategy trains a
shallow model and then stacks layers to construct a
deep model. They repeat this procedure until the de-
sired deep model. They indicated that their strategy
was faster than the training of whole parameters
of a deep Transformer. Takase and Kiyono (2021)
compared regularization methods in terms of train-
ing time. Their experimental results show that the
simple regularizations such as word dropout are
more efficient than complex ones such as adver-
sarial perturbations. We can use those findings to
accelerate the training of our proposed strategies.

Deep Transformers To raise expressiveness
power of Transformers, we stack many layers
in the proposed method. The stability of train-

ing deep Transformers depends on their architec-
tures (Nguyen and Salazar, 2019; Xiong et al.,
2020; Liu et al., 2020). Transformer architectures
can be categorized into two types based on the
position of layer normalizations: Post-LN and Pre-
LN. Most of recent studies used the Pre-LN set-
ting when they stacked many layers (Wang et al.,
2019; Brown et al., 2020) because Pre-LN makes
the training process more stable than the Post-
LN setting, which is used in the original Trans-
former (Nguyen and Salazar, 2019; Xiong et al.,
2020). On the other hand, several studies proposed
methods to stabilize the training of Post-LN based
Transformers (Liu et al., 2020; Takase et al., 2022).
In this study, we used Admin (Liu et al., 2020) in
machine translation experiments because it stabi-
lizes the training of Post-LN based Transformers
while keeping the advantages of Post-LN in the ma-
chine translation task. For other experiments, we
used the Pre-LN configuration based on the imple-
mentations of baselines. These experiments show
that our proposed strategies are effective in major
two architectures: Post-LN and Pre-LN.

6 Conclusion

We proposed three parameter sharing strategies:
SEQUENCE, CYCLE, and CYCLE (REV), for the
internal layers in Transformers. In contrast to the
previous strategy, which prepares parameters for
only one layer and shares them across layers such
as Universal Transformers (Dehghani et al., 2019),
the proposed strategies prepare parameters for M
layers to construct N layers. The proposed strate-
gies stack layers whose weight matrices are smaller
than ones of Universal Transformers to raise expres-
siveness power while saving computational time.

Experimental results in the standard machine
translation setting show that the proposed strate-
gies achieved slightly better BLEU scores to those
of Universal with a small computational time when
we prepared almost the same parameters for each
method (M = 6 and N = 12). In addition, the
proposed strategies outperformed Universal under
the same computational budgets (M = 6 and
N = 18). Thus, the proposed strategies are ef-
ficient in terms of the parameter size and compu-
tational time. Through additional experiments, we
indicated that the proposed strategies are also more
efficient than Universal in the high resource set-
ting, other language pairs, and another modality
(speech-to-text).

85



Limitations

As described in Section 1, the purpose of this study
is to relax the existing parameter sharing strategy
which shares the parameters of one layer with all
layers (Dehghani et al., 2019; Dabre and Fujita,
2019; Lan et al., 2020). Experimental results in-
dicate that the proposed simple parameter sharing
strategies can be a better alternative to the existing
method. As many studies on neural methods, this
study also depend on empirical observations. In
other words, this study lacks theoretical justifica-
tions for proposed parameter sharing strategies.

We conducted experiments on various situations.
We mainly focused on sequence-to-sequence tasks
and trained each model from scratch. Our con-
ducted experiments indicated the efficiency of the
proposed strategies but we did not conduct experi-
ments on the pre-training and then fine-tuning con-
figuration such as comparison with BERT (Devlin
et al., 2019) due to the limitation of our computa-
tional budgets. Thus, it is difficult to claim that the
proposed strategies are also more efficient in such
configuration. In addition, we have to investigate
the effectiveness in a more realistic situation. For
example, we will investigate the performance of
the combination of our proposed method, which is
the parameter efficient way for internal layers, and
a parameter efficient embedding such as Takase
and Kobayashi (2020).

Through experiments in various configurations,
it is difficult to conclude which strategy is the
best. Experimental results imply that the best strat-
egy depends on the task and Transformer architec-
ture (Post-LN or Pre-LN). Such phenomena are
reported in previous studies (Press et al., 2020; Gu-
lati et al., 2020). In fact, the architecture explored
by Press et al. (2020) is better in the language mod-
eling task but ineffective in the machine transla-
tion task. Since it is intractable to investigate a
tremendous amount of possible parameter assign-
ment way due to the limitation of computational
budgets, there might be a superior way to three sim-
ple strategies proposed in this paper. However, we
emphasize that all our proposed strategies are more
efficient than the Universal configuration. Because
the purpose of our experiments is not to detect the
best parameter sharing strategy but to indicate that
our proposed parameter sharing strategies are more
efficient than the Universal configuration, we con-
sider that our conducted experiments are sufficient
to verify our claims.

Ethics Statement

As discussed in Strubell et al. (2019), recent neural
models require substantial energy consumption. To
address this issue, we explore a parameter efficient
way for Transformers in this study. We believe that
our proposed strategies are effective to reduce the
energy consumption.

On the other hand, we spent a large amount of
computational costs to investigate the usefulness of
our proposed strategies in various situations. Ap-
pendix B indicates our used GPUs and the number
of updates that correspond to the computational
costs.

Acknowledgements

We thank the anonymous reviewers for their insight-
ful suggestions. A part of this work was supported
by JSPS KAKENHI Grant Number JP21K17800
and JST ACT-X Grant Number JPMJAX200I.

References
Alexei Baevski and Michael Auli. 2019. Adaptive input

representations for neural language modeling. In
Proceedings of ICLR.

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J.
Och, and Jeffrey Dean. 2007. Large language models
in machine translation. In Proceedings of EMNLP-
CoNLL, pages 858–867.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In NeurIPS,
pages 1877–1901.

Raj Dabre and Atsushi Fujita. 2019. Recurrent stack-
ing of layers for compact neural machine translation
models. Proceedings of AAAI, 33:6292–6299.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Łukasz Kaiser. 2019. Universal
transformers. In Proceedings of ICLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL-HLT, pages
4171–4186.

86



Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In Proceedings of EMNLP, pages 489–500.

Alex Graves. 2017. Adaptive computation time for
recurrent neural networks.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, Yonghui Wu, and Ruom-
ing Pang. 2020. Conformer: Convolution-augmented
transformer for speech recognition. In Proceed-
ings of the 21st Annual Conference of the Interna-
tional Speech Communication Association (INTER-
SPEECH), pages 5036–5040.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recogni-
tion. In Proceedings of CVPR, pages 770–778.

Shun Kiyono, Takumi Ito, Ryuto Konno, Makoto Mor-
ishita, and Jun Suzuki. 2020. Tohoku-AIP-NTT at
WMT 2020 news translation task. In Proceedings of
WMT, pages 145–155.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite bert for self-supervised learn-
ing of language representations. In Proceedings of
ICLR.

Bei Li, Ziyang Wang, Hui Liu, Yufan Jiang, Quan Du,
Tong Xiao, Huizhen Wang, and Jingbo Zhu. 2020.
Shallow-to-deep training for neural machine transla-
tion. In Proceedings of EMNLP, pages 995–1005.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen,
and Jiawei Han. 2020. Understanding the difficulty
of training transformers. In Proceedings of EMNLP,
pages 5747–5763.

Gábor Melis, Chris Dyer, and Phil Blunsom. 2018. On
the state of the art of evaluation in neural language
models. Proceedings of ICLR.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2018. Regularizing and Optimizing LSTM
Language Models. In Proceedings of ICLR.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In Proceedings of ICLR.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In NIPS, volume 26.

Toan Q. Nguyen and Julian Salazar. 2019. Transformers
without tears: Improving the normalization of self-
attention. In Proceedings of IWSLT.

Myle Ott, Sergey Edunov, David Grangier, and Michael
Auli. 2018. Scaling neural machine translation. In
Proceedings of WMT, pages 1–9.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and San-
jeev Khudanpur. 2015. Librispeech: An asr corpus
based on public domain audio books. In ICASSP,
pages 5206–5210.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of WMT, pages 186–191.

Ofir Press, Noah A. Smith, and Omer Levy. 2020. Im-
proving transformer models by reordering their sub-
layers. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics (ACL),
pages 2996–3005.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Improving neural machine translation models
with monolingual data. In Proceedings of ACL, pages
86–96.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In Proceedings of ACL, pages
1715–1725.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 3645–3650.

Jun Suzuki and Hideki Isozaki. 2008. Semi-supervised
sequential labeling and segmentation using giga-
word scale unlabeled data. In Proceedings of ACL,
pages 665–673.

Sho Takase and Shun Kiyono. 2021. Rethinking per-
turbations in encoder-decoders for fast training. In
Proceedings of NAACL-HLT, pages 5767–5780.

Sho Takase, Shun Kiyono, Sosuke Kobayashi, and Jun
Suzuki. 2022. B2t connection: Serving stability and
performance in deep transformers. arXiv preprint
arXiv:2206.00330.

Sho Takase and Sosuke Kobayashi. 2020. All word em-
beddings from one embedding. In Advances in Neu-
ral Information Processing Systems 33 (NeurIPS),
pages 3775–3785.

Sho Takase, Jun Suzuki, and Masaaki Nagata. 2018.
Direct output connection for a high-rank language
model. In Proceedings of EMNLP, pages 4599–4609.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS, pages 5998–6008.

Changhan Wang, Yun Tang, Xutai Ma, Anne Wu,
Dmytro Okhonko, and Juan Pino. 2020. Fairseq
S2T: Fast speech-to-text modeling with fairseq. In
Proceedings of AACL-IJCNLP, pages 33–39.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu,
Changliang Li, Derek F. Wong, and Lidia S. Chao.
2019. Learning deep transformer models for ma-
chine translation. In Proceedings of ACL, pages
1810–1822.

87

http://arxiv.org/abs/1603.08983
http://arxiv.org/abs/1603.08983
https://arxiv.org/abs/2206.00330
https://arxiv.org/abs/2206.00330


Yingce Xia, Tianyu He, Xu Tan, Fei Tian, Di He, and
Tao Qin. 2019. Tied transformers: Neural machine
translation with shared encoder and decoder. Pro-
ceedings of AAAI, 33(01):5466–5473.

Tong Xiao, Yinqiao Li, Jingbo Zhu, Zhengtao Yu, and
Tongran Liu. 2019. Sharing attention weights for
fast transformer. In Proceedings of IJCAI, pages
5292–5298.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng,
Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan
Lan, Liwei Wang, and Tie-Yan Liu. 2020. On layer
normalization in the transformer architecture. In Pro-
ceedings of ICML.

88



A Experiments on Language Modeling

A.1 Dataset

We focused Transformer-based encoder-decoders
in the main experiments of this paper. However, re-
cent studies often employed the decoder side only
as a pre-trained model. Thus, we conduct exper-
iments on the language modeling task to investi-
gate the efficiency of our proposed strategies when
we use the decoder side only. We used Wikitext-
103 (Merity et al., 2017) which contains a large
amount of training data. We measured perplexity
of validation and test sets.

A.2 Methods

We used the Transformer with adaptive in-
puts (Baevski and Auli, 2019) as the base archi-
tecture. In the same as in Baevski and Auli (2019),
the Transformer in the language modeling consists
of the Pre-LN configuration. We set N = 6 for
Vanilla and Universal. For the proposed strategies,
we set N = 12 and M = 6.

A.3 Results

Table 5 shows perplexities of each method. This
table indicates that Vanilla achieved better perfor-
mance than Universal. Thus, the sharing param-
eters of one layer with all layers might not be
suitable for a large-scaled language modeling task.
In contrast, the proposed strategies outperformed
Vanilla. This result indicates that our proposed
strategies are also more efficient than Universal in
the language modeling.

Through the comparison among proposed strate-
gies, SEQUENCE achieved the best perplexity. As
described in Section 4, SEQUENCE might be more
appropriate to the Transformer with the Pre-LN
configuration. To explore the reason, we believe
that we have to conduct the theoretical analysis of
the Transformer during its training. We address
this issue in the future study.

The lower part of Table 5 shows the reported
score of Baevski and Auli (2019), our reproduced
score, and SEQUENCE with more parameters. This
part indicates that SEQUENCE achieved better per-
plexities than others even though the parameter size
of SEQUENCE is smaller. Therefore, SEQUENCE is
also efficient when we prepare a large amount of
parameters for a language model.

Method #Params Valid Test
Vanilla 121M 20.39 21.13
Universal 121M 22.75 23.84
SEQUENCE 121M 18.97 19.69
CYCLE 121M 19.00 19.69
CYCLE (REV) 121M 19.60 20.24

Models with more parameters
Baevski and Auli (2019)† 247M 18.53 19.24
Baevski and Auli (2019) 247M - 18.7
SEQUENCE 234M 17.71 18.55

Table 5: The parameter sizes and perplexities of each
method. The lower part indicates scores reported in
Baevski and Auli (2019) and the score of SEQUENCE
with more parameters. Scores in bold denote the best
results for each set. † represents our re-run of Baevski
and Auli (2019).

B Details of Experimental Settings

We used NVIDIATesla V100 GPUs for all exper-
iments. Table 6 shows the hyper-parameters for
training in each task. The descriptions in our code
also help to understand configurations in this study.

89



Params Machine Translation ASR Language Model
Leaning rate 0.001 0.001 0.001
Scheduler inverse sqrt inverse sqrt inverse sqrt
Adam β (0.9, 0.98) (0.9, 0.98) (0.9, 0.98)
Warmup updates 4k 4k 2k
Max updates 50k 150k 50k

Table 6: Hyper-parameters used in our experiments.

90


