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Abstract

In this paper, we consider the problem of
improving the inference latency of language
model-based dense retrieval systems by in-
troducing structural compression and model
size asymmetry between the context and query
encoders. First, we investigate the impact
of pre and post-training compression on the
MSMARCO, Natural Questions, TriviaQA,
SQUAD, and SCIFACT, finding that asymme-
try in the dual-encoders in dense retrieval can
lead to improved inference efficiency. Know-
ing this, we introduce Kullback–Leibler Align-
ment of Embeddings (KALE), an efficient and
accurate method for increasing the inference ef-
ficiency of dense retrieval methods by pruning
and aligning the query encoder after training.
Specifically, KALE extends traditional Knowl-
edge Distillation after bi-encoder training, al-
lowing for effective query encoder compres-
sion without full retraining or index generation.
Using KALE and asymmetric training, we can
generate models which exceed the performance
of DistilBERT despite having 3x faster infer-
ence.

1 Introduction

A bi-encoder-based retrieval, often called dense
retrieval, is a retrieval function that leverages the
vector representation of queries and documents as
a proxy for relevance. Using two encoders, one
for the query and one for the document, the input
data is mapped into a common latent space where
closeness becomes a proxy for relevance.
Dense retrievers have become increasingly popular
due to their ability to capture the semantic relation-
ships between query and document terms. How-
ever, bi-encoder-based models can also be com-
putationally expensive, particularly when dealing
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Figure 1: Using KALE and asymmetric training on the
lead to when measuring QPS vs. Recall at 100 on the
NQ dataset. Using Asymmetry and KALE, it is possible
to 3x QPS with nearly no loss in accuracy and 4.5x with
under 2% loss in accuracy. We calculate QPS as the
mean number of queries per second with a batch size
of 1 and a max sequence length of 32 on a T4 GPU.
Impact on retrieval accuracy is measured by the relative
drop in retrieval accuracy at 100

with large datasets. As a result, there has been a
growing interest in methods for compressing these
models to reduce their computational complexity
without sacrificing performance.
While the use of smaller models (Wang et al., 2020)
has provided a path to improving model perfor-
mance, compression cannot be adjusted to suit
varying latency needs. In other words, a model
must match latency requirements before it can be
experimented with. Additionally, since bi-encoders
require a complete index generation to evaluate
performance iteratively compressing models and
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retraining them can be very expensive. Seeing the
bottleneck caused by trying to train compressed
models for retrieval we explore approaches to com-
press models after training. By doing so it becomes
cheaper to evaluate the impact of compression of
retrieval and generate variants of many sizes.
In this paper, we explore the role of asymmetry
in the size of query and document encoders that
leverage language models. Through experiments
on several benchmarks, we demonstrate that our
approach can significantly reduce the number of
parameters in the bi-encoder model without sacri-
ficing performance.
As shown in figure 1, the combination of asymmet-
ric bi-encoders and post-training KALE allows for
3x more QPS than an uncompressed bi-encoder
with less than 1% loss in accuracy and nearly 5x
with less than 2%.
Building on the favorable implications of asym-
metry for efficient inference, we introduce a
compression mechanism called Kullback-Leibler
Allingment of Embeddings (KALE). KALE uses
an alignment of representations to compress mod-
els without requiring any form of retraining or in-
dex regeneration.
To ground our approaches, we evaluate the effec-
tiveness of KALE and asymmetry on several bench-
mark datasets and compare the results to existing
efficient inference approaches.
The following research questions drive our work:

• Is the performance of dense retrieval meth-
ods more driven by the query or document
encoder size?

• Is it possible to compress query encoders with-
out retraining and index regeneration?

• How can dense retrieval asymmetry and post-
training alignment be leveraged to improve
query encoder latency?

It is in answering these questions that we deliver
the following contributions:

• We present the first robust studies on the
role of document-query encoder symmetry,
demonstrating that the size of the document
encoder dominates performance.

• We introduce and demonstrate the effective-
ness of KALE, a post-training compression

and alignment approach demonstrating its ef-
fectiveness and

• We empirically demonstrate on various bench-
marks how Asymmetric Compression can
lead to 4.5 better QPS with 1% loss in recall
accuracy at 100.

2 Related Work

Transformer Based Language Models such as
BERT (Devlin et al., 2019) provide contextual lan-
guage representations built on the Transformer ar-
chitecture (Vaswani et al., 2017) which can be spe-
cialized and adapted for specific tasks and domains
(Lee et al., 2020). Using contextual word repre-
sentations, it becomes relatively easy to excel at a
broad range of natural language processing tasks
such as Question Answering, Text Classification,
and sentiment analysis.
Bi-Encoders, commonly called dual-encoders or
dense retrievers, decompose ranking by leveraging
the inner product of query and document represen-
tations to produce a relevance score for query docu-
ment pairs. While not as accurate at cross-encoders
(Reimers and Gurevych, 2019), they are more effi-
cient for inference and easier to deploy. Bi-encoder
document representations are query invariant, al-
lowing them to be pre-computed and loaded into
an Approximate Nearest Neighbor (ANN) such as
FAISS (Johnson et al., 2019).
At runtime, a query is an encoder into a latent
space, and the k documents are retrieved us-
ing a nearest neighbor algorithm such as HNSW
(Malkov and Yashunin, 2016). Since the entire doc-
ument index has already been created the retrieval
latency is limited to a single call of the query en-
coder.
Bi-encoders commonly leverage LLM such as
BERT (Devlin et al., 2019) to retrieve short pas-
sages of text leading to the task descriptor of Dense
Passage Retrievers (DPR) (Karpukhin et al., 2020).
Driven by their efficiency in deployment and
relevance performance, DPR-based models have
rapidly become the building blocks for systems do-
ing product search (Magnani et al., 2022), open do-
main question answering (Karpukhin et al., 2020)
and customer support (Mesquita et al., 2022).
Efficient Inference study methods and models
which decrease the model execution cost while
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minimizing the losses to model performance.
Knowledge Distillation (Hinton et al., 2015) is a
training method where a model, called the student,
learns to emulate a teacher model, which is com-
monly larger or better performing than the student.
Unstructured pruning removes individual weights
or groups of weights in a model by applying a mask
or setting the weight values to 0. When paired with
a sparsity-aware inference engine, it is possible to
gain 3-5x speedups in inference throughput with
little to no loss in accuracy (Kurtić et al., 2022).
Structured pruning removes fundamental structural
components in a language model, such as individ-
ual attention heads (Voita et al., 2019) or entire
model layers (Sanh et al., 2019). Removing en-
tire model layers is one of the most pervasive ap-
proaches, as latency gains are easy to realize, and
pruning is straightforward.
While their training regimes may differ, models
like DistilBERT (Sanh et al., 2019) and TinyBERT
(Jiao et al., 2020), and MiniLM (Wang et al., 2020)
leverage structural pruning as ways of generation
2-10x speedups.
Methods like quantization (Pouransari and Tuzel,
2020) (Zafrir et al., 2019), early exiting (Xin et al.,
2020) or token pruning (Kim et al., 2021) have
been effective in other NLP tasks. Still, our work
primarily focuses on structured pruning and its re-
lationship with asymmetry. We leave studying the
impacts of asymmetry on these compression meth-
ods to future work.
Asymmetrical deep learning broadly refers to
any non-uniformity in shape or attribute of mod-
els. Traditional modeling approaches favor unifor-
mity as it is preferable for optimization algorithms
(Mihaylova and Martins, 2019), and using models
for inference should match training as closely as
possible (Ranzato et al., 2015) as improvements
in training loss during optimization result in im-
provements in model performance during infer-
ence. However, this does not account for cost
or latency asymmetries during usage. Kasai et
al. demonstrated how the sequence-to-sequence
encoder depth dominates language model perfor-
mance for machine translation (Kasai et al., 2020).
Tay et al. 2021 extend this work by finding a Deep-
Narrow which shows that for broad language mod-
eling, it is possible to have 50% fewer parameters
and a 40% faster inference with no loss in accu-

racy.
Embedding Distillation Concurrent to our work
on bi-encoder compression, Kim et al. 2023 study
how distillation in embeddings leads to general
compression of bi-encoders and cross-encoders
(Kim et al., 2023). Our work differs from theirs as
we focus on the role of asymmetry between query
and document encoders and how to leverage it for
improved inference efficiency.

3 Method

The use of representation models for retrieval
begins with a document space d and a query
space q where each of which is generated by
some model m. Models do not need to share
the same initialization, shape, or size, but their
representation vectors must share size without
some projection. These two models learn a notion
of relevance by training to minimize the distance
of positive query-document pairs as shown in
equation 1 where x is a query vector and y is a
document vector, and · denotes the dot product of
the vectors.

L = 1− x · y
|x||y| (1)

The query and document encoder models are
commonly initialized with a pre-trained language
model such as BERT. Then, using pairs of labels
for positive relevance scores for queries and doc-
uments, the models are trained to minimize the
distance between queries and their relevant docu-
ments (Karpukhin et al., 2020)
While it is common practice to initialize the query
encoder and document encoder with identical lan-
guage models, this ignores the cost asymmetry
of the usage patterns. The document encoder is
usually only used once during a large-scale batch
generation of the index. Index generation happens
in a latency-insensitive environment and can easily
leverage many GPUs and large batch sizes to im-
prove efficiency.
The query encoder runs every time a user issues
a query, which can be irregular and sporadically.
The query encoder responds to each user query
independently. Thus, query encoders often use
a batch size of 1 and commonly leverage small
inference-optimized hardware like the T4 GPU or
small CPUs.

3
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Figure 2: Measuring the impact on recall at 20 on the NQ retrieval dataset by varying the number of transformer
layers for the query encoder and document encoder

Since the document encoder does not run very of-
ten, any improvement in latency produces a single
fixed gain utterly dependent on the corpus size
and index refresh cycle. The query encoder’s user-
facing nature means latency improvements occur
whenever a user queries.

3.1 Role of model symmetry with Bi-encoders

Since the query encoder runs many times online
and the document encoder runs once, offline, we
question: Is there some form of asymmetry be-
tween the query encoder and the document encoder
that can be exploited? Do the two encoders need
to be compressed symmetrically?
To answer this question, we explore the impact on
the performance of pruning the query and docu-
ment encoders on the NQ passage retrieval dataset
(Kwiatkowski et al., 2019). Using a BERT-base
uncased model with 12 transformer encoder lay-
ers, we generate structurally pruned models with
9,6,3,2 and 1 layer. We also further pre-train the
three and six-layer models using knowledge dis-
tillation, represented as 6KD and 3KD, from a 12-
layer model on the Wikipedia-book corpus similar
to distilBERT (Sanh et al., 2019).
Then, using each of these seven models, we train
dense retrieval models on the NQ passage retrieval
dataset with variations of query and document mod-
els resulting in 72 variants. With each of these

models, we generate a full index and evaluate re-
trieval performance on the development portion
of the dataset. We do not tune any parameters to
avoid overfitting and to explore asymmetry without
overoptimizing. Each model’s retrieval accuracy
is evaluated with retrieval sets of depth 20, 100,
and 200. We compare the impact of varying the
encoders to the uncompressed baseline and a dis-
tilBERT model (denoted by 6db).
Looking at the impact of symmetric compression

Table 1: Impact of Structural pruning before fine-tuning
on Retrieval Accuracy on NQ passage retrieval dataset

Layers enc Top 20 Impact Top 100 Impact Top 200 Impact
12 79.86% 0.00% 85.84% 0.00% 88.42% 0.00%
6db 73.88% -7.49% 84.74% -1.29% 87.26% -1.31%
9 73.41% -8.08% 83.68% -2.51% 86.51% -2.16%
6KD 75.04% -6.04% 85.15% -0.80% 87.45% -1.10%
6 71.69% -10.23% 83.30% -2.96% 86.04% -2.69%
3KD 73.32% -8.19% 83.43% -2.80% 86.20% -2.51%
3 66.93% -16.20% 80.61% -6.09% 84.49% -4.45%
2 66.87% -16.27% 80.42% -6.32% 83.85% -5.17%
1 54.96% -31.18% 71.88% -16.26% 76.73% -13.22%

as shown in table 1, we see that the impact of com-
pression is more pronounced with a small recall
set as retrieval accuracy impact at 20 is 3x that
of at 200. As shown in table 1 we observe major
accuracy gains by fine-tuning the pruned model
with a 4% gap between 6 and 6KD and a 8% gap
between 3 and 3KD with a 4% gap for recall at 20
on the NQ dataset.
Looking at the impact of asymmetry of the depth

4
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of encoders as shown in table 2 and figure 2 we
find there is the size of the query and document en-
coders cause similar impacts on retrieval accuracy.
A retriever with 3 layers in the query encoder and
12 in the document encoder loses 11.9% of its re-
trieval accuracy and 12.55% when the sizes of the
document encoder and query encoders are flipped.
These asymmetric retrievers perform better than
the symmetric 3-layer models, which lose 16.2%
which highlights the ability to improve retrieval
performance by having non-uniform compression.
It is worth noting that having a larger document en-
coder is preferable to a larger query encoder which
supports the notion that the document encoder is
more important than the query encoder (Li and Lin,
2021).// Similar results can be seen with the intro-
duction of fine-tuned three and 6-layer models as
shown in table 6. Unsurprisingly, KD-optimized
language models outperform non-distilled mod-
els, and any asymmetrical variant that leverages a
distilled model outperforms the un-distilled vari-
ant. Without further optimization, a model with
a distilled 3-layer query encoder and a 12-layer
document encoder will outperform a model with
symmetrical 6-layer models despite being 2x faster.

3.2 Inference Benchmarks

To evaluate the impact of structural pruning, we
benchmark inference speeds of query encoding
while varying the number of transformer layers.
We perform benchmarking using an Intel Xeon
Gold 6238R Processor and a T4 Nvidia GPU. For
each model, we evaluate the performance on encod-
ing 6500 queries with a batch size of one and a max
context length of 32. For CPU inference, we eval-
uate the performance of models using the ONNX
library 1, and for GPU inference, we evaluate na-
tive Pytorch inference. We repeat each run five
times to ensure consistency and report the mean.
Summary statistics can be found in table 3 and full
results, including percentile, standard deviation,
and confidence intervals, can be found in the ap-
pendix .5.

Table 2: Impact of Structural pruning before fine-tuning
on Retrieval Accuracy on NQ passage retrieval dataset

layersq layersd Top 20 Impact Top 100 Impact Top 200 Impact
12 12 79.86% 0.00% 85.84% 0.00% 88.42% 0.00%

9 12 74.27% -7.00% 84.40% -1.67% 86.95% -1.66%
6 12 73.63% -7.80% 84.27% -1.83% 86.79% -1.85%
3 12 69.83% -12.55% 82.58% -3.80% 85.35% -3.48%
2 12 69.67% -12.76% 82.19% -4.25% 84.68% -4.23%
1 12 59.00% -26.12% 75.37% -12.19% 81.00% -8.39%

12 9 74.21% -7.07% 84.40% -1.67% 87.06% -1.53%
9 9 73.41% -8.08% 83.68% -2.51% 86.51% -2.16%
6 9 71.63% -10.30% 83.05% -3.25% 85.98% -2.76%
3 9 67.89% -14.98% 80.94% -5.71% 84.79% -4.10%
2 9 67.15% -15.92% 80.53% -6.19% 83.66% -5.39%
1 9 56.04% -29.83% 73.35% -14.55% 78.12% -11.65%

12 6 72.22% -9.57% 83.41% -2.83% 85.84% -2.91%
9 6 71.61% -10.33% 83.30% -2.96% 85.93% -2.82%
6 6 71.69% -10.23% 83.30% -2.96% 86.04% -2.69%
3 6 66.93% -16.20% 80.28% -6.48% 83.96% -5.04%
2 6 66.12% -17.20% 80.33% -6.42% 83.49% -5.58%
1 6 59.53% -25.46% 75.37% -12.19% 79.83% -9.71%

12 3 70.36% -11.90% 81.72% -4.80% 84.60% -4.32%
9 3 68.67% -14.01% 80.47% -6.25% 84.46% -4.48%
6 3 67.92% -14.95% 80.06% -6.74% 83.85% -5.17%
3 3 66.93% -16.20% 80.61% -6.09% 84.49% -4.45%
2 3 63.30% -20.74% 78.37% -8.71% 83.02% -6.11%
1 3 59.53% -25.46% 75.68% -11.84% 80.08% -9.43%

12 2 69.56% -12.90% 81.33% -5.25% 84.49% -4.45%
9 2 67.92% -14.95% 80.75% -5.93% 84.32% -4.64%
6 2 67.53% -15.43% 80.33% -6.42% 83.82% -5.20%
3 2 66.90% -16.23% 80.36% -6.38% 84.24% -4.73%
2 2 66.87% -16.27% 80.42% -6.32% 83.85% -5.17%
1 2 60.06% -24.80% 75.29% -12.29% 79.75% -9.80%

12 1 57.40% -28.13% 73.24% -14.68% 78.56% -11.15%
9 1 57.51% -27.99% 73.24% -14.68% 77.87% -11.94%
6 1 57.26% -28.30% 73.52% -14.35% 78.34% -11.40%
3 1 57.04% -28.58% 73.93% -13.87% 78.39% -11.34%
2 1 56.57% -29.17% 73.71% -14.13% 77.98% -11.81%
1 1 54.96% -31.18% 71.88% -16.26% 76.73% -13.22%

layers size compressed size method QPS Speedup
12 418 387 GPU 105.852 1.00
9 337 212 GPU 139.494 1.32
6 256 236 GPU 172.338 1.63
3 175 161 GPU 299.45 2.83
2 148 136 GPU 441.422 4.17
1 121 111 GPU 660.64 6.24
12 418 387 CPU 47.278 1.00
9 337 212 CPU 63.24 1.34
6 256 236 CPU 90.386 1.91
3 175 161 CPU 166.012 3.51
2 148 136 CPU 229.666 4.86
1 121 111 CPU 378.534 8.01

Table 3: Variation in model throughput according to the
serving method and the number of transformer layers.
Structural pruning can lead to a 6 and 8-layer perfor-
mance increase on GPU and CPU and pruning a model
to 3 layers allows a CPU to offer better inference per-
formance than the GPU.

Table 4: Impact of structural pruning with and without
KALE on Accuracy at 100 across various datasets.

Layers KALE NQ TriviaQA MSMARCO SCIFACT SQUAD
12 N/A 85.84% 85.84% 88.77% 90.70% 77.16%
9 N 79.97% 79.97% 82.01% 71.07% 71.38%
9 Y 84.90% 84.90% 86.16% 84.87% 73.54%
6 N 68.20% 68.20% 72.68% 22.98% 59.97%
6 Y 83.68% 83.68% 84.68% 85.13% 69.87%
3 N 43.88% 43.88% 11.39% 40.80% 34.42%
3 Y 81.14% 81.14% 82.11% 82.57% 64.37%
2 N 46.90% 46.90% 31.46% 42.66% 37.01%
2 Y 81.94% 81.94% 81.96% 82.57% 63.72%
1 N 12.22% 12.22% 0.00% 3.17% 11.66%
1 Y 71.33% 71.33% 54.36% 66.83% 51.39%
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4 KL Alignment of Embeddings

While training asymmetric models can improve
latency, it requires novel training regimes and
experimentation, and existing workloads need
to regenerate their entire index to take advan-
tage of any inference speedups. Generation of
the passage index can take longer than model
training (Karpukhin et al., 2020), which makes
regenerating a new index and retraining a model to
meet changing latency requirements an inefficient
experimentation pathway.
Moreover, coupling asymmetry into training
makes generating query encoder variants more
difficult, as each encoder requires its own index
and document encoder.
Motivated by this bottleneck, we introduce
Kullback-Leibler Allingment of Embeddings
(KALE), a simple method of improving bi-encoder
latency by aligning the embeddings of compressed
models. KALE is applied after model training and
leverages large batch sizes to make compression
computationally inexpensive and independent
of training. A single V100 GPU KALE can
produce a compressed query encoder in less than 5
minutes.
First, a bi-encoder model trains with separate
query and document encoders. When training
is complete, the document encoder, edocument,
is frozen, and using the query encoder, eq, a
structurally pruned copy, eq′ , is made. Then, using
a sample of queries, the eq′ model is fine-tuned
to minimize the KL divergence of their query
representations as shown in equation 2. While
the KL divergence is a measure of differences
in probability distributions it has been applied
successfully for representation alignment (Kim
et al., 2023). To leverage it, we treat each of the
representation vectors as a probability over a set of
logits.

DKL(eq′ ∥ eq) =
∑

x∈X
eq′(x) log

(
eq′(x)

eq(x)

)
. (2)

We explored the use of various distance functions
such as cosine similarity, Manhattan distance, and
the KL divergence but found little sensitivity in
any metric besides KL divergence. We believe this
is due to us freezing the document representations,

1https://onnx.ai/

and as a result, cosine distance allows the query
embeddings to drift more than probability distribu-
tion matching methods. To explore this further, we
experiment with tuning the temperature for the KL
divergence and add a loss scaling factor but find a
temperature of one and a scaling factor of ten to be
most optimal.
Additionally, we explored using a contrastive loss
with random negative and hard negatives mined
from the trained encoder but found no positive
impact for either method. We leave further explo-
ration of training objective improvement for future
work.

4.1 Experimental Results

We evaluate the effectiveness of KALE by tak-
ing uncompressed BERTBASE models and pruning
them with and without KALE on a variety of well-
established passage retrieval benchmarks. First,
models are trained, and indexes are generated us-
ing un-optimized BERTBASE models. Next, the
document encoders are frozen, and the query en-
coders are structurally pruned to have 9,6,3,2 or
1 transformer layer. Finally, query encoders are
aligned using KALE, and we compare the perfor-
mance of compressed models by comparing the
impact on retrieval accuracy at 20,100, and 200.
To aid reproducibility, each model is trained using
the Tevatron (Gao et al., 2022) 2 library, which
makes use of hugginface’s transformers to pro-
vide a simple interface for exploring neural rank-
ing models. Our experiments focus on the plain
BERTBASE-uncased 12-layer transformer model.
While never more capable models exist, the unal-
tered BERT model is widely used in production
workloads, which our experiments seek to emulate.
Our work aims not to produce the highest possi-
ble retrieval accuracy for a dense encoder. Instead,
our goal is to find the role of asymmetry in bi-
encoder models. As a result, we leverage the well-
established parameters in all of our experiments
without using an advanced methodology like con-
trastive or curriculum learning.
There are fewer parameters for using KALE, and
we deliberately do not optimize on anything but
the loss between eq and eq′ . In general, higher
degrees of pruning require longer training with
smaller batches.

2https://github.com/texttron/tevatron
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Figure 3: Impact of structural pruning with and without KALE on the NQ, MSMARCO, TriviaQA, SciFACT, and
SQuAD Passage Retrieval dataset with the recall set sizes of 20,100, and 200. Across datasets, we see a consistent
trend where KALE is effective but most effective when the network is heavily pruned and recall set sizes are small.
When the model is pruned to 2 or 1 layer with a recall set size of 20, the difference between using KALE or not can
be up to 10 times the loss in recall accuracy
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Datasets We use a wide variety of standard dense
retrieval benchmarks, including MSMARCO V1.1
3 (Campos et al., 2016), NQ Passage Ranking 4

(Kwiatkowski et al., 2019), SciFact Passage Rank-
ing 5 (Wadden et al., 2020), TriviaQA passage
Ranking 6 (Joshi et al., 2017), and SQUAD Pas-
sage Ranking 7 (Rajpurkar et al., 2016).
For each dataset, we evaluate performance by mea-
suring the recall accuracy with retrieval depths of
20,100, and 200. Additionally, for the MSMARCO
dataset, we also report MRR@10; for Scifact, we
also report NDCG @10 and RR@10.
Computational Experiments Our experimenta-
tion on fine-tuning our compressed models uses
a 16 GB V100 GPU. Experiments in bi-encoder
model training leverage 1 V100 for the MS-
MARCO and 4 for each other experiment. Due
to the vast number of models and datasets we train
on, each experiment happens with the same fixed
seed.

4.2 Evaluating KALE

We compare the performance of using KALE for
post-training compression in figure 3 across the
five datasets and see a fairly consistent trend. When
the recall set is small and the query encoders are
pruned to a high degree, the impact of KALE is
most visible, often driving over 50 improvements
in retrieval accuracy. Additionally, using KALE
allows the models to have a steady and gradual
drop in recall accuracy relative to speedup instead
of the sharp drop shown by the regular usage of
structural pruning. Without KALE, post-training
compression causes a 20-50% loss in retrieval ac-
curacy. With the use of KALE, these losses are
cut to 1-10%. In practice, this allows using one or
2-layer encoder models running with CPU-based
inference with minor impacts on accuracy.
We also notice a surprising performance improve-

ment between 3 and 2-layer query encoders with
and without KALE. We believe this shows the phe-
nomena studied elsewhere: the first and last layers

3https://huggingface.co/datasets/Tevatron/msmarco-
passage

4https://huggingface.co/datasets/Tevatron/wikipedia-nq
5https://huggingface.co/datasets/Tevatron/scifact
6https://huggingface.co/datasets/Tevatron/wikipedia-

trivia
7https://huggingface.co/datasets/Tevatron/wikipedia-

squad

Model Layers KALE MSMARCO NQ TriviaQA SQUAD SCIFACTS
BERTBASE 12 N 88.77% 85.84% 85.03% 77.16% 90.70%

BERTBASE 6 Y 84.68% 83.68% 83.01% 69.87% 85.13%
6kd − 6kd 6 N 88.19% 85.15% 84.96% 71.94% 91.23%
6db − 6db 6 N 88.35% 84.74% 84.83% 71.69% 89.37%
6kd − 3kd 6 N 86.50% 85.37% 84.04% 70.89% 89.20%

BERTBASE 3 Y 82.11% 81.14% 81.67% 64.37% 82.57%
3kd − 3kd 3 N 86.13% 83.66% 84.11% 71.98% 89.40%
3kd − 6kd 3 N 84.79% 85.76% 83.91% 67.85% 88.63%
6kd − 3kd 3 Y 82.95% 83.43% 82.33% 63.77% 90.37%
6kd − 6kd 3 Y 86.75% 80.78% 83.48% 64.14% 91.70%

BERTBASE 2 Y 81.96% 81.94% 81.23% 67.00% 82.57%
3kd − 3kd 2 Y 84.23% 82.71% 83.02% 67.02% 91.33%
3kd − 6kd 2 Y 85.57% 84.27% 82.90% 62.75% 88.37%
6kd − 3kd 2 Y 83.24% 83.02% 82.13% 62.52% 89.93%
6kd − 6kd 2 Y 85.77% 80.39% 83.32% 52.74% 91.93%

BERTBASE 1 Y 48.05% 71.33% 75.40% 51.39% 66.83%
3kd − 3kd 1 Y 66.69% 77.17% 80.82% 55.62% 76.03%
3kd − 6kd 1 Y 72.13% 79.81% 80.23% 52.26% 78.67%
6kd − 3kd 1 Y 71.26% 76.57% 78.65% 50.88% 77.07%
6kd − 6kd 1 Y 70.70% 74.71% 80.31% 52.74% 77.89%

Table 5: Impact of model asymmetry and use of KALE
for structural pruning on the Retrieval at 100 accuracies
across various datasets. Layers refer to the number of
transformer encoder layers in the query encoder.

do most of the work (Oh et al., 2022).

4.3 Aiding Asymmetry with KALE

Seeking to optimize compression further, we com-
bine KALE with asymmetrical finetuning and eval-
uate the results similarly to our earlier experiments.
Results on the impact of KALE and asymmetry
on the five datasets on the recall accuracy at 100
can be found in table 5 where 3kd − 6kd denotes a
three-layer query encoder and six-layer document
encoder, 3kd − 3kd denotes dual three layer en-
coders. Full results and metrics for each task can
be found in the appendix section .4.

First, it is immediately observable that post-
training compression via KALE performs worse
than models natively designed for that size. We
believe this is due to the convergence of the KALE
models to have some distance from the uncom-
pressed model because of dropout. We experi-
mented with not using dropout in KALE, but model
performance quickly suffered.
Looking at the best retrieval accuracy vs. the model
speedups shown in figure 4, we can see a substan-
tial variation in the impact of compression across
datasets. In tasks like SCIfacts, it is possible to get
over 4x speedup while improving accuracy, while
on tasks like SQuAD, even minor speedups lead
to major losses in accuracy. We believe this vari-
ation is driven by the relative difficulty of each
dataset, where easier tasks are more compressible
than harder tasks.
We believe these variations in results highlight the
utility of post-training compression methods like
KALE. Given the task variability in the impact of

8

66



100 200 300 400 500 600

60

70

80

90

Queries Per Second

R
et

ri
ev

al
A

cc
ur

ac
y

Inference Speed (GPU) Vs.Retrieval Accuracy @100

MSMARCO
NQ

TriviaQA
SQUAD
SCIfacts

Figure 4: The impact on retrieval accuracy of the
best combinations of asymmetrical training and KALE
across the NQ, MSMARCO, TriviaQA, SQUAD, and
SCIfacts retrieval datasets

compression, iteration speed and cost are essential
to effectively tuning model inference speed and
accuracy.

5 Limitations

While our work makes a broad study on how to
improve model efficiency our scope is limited. Our
work is limited to the usage of BERT-base and it
is not clear how our compression approaches scale
to more varied architectures like the sequence-to-
sequence models used by DocT5 (Lee et al., 2022)
or more optimized models like RoBERTa (Liu
et al., 2019) or compressed models like MiniLM
(Wang et al., 2020).

6 Conclusion and Future Work

In this work, we have demonstrated how the use
of asymmetry between the query and document
encoders in bi-encoder models can be leveraged
for improved inference efficiencies across CPUs
and GPUs. Using our post-training compression
framework, KALE, we can compress models up
to 6x with little loss in accuracy. Compressing
models without regenerating the document index
or the document encoder makes it practical to have
many query encoders tailored to each use case’s
latency needs.

In the future, we wish to study how asymmetry in
retrieval can be implemented with models which
are widely different and may have different hidden
sizes, such as using MiniLM for the query model
and RoBERTA-Large for the document model.
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.1 Asymmetrical Dense Retrieval

the impact of structural pruning with asymmetrical
dense retrieval can be found in table 6. Similar to
other works studying the use of knowledge distilla-
tion found (Sanh et al., 2020), the use of distillation
improves performance by a non-negligible level.

Table 6: Impact of Structural pruning with knowledge
distilled variants before fine-tuning on Retrieval Accu-
racy on NQ passage retrieval dataset

layersq layersd Top 20 Impact Top 100 Impact Top 200 Impact
12 12 79.86% 0.00% 85.84% 0.00% 88.42% 0.00%

6distilbert 6distilbert 73.88% -7.49% 84.74% -1.29% 87.26% -1.31%
6KD 12 73.99% -7.35% 84.32% -1.77% 86.65% -2.00%
6KD 9 71.63% -10.30% 83.16% -3.12% 85.82% -2.94%
6KD 6 71.00% -11.10% 82.35% -4.06% 85.48% -3.32%
6KD 3 68.42% -14.32% 80.94% -5.71% 84.24% -4.73%
6KD 2 68.39% -14.36% 80.58% -6.13% 84.02% -4.98%
6KD 1 56.62% -29.10% 72.24% -15.84% 77.81% -12.00%

3KD 12 71.72% -10.20% 83.21% -3.06% 85.90% -2.85%
3KD 9 68.95% -13.66% 81.75% -4.77% 84.79% -4.10%
3KD 6 68.09% -14.74% 81.52% -5.03% 84.76% -4.13%
3KD 3 65.84% -17.55% 79.58% -7.29% 83.41% -5.67%
3KD 2 66.81% -16.34% 79.50% -7.38% 82.71% -6.45%
3KD 1 54.46% -31.81% 71.44% -16.77% 76.59% -13.38%

12 6KD 78.78% -1.35% 85.84% 0.01% 87.45% -1.10%
9 6KD 77.26% -3.26% 85.18% -0.77% 87.34% -1.22%
6 6KD 76.45% -4.26% 84.96% -1.03% 87.06% -1.53%
6KD 6KD 75.04% -6.03% 85.15% -0.80% 87.45% -1.10%
3 6KD 74.49% -6.73% 84.24% -1.87% 86.54% -2.13%
3KD 6KD 77.01% -3.57% 85.76% -0.09% 87.42% -1.13%
2 6KD 74.43% -6.80% 83.68% -2.51% 86.32% -2.38%
1 6KD 68.09% -14.74% 79.22% -7.71% 83.19% -5.92%

12 3KD 76.45% -4.26% 84.49% -1.58% 86.70% -1.94%
9 3KD 76.12% -4.68% 84.29% -1.80% 86.26% -2.44%
6 3KD 75.15% -5.89% 83.43% -2.80% 86.45% -2.22%
6KD 3KD 77.40% -3.09% 85.37% -0.54% 87.48% -1.06%
3KD 3KD 73.32% -8.18% 83.43% -2.80% 86.20% -2.51%
3 3KD 71.88% -9.99% 83.66% -2.54% 86.37% -2.32%
2 3KD 72.22% -9.56% 81.93% -4.55% 85.08% -3.77%
1 3KD 67.31% -15.71% 79.25% -7.67% 82.77% -6.39%

.2 Dense Retrieval and KALE
Hyperparameters

Our experiments focus on minimal hyperparameter
optimization. For training of the dense retrievers,
we use the datasets described in 7 where the shorter
training lengths and smaller batch sizes correspond
to MSMARCO while the other datasets leverage
the longer and larger training. For the use of KALE
we perform task-specific grid search using the pa-
rameters described by 8.

.3 KALE

As shown in table 9, we explore the impact of
KALE for the NQ dataset, in table 10, we explore
the impact on TriviaQA, in table 11, we evaluate

Parameter Possible Values

Training Length 3,40 Epochs
Initial learning rate 1e-5, 5e-5, 5e-6
Learning rate schedule Linear

Batch size 8,128,

Negative Passages 1,8

Table 7: Hyperparmaters used to train bi-encoder mod-
els for retrieval

Parameter Possible Values

Training Length 1,10,100 Epochs
Initial learning rate 5e-5, 5e-4, 5e-6
Learning rate schedule constant

Batch size 4,64,256

Loss Temperature 1, 10

Table 8: Hyperparmaters used by KALE for aligning the
embeddings of a pruned model with its uncompressed
target.

the MSARCO passage retrieval, in table 12 we ex-
plore Scifacts, and in table 13 we explore SQUAD.
The impact of pruning and KALE is fairly con-
sistent across datasets, but there are larger losses
on some smaller datasets, such as SCIfacts and
SQUAD.

.4 KALE and Asymmetric Training
Building on the impact of asymmetry and KALE,
we explore comparing them across various datasets
as shown in 14, 15,16, 17, 18.

.5 Inference Benchmarks
Evaluation of inference on GPU can be found in
25,26,27,28 ,29,30 while CPU results can be found
in 19, 20, 21, 22, 23, 24.
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Layers KALE Top 20 Impact Top 100 Impact Top 200 Impact
12 N/A 79.86% 0.00% 85.84% 0.00% 88.42% 0.00%
9 N 68.70% -13.97% 79.97% -6.84% 83.55% -5.51%
9 Y 77.40% -3.08% 84.90% -1.10% 87.04% -1.56%
6 N 50.69% -36.53% 68.20% -20.55% 73.52% -16.85%
6 Y 75.51% -5.45% 83.68% -2.52% 86.18% -2.53%
3 N 27.34% -65.77% 43.88% -48.88% 51.19% -42.11%
3 Y 72.69% -8.98% 81.14% -5.48% 84.76% -4.14%
2 N 27.81% -65.18% 46.90% -45.36% 54.54% -38.32%
2 Y 71.83% -10.06% 81.94% -4.54% 84.54% -4.39%
1 N 4.57% -94.28% 12.22% -85.76% 15.87% -82.05%
1 Y 58.86% -26.30% 71.33% -16.90% 75.65% -14.44%

Table 9: Impact of structural pruning with and without KALE on the NQ retrieval dataset

Layers KALE Top 20 Impact Top 100 Impact Top 200 Impact
12 N/A 79.43% 0.00% 85.84% 0.00% 86.63% 0.00%
9 N 71.16% -10.41% 79.97% -5.35% 83.13% -4.04%
9 Y 77.46% -2.48% 84.90% -1.28% 85.95% -0.78%
6 N 53.98% -32.04% 68.20% -18.91% 74.05% -14.52%
6 Y 75.37% -5.11% 83.68% -2.38% 85.25% -1.59%
3 N 28.99% -63.50% 43.88% -43.84% 55.62% -35.80%
3 Y 73.17% -7.88% 81.14% -3.95% 84.04% -2.99%
2 N 33.98% -57.22% 46.90% -39.29% 58.52% -32.45%
2 Y 72.39% -8.86% 81.94% -4.47% 83.64% -3.45%
1 N 3.15% -96.03% 12.22% -90.02% 12.49% -85.58%
1 Y 63.04% -20.63% 71.33% -11.33% 79.23% -8.54%

Table 10: Impact of structural pruning with and without KALE on the TriviaQA retrieval dataset

Layers KALE MRR@10 Impact Top 20 Impact Top 100 Impact Top 200 Impact
12 N/A 32.47% 0.00% 70.47% 0.00% 88.77% 0.00% 93.84% 0.00%
9 N 27.68% -14.74% 62.97% -10.65% 82.01% -7.62% 87.62% -6.63%
9 Y 30.38% -6.43% 67.21% -4.64% 86.16% -2.94% 91.85% -2.12%
6 N 20.86% -35.75% 52.66% -25.27% 72.68% -18.12% 79.20% -15.60%
6 Y 28.71% -11.57% 65.44% -7.14% 84.68% -4.60% 90.74% -3.30%
3 N 1.49% -95.42% 5.10% -92.76% 11.39% -87.17% 15.16% -83.85%
3 Y 26.56% -18.19% 62.36% -11.51% 82.11% -7.50% 88.51% -5.68%
2 N 3.48% -89.28% 13.55% -80.77% 31.46% -64.56% 38.71% -58.75%
2 Y 26.10% -19.61% 61.68% -12.48% 81.96% -7.67% 88.41% -5.79%
1 N 0.00% -100.00% 0.00% -100.00% 0.00% -100.00% 0.00% -100.00%
1 Y 13.16% -59.47% 34.64% -50.84% 54.36% -38.77% 62.82% -33.05%

Table 11: Impact of structural pruning with and without KALE on the MSMARCO retrieval dataset
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Layers KALE RR@10 Impact recall 10 Impact NDCG@10 Impact Top 20 Impact Top 100 Impact Top 200 Impact
12 N/A 59.11% 0.00% 78.71% 0.00% 62.55% 0.00% 82.38% 0.00% 90.70% 0.00% 93.77% 0.00%
9 N 25.30% -57.20% 39.66% -49.61% 27.46% -56.10% 45.43% -44.85% 71.07% -21.64% 79.03% -15.72%
9 Y 59.76% 1.10% 74.86% -4.89% 62.26% -0.46% 79.63% -3.34% 84.87% -6.43% 89.90% -4.13%
6 N 8.67% -85.33% 15.06% -80.87% 9.16% -85.36% 21.75% -73.60% 22.98% -74.66% 30.17$ -67.83%
6 Y 54.99% -6.97% 72.53% -7.85% 58.22% -6.92% 77.07% -6.45% 85.13% -6.14% 87.70% -6.47%
3 N 9.00% -84.77% 16.00% -79.67% 9.72% -84.46% 22.40% -72.81% 40.80% -55.02% 51.56% -45.01%
3 Y 55.18% -6.65% 77.22% -1.89% 58.30% -6.79% 76.73% -6.86% 82.57% -8.96% 86.90% -7.33%
2 N 9.65% -83.67% 16.93% -78.49% 10.39% -83.39% 24.26% -70.55% 42.66% -52.97% 51.49% -45.09%
2 Y 54.45% -7.88% 71.72% -8.88% 57.71% -7.74% 76.07% -7.66% 82.57% -8.96% 85.90% -8.39%
1 N 0.30% -99.49% 13.30% -83.10% 0.49% -99.22% 1.50% -98.18% 3.17% -96.50% 4.23% -95.49%
1 Y 40.52% -31.45% 55.25% -29.81% 43.23% -30.89% 59.00% -28.38% 66.83% -26.32% 70.22% -25.11%

Table 12: Impact of structural pruning with and without KALE on the SCIFACTS retrieval dataset

Layers KALE Top 20 Impact Top 100 Impact Top 200 Impact
12 N/A 63.82% 0.00% 77.16% 0.00% 81.06% 0.00%
9 N 56.16% -12.00% 71.38% -7.49% 76.41% -5.74%
9 Y 58.74% -7.96% 73.54% -4.69% 78.51% -3.15%
6 N 42.79% -32.95% 59.97% -22.28% 66.63% -17.80%
6 Y 53.51% -16.15% 69.87% -9.45% 75.03% -7.44%
3 N 18.67% -70.75% 34.42% -55.39% 42.02% -48.16%
3 Y 47.62% -25.38% 64.37% -16.58% 69.89% -13.78%
2 N 20.82% -67.38% 37.01% -52.03% 45.01% -44.47%
2 Y 46.60% -26.98% 63.72% -17.42% 69.53% -14.22%
1 N 5.30% -91.70% 11.66% -84.89% 15.88% -80.41%
1 Y 34.72% -45.60% 51.39% -33.40% 58.01% -28.44%

Table 13: Impact of structural pruning with and without KALE on the SQUAD retrieval dataset

Model Layers KALE MRR@10 Impact Top 20 Impact Top 100
BERT-base 12 N 32.47% 0.00% 70.47% 0.00% 88.77%
BERT-base 6 Y 28.71% -11.57% 65.44% -7.14% 84.68%
6kd − 6kd 6 N 32.21% -0.78% 69.94% -0.75% 88.19%
6db − 6db 6 N 32.13% -1.02% 70.37% -0.14% 88.35%
6kd − 3kd 6 N 30.44% -6.24% 67.82% -3.76% 86.50%
BERT-base 3 Y 26.56% -18.19% 62.36% -11.51% 82.11%
3kd − 3kd 3 N 30.01% -7.56% 67.42% -4.33% 86.13%
3kd − 6kd 3 N 29.60% -8.82% 66.53% -5.59% 84.79%
6kd − 3kd 3 Y 28.19% -13.16% 64.00% -9.19% 82.95%
6kd − 6kd 3 Y 30.40% -6.37% 67.62% -4.05% 86.75%
BERT-base 2 Y 26.10% -19.61% 61.68% -12.48% 81.96%
3kd − 3kd 2 Y 28.57% -12.00% 65.67% -6.81% 84.23%
3kd − 6kd 2 Y 29.52% -9.09% 66.16% -6.12% 85.57%
6kd − 3kd 2 Y 28.07% -13.54% 64.28% -8.78% 83.24%
6kd − 6kd 2 Y 30.00% -7.58% 66.91% -5.06% 85.77%
BERT-base 1 Y 10.87% -66.53% 29.80% -57.71% 48.05%
3kd − 3kd 1 Y 19.09% -41.21% 47.56% -32.51% 66.69%
3kd − 6kd 1 Y 21.74% -33.04% 52.29% -25.80% 72.13%
6kd − 3kd 1 Y 20.82% -35.88% 50.92% -27.75% 71.26%
6kd − 6kd 1 Y 20.67% -36.33% 51.81% -26.49% 70.70%

Table 14: Impact of model asymmetry and use of KALE for structural pruning on the MSMARCO retrieval dataset
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Model Layers KALE recall 20 Impact recall 100 Impact recall 200
BERT-base 12 N 79.86% 0.00% 85.84% 0.00% 88.42%
BERT-base 6 Y 75.51% -5.45% 83.68% -2.52% 86.18%
6kd − 6kd 6 N 75.04% -6.03% 85.15% -0.80% 87.45%
6db − 6db 6 N 73.88% -7.49% 84.74% -1.29% 87.26%
6kd − 3kd 6 N 77.40% -3.09% 85.37% -0.54% 87.48%
BERT-base 3 Y 72.69% -8.98% 81.14% -5.48% 84.76%
3kd − 3kd 3 N 71.88% -9.99% 83.66% -2.54% 86.37%
3kd − 6kd 3 N 77.01% -3.57% 85.76% -0.09% 87.42%
6kd − 3kd 3 Y 74.16% -7.14% 83.43% -2.81% 85.62%
6kd − 6kd 3 Y 69.28% -13.25% 80.78% -5.89% 84.10%
BERT-base 2 Y 71.83% -10.06% 81.94% -4.54% 84.54%
3kd − 3kd 2 Y 70.08% -12.25% 82.71% -3.65% 85.60%
3kd − 6kd 2 Y 75.40% -5.58% 84.27% -1.83% 86.81%
6kd − 3kd 2 Y 73.49% -7.98% 83.02% -3.29% 85.76%
6kd − 6kd 2 Y 68.42% -14.33% 80.39% -6.35% 83.57%
BERT-base 1 Y 58.86% -26.30% 71.33% -16.90% 75.65%
3kd − 3kd 1 Y 62.69% -21.50% 77.17% -10.10% 81.33%
3kd − 6kd 1 Y 68.14% -14.68% 79.81% -7.02% 82.94%
6kd − 3kd 1 Y 63.82% -20.09% 76.57% -10.80% 80.33%
6kd − 6kd 1 Y 60.03% -24.83% 74.71% -12.97% 78.64%

Table 15: Impact of model asymmetry and use of KALE for structural pruning on the NQ retrieval dataset

Model Layers KALE recall 20 Impact recall 100 Impact recall 200
BERT-base 12 N 79.43% 0.00% 85.03% 0.00% 86.63%
BERT-base 6 Y 75.37% -5.11% 83.01% -2.38% 85.25%
6kd − 6kd 6 N 79.44% 0.01% 84.96% -0.08% 86.60%
6db − 6db 6 N 78.96% -0.59% 84.83% -0.23% 86.61%
6kd − 3kd 6 N 77.31% -2.67% 84.04% -1.17% 85.62%
BERT-base 3 Y 73.17% -7.88% 81.67% -3.95% 84.04%
3kd − 3kd 3 N 77.80% -2.05% 84.11% -1.09% 85.96%
3kd − 6kd 3 N 77.52% -2.40% 83.91% -1.31% 85.72%
6kd − 3kd 3 Y 74.98% -5.60% 82.33% -3.18% 84.35%
6kd − 6kd 3 Y 76.76% -3.36% 83.48% -1.82% 85.40%
BERT-base 2 Y 72.39% -8.86% 81.23% -4.47% 83.64%
3kd − 3kd 2 Y 76.48% -3.71% 83.02% -2.36% 85.16%
3kd − 6kd 2 Y 75.98% -4.34% 82.90% -2.50% 85.00%
6kd − 3kd 2 Y 74.60% -6.08% 82.13% -3.41% 84.44%
6kd − 6kd 2 Y 76.56% -3.61% 83.32% -2.01% 85.49%
BERT-base 1 Y 63.04% -20.63% 75.40% -11.33% 79.23%
3kd − 3kd 1 Y 71.66% -9.78% 80.82% -4.95% 83.56%
3kd − 6kd 1 Y 71.13% -10.45% 80.23% -5.65% 82.86%
6kd − 3kd 1 Y 68.11% -14.25% 78.65% -7.50% 81.89%
6kd − 6kd 1 Y 70.91% -10.73% 80.31% -5.55% 83.05%

Table 16: Impact of model asymmetry and use of KALE for structural pruning on the TriviaQA retrieval dataset
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Model Layers KALE recall 20 Impact recall 100 Impact recall 200
BERT-base 12 N 63.82% 0.00% 77.16% 0.00% 81.06%
BERT-base 6 Y 53.51% -16.15% 69.87% -9.45% 75.03%
6kd − 6kd 6 N 54.80% -14.14% 71.94% -6.77% 77.73%
6db − 6db 6 N 54.60% -14.45% 71.69% -7.08% 77.23%
6kd − 3kd 6 N 52.97% -17.00% 70.89% -8.13% 76.68%
BERT-base 3 Y 47.62% -25.38% 64.37% -16.58% 69.89%
3kd − 3kd 3 N 55.05% -13.74% 71.98% -6.72% 77.76%
3kd − 6kd 3 N 48.86% -23.43% 67.85% -12.06% 74.04%
6kd − 3kd 3 Y 44.65% -30.04% 63.77% -17.35% 70.79%
6kd − 6kd 3 Y 45.36% -28.93% 64.14% -16.87% 71.07%
BERT-base 2 Y 48.43% -24.11% 67.02% -13.14% 73.19%
3kd − 3kd 2 Y 48.43% -24.11% 67.02% -13.14% 73.19%
3kd − 6kd 2 Y 43.45% -31.92% 62.75% -18.68% 69.74%
6kd − 3kd 2 Y 42.90% -32.78% 62.52% -18.97% 69.47%
6kd − 6kd 2 Y 35.08% -45.03% 52.74% -31.65% 59.93%
BERT-base 1 Y 34.72% -45.60% 51.39% -33.40% 58.01%
3kd − 3kd 1 Y 36.19% -43.29% 55.62% -27.92% 62.92%
3kd − 6kd 1 Y 34.75% -45.55% 52.26% -32.27% 59.35%
6kd − 3kd 1 Y 32.18% -49.58% 50.88% -34.06% 58.52%
6kd − 6kd 1 Y 35.08% -45.03% 52.74% -31.65% 59.93%

Table 17: Impact of model asymmetry and use of KALE for structural pruning on the SQUAD retrieval dataset

Model Layers KALE recip_rank Impact NDC@10 Impact Recall 20
BERT-base 12 N 59.11% 0.00% 62.55% 0.00% 82.38%
BERT-base 6 Y 54.99% -6.97% 58.22% -6.92% 77.07%
6kd − 6kd 6 N 65.52% 10.84% 67.87% 8.51% 83.92%
6db − 6db 6 N 66.25% 12.08% 67.81% 8.41% 82.16%
6kd − 3kd 6 N 61.90% 4.72% 65.30% 4.40% 82.48%
BERT-base 3 Y 55.18% -6.65% 58.30% -6.79% 76.73%
3kd − 3kd 3 N 65.32% 10.51% 67.51% 7.93% 84.36%
3kd − 6kd 3 N 62.78% 6.21% 64.86% 3.69% 79.80%
6kd − 3kd 3 Y 62.07% 5.01% 64.73% 3.49% 82.57%
6kd − 6kd 3 Y 61.82% 4.58% 65.41% 4.57% 82.41%
BERT-base 2 Y 54.45% -7.88% 57.71% -7.74% 76.07%
3kd − 3kd 2 Y 61.78% 4.52% 64.78% 3.57% 82.76%
3kd − 6kd 2 Y 61.41% 3.89% 63.61% 1.69% 82.46%
6kd − 3kd 2 Y 61.82% 4.58% 64.80% 3.60% 82.51%
6kd − 6kd 2 Y 62.09% 5.04% 65.27% 4.35% 81.51%
BERT-base 1 Y 40.52% -31.45% 43.23% -30.89% 59.00%
3kd − 3kd 1 Y 42.93% -27.37% 44.19% -29.35% 61.06%
3kd − 6kd 1 Y 42.33% -28.39% 44.03% -29.61% 63.33%
6kd − 3kd 1 Y 42.72% -27.73% 45.68% -26.97% 65.81%
6kd − 6kd 1 Y 45.60% -22.86% 48.83% -21.93% 69.11%

Table 18: Impact of model asymmetry and use of KALE for structural pruning on the SCIFACTS retrieval dataset
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items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 44.890 80.414 2.17E-02 2.92E-02 2.09E-02 1.97E-02 3.07E-02
Run 2 48.370 74.628 2.01E-02 2.11E-02 2.00E-02 1.96E-02 2.22E-02
Run 3 47.290 76.334 2.06E-02 2.19E-02 2.04E-02 1.96E-02 2.28E-02
Run 4 48.260 74.810 2.01E-02 2.13E-02 2.00E-02 1.95E-02 2.22E-02
Run 5 47.580 75.872 2.04E-02 2.14E-02 2.03E-02 1.98E-02 2.28E-02
average 47.278 76.412 2.06E-02 2.30E-02 2.03E-02 1.96E-02 2.41E-02
stdev 1.410 2.348 6.46E-04 3.49E-03 3.65E-04 1.04E-04 3.68E-03
CI 1.236 2.058 5.66E-04 3.06E-03 3.20E-04 9.14E-05 3.23E-03
Lower 46.042 74.353 2.00E-02 1.99E-02 2.00E-02 1.96E-02 2.09E-02
High 48.514 78.470 2.12E-02 2.60E-02 2.06E-02 1.97E-02 2.74E-02

Table 19: Inference Benchmark for 12-layer Query encoder on a CPU using ONNX

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 63.200 57.808 1.54E-02 1.65E-02 1.52E-02 1.49E-02 2.20E-02
Run 2 63.570 56.787 1.52E-02 1.60E-02 1.50E-02 1.48E-02 1.70E-02
Run 3 62.740 57.537 1.54E-02 1.64E-02 1.52E-02 1.48E-02 1.76E-02
Run 4 63.440 56.908 1.52E-02 1.59E-02 1.51E-02 1.48E-02 1.70E-02
Run 5 63.250 57.077 1.53E-02 1.60E-02 1.51E-02 1.48E-02 1.69E-02
average 63.240 57.223 1.53E-02 1.62E-02 1.51E-02 1.48E-02 1.81E-02
stdev 0.316 0.433 1.16E-04 2.49E-04 6.48E-05 6.69E-05 2.20E-03
CI 0.277 0.380 1.02E-04 2.18E-04 5.68E-05 5.86E-05 1.93E-03
Lower 62.963 56.844 1.52E-02 1.59E-02 1.51E-02 1.48E-02 1.62E-02
High 63.517 57.603 1.54E-02 1.64E-02 1.52E-02 1.49E-02 2.00E-02

Table 20: Inference Benchmark for 9-layer Query encoder on a CPU using ONNX

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 91.090 39.631 1.04E-02 1.11E-02 1.03E-02 1.02E-02 1.19E-02
Run 2 90.990 39.677 1.04E-02 1.11E-02 1.03E-02 1.01E-02 1.22E-02
Run 3 91.290 39.547 1.04E-02 1.11E-02 1.03E-02 1.01E-02 1.22E-02
Run 4 89.420 40.372 1.06E-02 1.24E-02 1.02E-02 1.01E-02 1.51E-02
Run 5 89.140 40.499 1.07E-02 1.21E-02 1.03E-02 1.01E-02 1.49E-02
average 90.386 39.945 1.05E-02 1.16E-02 1.03E-02 1.01E-02 1.32E-02
stdev 1.020 0.452 1.23E-04 6.03E-04 3.95E-05 4.27E-05 1.61E-03
CI 0.894 0.396 1.08E-04 5.29E-04 3.47E-05 3.74E-05 1.41E-03
Lower 89.492 39.549 1.04E-02 1.10E-02 1.03E-02 1.01E-02 1.18E-02
High 91.280 40.342 1.06E-02 1.21E-02 1.03E-02 1.02E-02 1.47E-02

Table 21: Inference Benchmark for 6-layer Query encoder on a CPU using ONNX
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items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 166.340 21.704 5.47E-03 5.84E-03 5.40E-03 5.35E-03 6.34E-03
Run 2 164.830 21.902 5.53E-03 6.14E-03 5.40E-03 5.31E-03 7.35E-03
Run 3 167.570 21.544 5.43E-03 5.87E-03 5.34E-03 5.30E-03 6.42E-03
Run 4 165.370 21.830 5.51E-03 6.11E-03 5.39E-03 5.30E-03 6.96E-03
Run 5 165.950 21.755 5.49E-03 5.92E-03 5.40E-03 5.32E-03 6.54E-03
average 166.012 21.747 5.49E-03 5.98E-03 5.39E-03 5.32E-03 6.72E-03
stdev 1.043 0.136 3.58E-05 1.41E-04 2.49E-05 2.20E-05 4.23E-04
CI 0.914 0.119 3.14E-05 1.23E-04 2.18E-05 1.93E-05 3.71E-04
Lower 165.098 21.628 5.45E-03 5.86E-03 5.37E-03 5.30E-03 6.35E-03
High 166.926 21.867 5.52E-03 6.10E-03 5.41E-03 5.33E-03 7.09E-03
BERT-base 2 Y 54.45% -7.88% 57.71% -7.74% 76.07%

Table 22: Inference Benchmark for 3-layer Query encoder on a CPU using ONNX

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 228.690 15.786 3.85E-03 4.53E-03 3.72E-03 3.67E-03 5.29E-03
Run 2 230.420 15.668 3.81E-03 4.24E-03 3.74E-03 3.65E-03 4.72E-03
Run 3 228.800 15.779 3.84E-03 4.23E-03 3.77E-03 3.73E-03 4.68E-03
Run 4 230.530 15.661 3.81E-03 4.23E-03 3.74E-03 3.68E-03 4.63E-03
Run 5 229.890 15.704 3.82E-03 4.25E-03 3.75E-03 3.70E-03 4.64E-03
average 229.666 15.720 3.83E-03 4.29E-03 3.74E-03 3.69E-03 4.79E-03
stdev 0.876 0.060 1.72E-05 1.32E-04 1.84E-05 3.00E-05 2.81E-04
CI 0.768 0.053 1.51E-05 1.16E-04 1.61E-05 2.63E-05 2.47E-04
Lower 228.898 15.667 3.81E-03 4.18E-03 3.73E-03 3.66E-03 4.55E-03
High 230.434 15.772 3.84E-03 4.41E-03 3.76E-03 3.71E-03 5.04E-03

Table 23: Inference Benchmark for 2 layer Query encoder on a CPU using ONNX

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 378.680 9.534 2.14E-03 2.39E-03 2.10E-03 2.08E-03 2.88E-03
Run 2 378.950 9.528 2.14E-03 2.31E-03 2.11E-03 2.08E-03 2.66E-03
Run 3 377.750 9.558 2.13E-03 2.30E-03 2.12E-03 2.06E-03 2.67E-03
Run 4 376.560 9.588 2.16E-03 2.35E-03 2.12E-03 2.06E-03 2.74E-03
Run 5 380.730 9.483 2.14E-03 2.30E-03 2.11E-03 2.08E-03 2.66E-03
average 378.534 9.538 2.15E-03 2.33E-03 2.11E-03 2.07E-03 2.72E-03
stdev 1.543 0.039 7.46E-06 3.64E-05 8.72E-06 9.49E-06 9.64E-05
CI 1.353 0.034 6.54E-06 3.19E-05 7.65E-06 8.31E-06 8.45E-05
Lower 377.181 9.504 2.14E-03 2.30E-03 2.11E-03 2.06E-03 2.64E-03
High 379.887 9.572 2.15E-03 2.36E-03 2.12E-03 2.08E-03 2.81E-03

Table 24: Inference Benchmark for 1 layer Query encoder on a CPU using ONNX
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items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 103.16 35.00 9.22E-03 9.33E-03 9.16E-03 9.08E-03 1.20E-02
Run 2 111.51 32.36 8.50E-03 8.61E-03 8.47E-03 8.42E-03 8.73E-03
Run 3 114.02 31.66 8.31E-03 8.41E-03 8.28E-03 8.22E-03 8.60E-03
Run 4 90.39 39.94 1.06E-02 1.07E-02 1.05E-02 1.04E-02 1.25E-02
Run 5 110.18 32.77 8.62E-03 8.74E-03 8.58E-03 8.51E-03 9.06E-03
average 105.85 34.35 9.04E-03 9.15E-03 9.00E-03 8.93E-03 1.02E-02
stdev 9.54 3.37 9.17E-04 9.19E-04 9.04E-04 9.02E-04 1.92E-03
CI 8.36 2.95 8.04E-04 8.06E-04 7.92E-04 7.91E-04 1.68E-03
Lower 97.49 31.40 8.24E-03 8.35E-03 8.21E-03 8.14E-03 8.50E-03
High 114.21 37.30 9.85E-03 9.96E-03 9.79E-03 9.73E-03 1.19E-02

Table 25: Inference Benchmark for 12-layer Query encoder on a T4 GPU

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 140.35 25.72 6.69E-03 6.78E-03 6.66E-03 6.61E-03 6.94E-03
Run 2 148.25 24.35 6.31E-03 6.52E-03 6.26E-03 6.22E-03 6.64E-03
Run 3 147.04 24.55 6.37E-03 6.47E-03 6.32E-03 6.28E-03 7.19E-03
Run 4 116.15 31.08 8.14E-03 8.25E-03 8.09E-03 8.01E-03 1.09E-02
Run 5 145.68 24.78 6.44E-03 6.50E-03 6.39E-03 6.35E-03 8.83E-03
average 139.49 26.10 6.79E-03 6.91E-03 6.74E-03 6.69E-03 8.11E-03
stdev 13.39 2.84 7.70E-04 7.62E-04 7.66E-04 7.52E-04 1.79E-03
CI 11.74 2.49 6.75E-04 6.68E-04 6.72E-04 6.59E-04 1.57E-03
Lower 127.75 23.61 6.11E-03 6.24E-03 6.07E-03 6.04E-03 6.54E-03
High 151.23 28.58 7.46E-03 7.57E-03 7.42E-03 7.35E-03 9.67E-03

Table 26: Inference Benchmark for 9-layer Query encoder on a T4 GPU

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 163.72 22.05 5.67E-03 5.75E-03 5.62E-03 5.56E-03 7.75E-03
Run 2 161.90 22.30 5.74E-03 5.81E-03 5.70E-03 5.63E-03 6.17E-03
Run 3 165.07 21.87 5.62E-03 5.70E-03 5.58E-03 5.51E-03 6.86E-03
Run 4 189.71 19.03 4.84E-03 4.92E-03 4.82E-03 4.77E-03 5.07E-03
Run 5 181.29 19.91 5.07E-03 5.92E-03 4.94E-03 4.88E-03 6.68E-03
average 172.34 21.03 5.39E-03 5.62E-03 5.33E-03 5.27E-03 6.51E-03
stdev 12.43 1.47 4.07E-04 3.99E-04 4.17E-04 4.11E-04 9.85E-04
CI 10.89 1.29 3.56E-04 3.50E-04 3.65E-04 3.61E-04 8.63E-04
Lower 161.44 19.75 5.03E-03 5.27E-03 4.97E-03 4.91E-03 5.64E-03
High 183.23 22.32 5.74E-03 5.97E-03 5.70E-03 5.63E-03 7.37E-03

Table 27: Inference Benchmark for 6-layer Query encoder on a T4 GPU
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items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 269.73 13.39 3.28E-03 3.30E-03 3.26E-03 3.20E-03 3.87E-03
Run 2 282.90 12.76 3.12E-03 3.38E-03 3.23E-03 2.65E-03 4.39E-03
Run 3 268.47 13.45 3.30E-03 3.31E-03 3.28E-03 3.25E-03 3.76E-03
Run 4 318.47 11.34 2.74E-03 2.79E-03 2.72E-03 2.69E-03 3.17E-03
Run 5 357.68 10.09 2.43E-03 2.50E-03 2.41E-03 2.39E-03 2.69E-03
average 299.45 12.21 2.97E-03 3.05E-03 2.98E-03 2.84E-03 3.58E-03
stdev 38.31 1.45 3.78E-04 3.90E-04 3.93E-04 3.75E-04 6.58E-04
CI 33.58 1.27 3.31E-04 3.42E-04 3.45E-04 3.29E-04 5.77E-04
Lower 265.87 10.93 2.64E-03 2.71E-03 2.64E-03 2.51E-03 3.00E-03
High 333.03 13.48 3.30E-03 3.40E-03 3.33E-03 3.16E-03 4.16E-03

Table 28: Inference Benchmark for 3-layer Query encoder on a T4 GPU

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 465.83 7.75 1.78E-03 1.83E-03 1.76E-03 1.74E-03 2.53E-03
Run 2 435.46 8.29 1.92E-03 2.01E-03 1.91E-03 1.89E-03 2.04E-03
Run 3 471.01 7.67 1.77E-03 1.84E-03 1.75E-03 1.74E-03 1.95E-03
Run 4 413.49 8.73 2.02E-03 2.06E-03 2.00E-03 1.96E-03 2.61E-03
Run 5 421.32 8.57 1.98E-03 2.05E-03 1.96E-03 1.94E-03 2.07E-03
average 441.42 8.20 1.89E-03 1.96E-03 1.88E-03 1.86E-03 2.24E-03
stdev 25.94 0.48 1.15E-04 1.12E-04 1.15E-04 1.07E-04 3.07E-04
CI 22.73 0.42 1.00E-04 9.83E-05 1.01E-04 9.34E-05 2.69E-04
Lower 418.69 7.78 1.79E-03 1.86E-03 1.78E-03 1.76E-03 1.97E-03
High 464.16 8.62 1.99E-03 2.05E-03 1.98E-03 1.95E-03 2.51E-03

Table 29: Inference Benchmark for 2-layer Query encoder on a T4 GPU

items/sec Full Time Mean Time 95th 50th 5th 99th
Run 1 627.64 5.75 1.22E-03 1.26E-03 1.21E-03 1.20E-03 1.28E-03
Run 2 673.96 5.36 1.13E-03 1.18E-03 1.12E-03 1.11E-03 1.22E-03
Run 3 651.45 5.54 1.18E-03 1.24E-03 1.17E-03 1.16E-03 1.28E-03
Run 4 677.99 5.33 1.12E-03 1.19E-03 1.11E-03 1.10E-03 1.22E-03
Run 5 672.16 5.37 1.13E-03 1.18E-03 1.12E-03 1.11E-03 1.22E-03
average 660.64 5.47 1.15E-03 1.21E-03 1.14E-03 1.14E-03 1.24E-03
stdev 21.12 0.18 4.28E-05 3.74E-05 4.44E-05 4.25E-05 3.30E-05
CI 18.51 0.16 3.75E-05 3.27E-05 3.89E-05 3.72E-05 2.89E-05
Lower 642.13 5.31 1.12E-03 1.18E-03 1.11E-03 1.10E-03 1.21E-03
High 679.15 5.63 1.19E-03 1.24E-03 1.18E-03 1.17E-03 1.27E-03

Table 30: Inference Benchmark for 1-layer Query encoder on a T4 GPU
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