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Abstract

In this paper, we introduce the range of
oBERTa language models, an easy-to-use set
of language models which allows Natural Lan-
guage Processing (NLP) practitioners to obtain
between 3.8 and 24.3 times faster models with-
out expertise in model compression. Specifi-
cally, oBERTa extends existing work on prun-
ing, knowledge distillation, and quantization
and leverages frozen embeddings, improves
distillation, and model initialization to deliver
higher accuracy on a broad range of transfer
tasks. In generating oBERTa, we explore how
the highly optimized RoBERTa differs from the
BERT for pruning during pre-training and fine-
tuning. We find it less amenable to compres-
sion during fine-tuning. We explore the use of
oBERTa on seven representative NLP tasks and
find that the improved compression techniques
allow a pruned oBERTa model to match the
performance of BERTbase and exceed the per-
formance of Prune OFA Large on the SQUAD
V1.1 Question Answering dataset, despite be-
ing 8x and 2x respectively faster in inference.
We release our code, training regimes, and as-
sociated model for broad usage to encourage
usage and experimentation. 1,2

1 Introduction

The massive improvement in contextual word rep-
resentations driven by the usage of the Transformer
architecture (Vaswani et al., 2017) has led to the
wide-scale deployment of language models. These
models are customized for various use cases and
tasks like question answering, sentiment analysis,
information retrieval, and document classification
and deployed into general domains and special-
ized domains such as financial, medical, and legal.
While these models are effective, they commonly

1https://github.com/neuralmagic/sparseml/
2https://sparsezoo.neuralmagic.com/
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Figure 1: Performance of Sparse Language Models on
the SQUAD V1.1 (Rajpurkar et al., 2016a) compared to
an uncompressed BERTbase (Devlin et al., 2019) with re-
lation to realized inference improvements with regards
to mean latency with a batch size of 1.

contain hundreds of millions of parameters, which
can lead to slow inference times without using
specialized hardware accelerations like graphics
processing units (GPU) or Tensor Processing Units
(TPU). Without hardware acceleration, the infer-
ence on CPUs can be slow and impractical for
real-world deployments.
Approaches such as knowledge distillation (KD)
(Hinton et al., 2015), quantization (Zafrir et al.,
2019), and pruning (Kurtic et al., 2022) have been
leveraged to improve model efficiency and, when
paired with specialized inference engines3, it is
possible to accelerate inference times on CPUs
and GPUs significantly. While there has been sub-
stantial effort to create effective methods for com-

3https://github.com/neuralmagic/deepsparse
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pression (Jiao et al., 2020; Sun et al., 2020) and
improved model performance (Liu et al., 2019),
general users of language models have been slower
to adopt these methods. Years after its release, the
original BERTbase uncased (Devlin et al., 2019) is
still the most popular language model 4, followed
by the slightly compressed DistilBERT (Sanh et al.,
2019a) for latency-sensitive deployments. To en-
able broad adoption, regular users must be able to
leverage more efficient language models without
additional compression steps or tuning.
We present a case study on how to compress a lan-
guage model for efficient CPU inference leverag-
ing KD, structured pruning, unstructured sparsity,
and quantization such that the compressed models
can be applied to a broad range of natural language
processing (NLP) tasks without expertise in com-
pression of language models.
As part of this study, we release a set of efficient
language models optimized to deliver the great-
est improvement in inference while minimizing
losses in accuracy. We then show how these mod-
els can be used for sparse transfer learning (Iofi-
nova et al., 2021; Zafrir et al., 2021) such that most
compression happens during the pre-training stage.
The pre-trained sparse models can be transferred
to various NLP tasks, preserving sparsity without
extensive optimization. Using these sparse trans-
fer models and the DeepSparse inference engine,
we show these sparse models can be fine-tuned to
produce task-specific sparse models with minimal
accuracy loss and result in greatly improved infer-
ence speeds with minimal accuracy loss.
As shown in Figure 1, oBERTa provides state-
of-the-art performance for sparse language mod-
els on the SQUAD v1.1 Question Answering
dataset. oBERTa variants exceed the perfor-
mance of BERTbase despite being eight times faster,
exceed the performance of Prune OFAlarge and
oBERTlarge while being two to five times faster.
In this paper, we focus on the following research
questions:

• RQ1: Is RoBERTa more sensitive to unstruc-
tured pruning than BERT?

• RQ2: What is the impact of using a larger
teacher for KD during the pruning of language

4Based on monthly downloads on the huggingface model
hub in march 2023

models?

• RQ3: Can frozen embeddings improve the
accuracy of pruned language models?

As part of our experimentation, we release the as-
sociated models and the training regimes to aid
reproducibility and encourage efficient inference
models.
In summary, our contributions are as follows:

• We provide a thorough case study on how
to compress a less studied language model5,
RoBERTa (Liu et al., 2019), and evaluate per-
formance on a set of seven NLP tasks finding
that it is possible to effectively compress a
language model without using its original pre-
training dataset.

• We demonstrate the impact of varying the size
of teachers in KD, freezing embeddings, and
variations in learning rates when applied to
sparse language models.

• We demonstrate that our compressed models
can be leveraged to deliver accuracy of over
91% on the popular SQUAD v1.1 (Rajpurkar
et al., 2016a) Question Answering Task with
nearly three times faster inference than the
previous state-of-the-art uses of unstructured
sparsity.

2 Background and Related work

While many methods to improve model efficiency
exist, the same goal generally underpins them:
given an original model θ with an accuracy of
acc(θ) and an inference cost of c(θ) minimize
the inference cost. While the methods used
for compression can be highly optimized and
specialized, they can commonly be used together
to deliver massive improvements in inference
speeds with minimal losses in accuracy.
Transformer Based Language Models such as
BERT (Devlin et al., 2019) and T5 (Raffel et al.,
2020) provide contextual language representations
built on the Transformer architecture (Vaswani
et al., 2017) which can be specialized and adapted
for specific tasks and domains (Lee et al., 2020).

5While the RoBERTa model was downloaded over 10m
times in May 2023 on the huggingface hub it has not a model
of focus for compression research.
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Using these models, it becomes relatively easy
to excel at a broad range of natural language
processing tasks such as Question Answering,
Text Classification, and sentiment analysis.
Unstructured Pruning is a compression approach
that removes individual weights or groups of
weights in a model by applying a mask or setting
the weight values to 0. This compression approach
has been broadly studied in computer vision (Han
et al., 2015), and many methods can remove 70%
or more of model weights with little to no loss
in accuracy. Models pruned can be 20x smaller
in terms of pure model size and, when paired
with a sparsity-aware inference engine such as
DeepSparse (Magic, 2023), provide 3-5x speedups
in inference throughput.
Focused on language models, recent work has
shown that it is possible to prune models during
fine-tuning (Sanh et al., 2020) (Kurtić et al., 2022)
or during pre-training (Zafrir et al., 2021) and
transfer to novel domains (Campos et al., 2022)
and datasets.
Structured Pruning is a compression approach
that removes fundamental structural components
in a language model such as individual attention
heads (Voita et al., 2019) or entire model layers
such as transformer encoders (Sanh et al., 2019b).
Structural pruning has become one of the most
popular methods for inference optimization as it is
easy to estimate the speedups and implement.
Freezing Embeddings, as introduced by Devlin
et al. (Devlin et al., 2019), involves training the
embedding layer of a language model and then
toggling the ability to continue to optimize, or
not, the values of in the embeddings as training
continues.
Knowledge Distillation (Hinton et al., 2015) is a
training method where a model is not explicitly a
compression method but a training method where
a model, called the student learns to emulate a
teacher model which is commonly larger or better
performing. The loss extracted from the original
training data in KD is augmented or replaced by
KL divergence between the student and teacher
model.
KD leverages the hardness parameter h to control
the mixture of regular and distillation loss (with
a higher distillation favoring the KL divergence
loss) and a temperature parameter t to control the

softness of the distribution.
As applied to language models, the approach
has been used to improve the performance of
structurally pruned language models resulting in
models like DistilBERT (Sanh et al., 2019b) and
TinyBERT (Jiao et al., 2020).
Quantization reduces the precision for the model
weights and activations to lower the computa-
tional requirements of model execution. While
researchers have explored reducing representation
to binary representations (Pouransari and Tuzel,
2020), current hardware limits inference speedups
to 8 or 4-bit representations. Quantization
can be applied after the model is trained in
a one-shot fashion, but this can lead to large
losses in accuracy because of rounding errors.
To avoid this pitfall, quantization is applied as
quantization-aware training (QAT), where the
forward pass of the model is simulated with lower
precision. In contrast, the backward pass happens
in full precision. By using QAT models, learn
to be robust to rounding errors and can result in
quantization having little to no loss in accuracy. In
language models, research has produced quantized
language models such as Q8BERT (Zafrir et al.,
2019) and is commonly used in conjunction with
structured and unstructured pruning (Zafrir et al.,
2021) as a way of introducing compounding
compression.
Additional approaches such as early exiting
(Xin et al., 2020) or token pruning (Kim et al.,
2021) have also improved inference efficiency.
Still, the inference improvements can be very
dataset dependent and, as a result, out of our
experimentation frame. For a broader survey on
compression approaches, we recommend Treviso
et al. recent work (Treviso et al., 2022)

3 Improving Sparse Transfer Learning

While quantization and pruning have been well
studied as applied to language models, work has
studied the compression BERTbase or BERTlarge.
Despite existing research, we find that a clear case
study that explores how best to create a family of
compressed models is lacking, and this work seeks
to remedy that. As part of our research, we com-
pare the impact of varying pruning methods, prun-
ing stage, teachers for KD, and freezing portions
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of the model as applied to the RoBERTa language
model.
While performing task-specific compression al-
lows NLP practitioners to broadly adopt improve-
ments in inference efficiency, having access to pre-
optimized models is key. We produce a family of
8 general purpose language models, collectively
called oBERTa, which progressively get smaller
and faster with minimal losses in accuracy.
The oBERTa models leverage a combination of
structured and unstructured pruning to provide a
set of compressed models which can meet a wide
set of latency needs. This compression approach
has not been extensively documented nor discussed.
Our approach to producing the oBERTA models
builds on prior explorations of the combination
of compression methods (Kurtić et al., 2022) and
addresses compression approaches in a staged man-
ner as shown in Figure 2.
First, we create three structural variants starting
with a RoBERTabase model. The base uses 12 trans-
former layers, the medium uses 6, and the small
uses 3. Following prior work, we select interleaved
layers for the 6-layer model and the first, middle,
and last layers for the 3-layer model. Then, each of
these 3 models is further pre-trained using masked
language modeling on the Wikipedia-Bookcorpus
text dataset, leveraging KD from a RoBERTalarge
teacher. After that, each model is pruned using
gradual magnitude pruning (GMP) to a desired
sparsity level (90% and 95%) during additional
pre-training based on masked language modeling,
similar to Zafir et al. (Zafrir et al., 2021). Further
background on the RoBERTA model and why we
did not prune using the WebText corpus can be
found in the appendix.
After pre-training, the sparsity profile is fixed, and
models are fine-tuned and quantized on their target
task with a small set of variable hyperparameters.
Experimentation on the impact of larger teachers,
frozen embeddings, and variations in pruning algo-
rithms are discussed in subsequent portions of this
work.

3.1 Downstream Compression

We explore the impact of introducing unstructured
sparsity during task-specific fine-tuning. We re-
peat each experiment with three different seeds
and report the average F1 and Exact Match (EM)

metrics in tables 2 and 3. Following a basic hyper-
parameter sweep, our baseline RoBERTabase model
achieves a performance of 83.95 EM and 91.13 F1
in the broadly used question-answering benchmark
SQUAD V1.1 (Rajpurkar et al., 2016a).
We also perform unstructured pruning varying the
sparsity 50-95% and the pruning method: GMP
and Optimal BERT Surgeon (OBS) (Kurtić et al.,
2022). We prune each model for eight epochs, fol-
lowed by an additional two epochs to allow the
network to stabilize and re-converge. Knowledge
distillation is used during training with the dense
baseline model as a teacher, hardness set to 1.0 and
temperature set to 5.0. Further hyperparameters
are in the appendix A.7.
Table 1 shows the impact of sparsity on BERTbase,
as reported by previous work. Comparing these
results with tables 2 and 3, we conclude that
RoBERTa is more sensitive to pruning than BERT,
although RoBERTabase pruned with OBS remains
substantially more accurate than BERTbase for the
same level of sparsity.
Table 2 shows that pruning RoBERTAbase to 90%
with OBS results in a relative drop in F1 of 1.59%,
which is three times the relative drop reported for
BERTbase with the same pruning algorithm. More-
over, table 3 shows that RoBERTAbase becomes
very sensitive to pruning with GMP for sparsities
above 85%, with the relative drop in F1 increasing
almost threefold between 85% and 90% sparsity.
We conjecture that RoBERTa is more sensitive to
pruning than BERT because the latter is relatively
under-trained (Liu et al., 2019), making the more
optimized RoBERTa more sensitive to the loss in
expressivity caused by pruning.

Model Sparsity F1 Impact
BERTbase (Devlin et al., 2019) 0 88.50 N/A
BERTlarge (Devlin et al., 2019) 0 90.9 N/A
RoBERTabase (Liu et al., 2019) 0 91.13 N/A
RoBERTAlarge (Liu et al., 2019) 0 94.60 N/A
PruneBertbase (Sanh et al., 2020) 90 84.90 -4.07 %
PruneOFAlarge (Zafrir et al., 2021) 90 87.25 -1.41 %
oBERTlarge (Kurtić et al., 2022) 90 87.98 -0.58%
GMP⋆ large (Kurtic and Alistarh, 2022) 90 86.7 -2.03%

Table 1: Performance of existing dense and sparse lan-
guage models on the SQUAD v1.1 Question Answering
Dataset

3.2 Upstream Compression

Based on our fine-tuning experiments, achieving a
high degree of sparsity on the RoBERTA model

4
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Sparsity (%) EM Impact F1 Impact
50 84.80 1.01% 91.49 0.40%
60 84.64 0.82% 91.33 0.22%
70 84.42 0.56% 91.13 0.00%
80 84.64 0.82% 91.33 0.22%
85 82.89 -1.26% 90.12 -1.11%
90 82.48 -1.75% 89.68 -1.59%
95 79.01 -5.89% 87.05 -4.47%

Table 2: Impact of Sparsity introduced by OBS on the
F1 and EM scores of pruned RoBERTa models on the
SQUAD V1.1 Dataset

Sparsity (%) EM Impact F1 Impact
50 84.90 1.13% 91.46 0.36%
60 84.27 0.38% 90.91 -0.24%
70 83.37 -0.69% 90.30 -0.91%
80 81.64 -2.76% 88.86 -2.49%
85 81.64 -2.76% 88.86 -2.49%
90 76.51 -8.86% 84.90 -6.83%
95 69.39 -17.34% 79.35 -12.93%

Table 3: Impact of Sparsity introduced by GMP on the
F1 and EM scores of pruned RoBERTa models on the
SQUAD V1.1 Dataset

leads to improvements in performance, but there
are greater than expected losses in accuracy.
Additionally, such compression is task-specific
and non-amortizable, so we explore how best to
generate general pruned RoBERTa models. While
we eventually apply the winning set of training
combinations to all of our variants of oBERTa, we
first seek to answer the following questions: Does
GMP or OBS perform better during pretraining
pruning? Does Freezing the Embeddings during
pretraining pruning further improve performance?
Does the use of larger teachers further improve
performance?
We prune various models while varying individual
variables during pretraining to evaluate these ques-
tions. We experiment by pruning an oBERTabase
(12 layers) model to 90% and 95% sparsity on all
non-embedding layers. All pretraining pruning
happens using the Wikipedia-BookCorpus dataset,
where we train for five epochs using a learning
rate of 5e-5 and a batch size of 256 using 4 A100
GPUS. To evaluate the impact of these models,
we evaluate performance on the previously used
SQUAD v1.1 question-answering dataset, where
we train with a fixed training regime of 10 epochs
with a learning rate of 1.5e-4 based on the work
of Kurtic et al. We train without KD for each
finetuning run with an unpruned RoBERTabase

or an unpruned RoBERTalarge. Details for the
hyperparameters used to train all teacher models
can be found in the appendix A.5.
Comparing the use of OBS vs. GMP as shown

GMP OBS

Model F1 Impact EM Impact F1 Impact EM Impact
RoBERTAbase 92.18 0.00% 85.59 0.00% 92.18 0.00% 85.59 0.00%
oBERTa 90% No KD 88.34 -4.17% 80.19 -6.31% 87.72 -4.83% 79.35 -7.29%
oBERTa 90% RoBERTAbase KD 88.75 -3.72% 81.35 -4.95% 88.60 -3.88% 81.37 -4.93%
oBERTa 90% RoBERTAlarge KD 89.65 -2.75% 83.12 -2.88% 89.63 -2.76% 82.94 -3.09%
oBERTa 95% No KD 86.58 -6.07% 78.81 -7.92% 84.90 -7.90% 76.82 -10.25%
oBERTa 95% RoBERTAbase KD 86.99 -5.63% 79.41 -7.22% 86.14 -6.55% 78.63 -8.13%
oBERTa 95% RoBERTAlarge KD 87.60 -4.97% 80.44 -6.01% 86.14 -6.55% 79.84 -6.72%

Table 4: Impact on F1 of SQUAD V1.1 of using OBS
vs. GMP as the pruning method during pretraining.
Impact measures the relative loss in performance vs.
the unpruned RoBERTabase baseline.

in table 4, we can see that GMP consistently
outperforms OBS. This is the opposite of what is
seen when pruning downstream or, in prior work,
pruning BERT. Without access to the original
training corpus OBS is likely unable to leverage
the loss aware saliency importance as well as it
can when it has the original dataset.
Evaluating the impact of variations in the hardness

Hardness 0.5 Hardness 1.0

Model F1 Impact EM Impact F1 Impact EM Impact
RoBERTAbase 92.18 0.00% 85.59 0.00% 92.18 0.00% 85.59 0.00%
oBERTa 90% No KD 88.21 -4.31% 80.19 -6.31% 88.34 -4.17% 80.19 -6.31%
oBERTa 90% Base KD 89.19 -3.25% 81.74 -4.50% 88.75 -3.72% 81.35 -4.95%
oBERTa 90% Large KD 90.14 -2.21% 83.51 -2.43% 89.65 -2.75% 83.12 -2.88%
oBERTa-95 No KD 85.82 -6.90% 77.77 -9.14% 86.58 -6.07% 78.81 -7.92%
oBERTa-95 Base KD 86.98 -5.64% 79.23 -7.43% 86.99 -5.63% 79.41 -7.22%
oBERTa-95 Large KD 87.66 -4.91% 80.40 -6.07% 87.60 -4.97% 80.44 -6.01%

Table 5: Impact on F1 of SQUAD V1.1 by hardness in
KD during pretraining pruning. Impact measures the rel-
ative loss in performance vs. the unpruned RoBERTabase
baseline.

of KD as shown in table 5, there is a bit more
of a muted set of conclusions. The 95% sparse
models perform better with a hardness of 1.0,
while the 90% models do better with a hardness of
0.5. Given that our goal is to preserve most of the
RoBERTa model without actually using its large
dataset, we set our hardness to 1.0 as it keeps the
model from explicitly learning the new dataset.
When we evaluate the impact of freezing embed-

dings during pre-training, as shown in table 6, we
find strong evidence that using frozen embeddings
consistently leads to worse performance and, as
a result, does not freeze embeddings during our
model pruning. Looking at the impact of varying
the size of the teacher for pretraining KD as shown
in table 7, we unsurprisingly find clear evidence

5
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Frozen Embeddings Trained Embeddings

Model F1 Impact EM Impact F1 Impact EM Impact
RoBERTabase 92.18 0.00% 85.59 0.00% 92.18 0.00% 85.59 0.00%
oBERTabase 90% no KD 87.71 -4.85% 79.62 -6.98% 88.21 -4.31% 80.19 -6.31%
oBERTabase 90% RoBERTabase KD 89.7 -2.69% 81.74 -4.50% 89.19 -3.24% 83.07 -2.94%
oBERTabase 90% RoBERTalarge KD 89.59 -2.81% 82.98 -3.05% 90.14 -2.21% 83.51 -2.43%

Table 6: Impact on F1 of SQUAD V1.1 concerning
the use of frozen embeddings or not during pretraining
pruning. Impact measures the relative loss in perfor-
mance vs. the unpruned RoBERTabase baseline.

that using a larger teacher during pretraining
pruning leads to improvements in performance.
Using these experiments, we generate the recipe,

Base Upstream Teacher Large Upstream Teacher

Model F1 Impact EM Impact F1 Impact EM Impact
RoBERTAbase 92.18 0.00% 85.59 0.00% 92.18 0.00% 85.59 0.00%
oBERTa 90% no KD 88.34 -4.17% 80.59 -5.84% 88.1 -4.43% 80.06 -6.46%
oBERTa 90% Base KD 88.75 -3.72% 81.35 -4.95% 89.22 -3.21% 82.02 -4.17%
oBERTa 90% Large KD 89.65 -2.74% 83.12 -2.89% 89.98 -2.39% 83.14 -2.86%

Table 7: Impact on F1 of SQUAD V1.1 with respect
variation is the size of the teacher in KD during pre-
training pruning. Impact measures the relative loss in
performance vs. the unpruned RoBERTabase baseline.

which we then use to create the many variants of
oBERTa. We evaluate their performance in Table
17 where it is important to note that these results
are accuracy, loss, and perplexity relative to the
RoBERTa-large teacher, not the true dataset. The
compression recipe, as shown in Figure 2 is as
follows:

1. Starting with a pre-trained language model,
removing some portion of transformer layers
in an interleaved fashion.

2. Using Knowledge Distillation from a large
uncompressed model, pre-train the pruned
model with a hardness of 1.0 and without
freezing embeddings.

3. Using Knowledge Distillation from a large
uncompressed model, prune during further
pretraining using GMP where sparsity levels
are enforced at the parameter level. The re-
sulting model is the sparse-transfer-student.

4. Train an uncompressed large language model
on the desired NLP task’s dataset. This is the
sparse-transfer teacher.

5. Using the sparse-transfer teacher fine-tune the
sparse-transfer-student with knowledge distil-
lation to convergence. Experiment with the

use of frozen embeddings and various sizes
of sparse-transfer teachers.

6. Using the fine-tuned sparse-transfer student
and teacher, train with quantization-aware
training. If embeddings were frozen during
initial fine-tuning they should be unfrozen
here.

4 Experimental Results

Based on the aforementioned experiments, we gen-
erate 8 variants of oBERTa, each with a different
size and sparsity profile; details can be found in
table 18. Within this table, we report the impact
on the model size as measured by the raw and
compressed size of the ONNX 6 model file. Em-
beddings are unpruned and each layer is pruned to
the target sparsity profile independent of the rest of
the model. As a result, the overall sparsity profile
may vary as modules in the network may not be
able to reach exactly 90% or 95% sparsity.
Using these inference-optimized models, we evalu-
ate their sparse transfer performance by finetuning
these models on their target task using a fixed train-
ing regime and minor hyperparameter exploration.
For each task, we train them for 10 epochs or 20
(10 of which are Quantization Aware Training),
with the longer schedule being reserved for models
which are being quantized.
We evaluate performance on a benchmark of di-
verse NLP tasks ranging from question answer-
ing, sentiment analysis, document classification,
token classification, and text classification. For
question answering, we leverage the SQuAD v1.1
(Rajpurkar et al., 2016a) and SQuAD V2.0 (Ra-
jpurkar et al., 2018) datasets. We leverage the SST-
2 (Socher et al., 2013) dataset for sentiment analy-
sis. For text classification, we use the Quora Dupli-
cate Query Detection (QQP) (SambitSekhar, 2017)
and the MNLI (Williams et al., 2018) datasets. We
leverage the IMDB (Maas et al., 2011) dataset for
document classification and CONLL2003 (Tjong
Kim Sang and De Meulder, 2003) for token classi-
fication.
Looking at performance on question answering as
shown in table 8 and 9. Moving to text classifi-
cation on QQP and MNLI as shown in tables 11
and 10 Shifting focus to document classification

6https://onnx.ai/
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Sparse Transfer Sparse Transfer With Quantization

model F1 Recovery EM F1 Recovery EM
oBERTabase 92.15 100.00% 85.78 93.18 101.11% 87.29
oBERTabase 90% 90.95 98.69% 84.42 89.46 97.08% 82.61
oBERTabase 95% 89.84 97.49% 83.08 89.23 96.83% 81.12
oBERTaMEDIUM 90.37 98.06% 83.84 83.77 90.91% 90.37
oBERTaMEDIUM 90% 89.26 96.86% 82.18 88.65 96.20% 81.88
oBERTaSMALL 84.87 92.09% 76.55 84.82 92.05% 76.77
oBERTaSMALL 90% 84.66 91.87% 76.18 82.18 92.18% 74.21

Table 8: Sparse Transfer performance of the oBERTA
family on the SQUAD V1.1 dataset. The sparse transfer
was performed over 10 epochs and sparse transfer with
quantization over 20. Recovery is based on the relative
performance of the unpruned oBERTabase.

Sparse Transfer Sparse Transfer With Quantization

model F1 Recovery EM F1 Recovery EM
oBERTabase 82.77 100.00% 79.56 85.298 103.06% 82.347
oBERTabase 90% 81.33 98.26% 78.27 81.43 98.38% 78.92
oBERTabase 95% 77.98 94.22% 74.67 78.09 94.35% 74.82
oBERTaMEDIUM 77.51 93.65% 74.25 78.137 94.41% 75.179
oBERTaMEDIUM 90% 76.64 92.60% 73.34 76.24 92.11% 73.51
oBERTaSMALL 71.54 86.44% 67.93 71.591 86.50% 68.087
oBERTaSMALL 90% 70.79 85.53% 67.31 69.35 87.79% 65.21

Table 9: Sparse Transfer performance of the oBERTA
family on the SQUAD V2.0 dataset. The sparse transfer
was performed over 10 epochs, and sparse transfer with
quantization over 20. Recovery is based on the relative
performance of the unpruned oBERTabase.

Sparse Transfer Sparse Transfer With Quantization

model Accuracy Recovery Accuracy(MM) Accuracy Recovery Accuracy(MM)
oBERTabase 87.88% 100.00% 87.57% 88.06% 100.20% 88.01%
oBERTabase 90% 85.17% 96.91% 84.73% 85.09% 96.83% 84.76%
oBERTabase 95% 84.32% 95.95% 84.08% 83.73% 95.28% 83.83%
oBERTaMEDIUM 85.29% 97.05% 85.17% 83.62% 95.15% 83.74%
oBERTaMEDIUM 90% 81.61% 92.87% 81.32% 82.37% 93.73% 81.79%
oBERTaSMALL 80.80% 91.95% 81.55% 81.10% 92.29% 81.51%
oBERTaSMALL 90% 79.23% 90.15% 79.24% 79.14% 90.06% 79.42%

Table 10: Sparse Transfer performance of the oBERTA
family on the MNLI dataset. Sparse transfer was per-
formed over 10 epochs and sparse transfer with quan-
tization over 20. Recovery is based on the relative
performance of the unpruned oBERTabase.

Sparse Transfer Sparse Transfer With Quantization

model Accuracy Recovery F1 Combined Accuracy Recovery F1 Combined
oBERTabase 91.52% 100.00% 90.09% 88.66% 89.86% 98.18% 88.12% 86.73%
oBERTabase 90% 91.01% 99.44% 89.47% 87.92% 91.21% 99.66% 89.68% 88.16%
oBERTabase 95% 90.85% 99.26% 89.21% 87.58% 90.72% 99.12% 89.08% 0.87%
oBERTaMEDIUM 91.35% 99.81% 89.90% 88.44% 91.33% 99.79% 89.80% 88.28%
oBERTaMEDIUM 90% 90.48% 98.86% 88.85% 87.21% 90.60% 99.00% 89.01% 87.42%
oBERTaSMALL 90.72% 99.13% 89.21% 87.71% 89.74 98.06% 87.99 86.25
oBERTaSMALL 90% 89.74% 98.06% 87.99% 86.25% 89.73 98.04% 87.98 86.08

Table 11: Sparse Transfer performance of the oBERTA
family on the QQP dataset. The sparse transfer was
performed over ten epochs, and sparse transfer with
quantization over 20. Recovery is based on the relative
performance of the unpruned oBERTabase.

as shown in table 12 and sentiment analysis in 13
Finally, looking at performance on token classifi-
cation as shown in table 14

4.1 Inference Benchmark
To evaluate the performance of our inference-
optimized models, we benchmark performance us-

Sparse Transfer Sparse Transfer With Quantization

model Accuracy Recovery Accuracy Recovery
oBERTabase 95.24% 100.00% 95.44% 100.21%
oBERTabase 90% 93.64% 98.32% 93.28 97.94%
oBERTabase 95% 93.48% 98.15% 92.80 97.23%
oBERTaMEDIUM 93.36% 98.03% 94.08 98.78%
oBERTaMEDIUM 90% 92.24% 96.85% 92.08 96.69%
oBERTaSMALL 93.04% 97.69% 92.52 97.15%
oBERTaSMALL 90% 91.60% 96.18% 91.28 95.84%

Table 12: Sparse Transfer performance of the oBERTA
family on the IMDB dataset. The sparse transfer was
performed over ten epochs, and sparse transfer with
quantization over 20. Recovery is based on the relative
performance of the unpruned oBERTabase.

Sparse Transfer Sparse Transfer With Quantization

model Accuracy Recovery Accuracy Recovery
oBERTabase 94.60 100.00% 92.66 97.95%
oBERTabase 90% 92.78 98.08% 92.546 97.83%
oBERTabase 95% 91.51 96.74% 91.399 96.62%
oBERTaMEDIUM 92.89 98.19% 91.06 96.26%
oBERTaMEDIUM 90% 88.76 93.83% 89.91 95.04%
oBERTaSMALL 90.48 95.64% 91.28 96.49%
oBERTaSMALL 90% 89.34 94.44% 88.65 93.71%

Table 13: Sparse Transfer performance of the oBERTA
family on the SST-2 dataset. The sparse transfer was
performed over ten epochs, and sparse transfer with
quantization over 20. Recovery is based on the relative
performance of the unpruned oBERTabase.

Sparse Transfer Sparse Transfer With Quantization

model Accuracy Recovery F1 Accuracy Recovery F1
oBERTabase 99.26% 100.00% 95.51% 99.30% 100.05% 95.98%
oBERTabase 90% 99.11% 99.85% 94.98% 99.05% 99.79% 94.51%
oBERTabase 95% 98.89% 99.63% 93.32% 98.75% 99.48% 92.61%
oBERTaMEDIUM 99.04% 99.77% 94.39% 99.18% 99.92% 95.15%
oBERTaMEDIUM 90% 98.79% 99.53% 93.31% 98.73% 99.46% 92.70%
oBERTaSMALL 99.01% 99.75% 94.00% 98.98% 99.72% 94.13%
oBERTaSMALL 90% 98.47% 99.20% 91.13% 98.25% 98.98% 89.79%

Table 14: Sparse Transfer performance of the oBERTA
family on the CONLL-2003 dataset. The sparse transfer
was performed over ten epochs, and sparse transfer with
quantization over 20. Recovery is based on the relative
performance of the unpruned oBERTabase.

ing the popular DeepSparse library version 1.3.2 7

and an Intel Xeon Gold 6238R Processor. Per-
formance is measured using models that have
been sparse-transferred to the SQuAD v1.1 dataset
and exported to a standard ONNX model format.
Benchmarks are run on 4 and 24 cores and a se-
quence length of 384 with batch sizes of 1, 16, and
64. For each model, the benchmark is run for 60
seconds with a warm-up period of 10 seconds, and
we report the throughput (items per second) and
the mean, median, and standard deviation per item
latency. We present a set of summary statistics
of relative speedup across batch sizes and infer-

7pip install deepsparse==1.3.2

7
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24 Cores 4 Cores

Model BS 1 BS 16 BS 64 BS 1 BS 16 BS 64

BERTbase 1.00 1.00 1.00 1.00 1.00 1.00
oBERTabase 1.00 1.00 1.00 1.00 1.00 1.00
oBERTabase Quantized 3.10 4.29 4.46 4.09 4.31 4.32
oBERTabase 90% 3.29 3.80 3.80 3.60 3.34 3.40
oBERTabase 90% Quantized 4.12 7.05 7.37 7.67 7.59 7.40
oBERTabase 95% 8.72 4.56 4.65 4.12 3.85 4.37
oBERTabase 95% Quantized 4.73 8.22 8.56 9.41 9.06 8.68
oBERTaMEDIUM 1.96 1.99 1.99 1.96 1.99 2.02
oBERTaMEDIUM Quantized 6.20 8.04 8.44 8.43 8.33 8.45
oBERTaMEDIUM 90% 6.35 7.41 6.84 7.83 6.56 6.72
oBERTaMEDIUM 90% Quantized 8.94 12.86 13.65 14.99 14.81 14.95
oBERTaSMALL 3.89 3.96 3.99 3.95 3.97 4.03
oBERTaSMALL Quantized 12.47 14.12 14.08 15.50 15.48 15.70
oBERTaSMALL 90% 12.22 14.40 14.67 14.05 14.19 14.13
oBERTaSMALL 90% Quantized 16.21 21.35 23.96 29.77 27.14 27.58

Table 15: Latency reduction of the oBERTa family con-
cerning the unpruned oBERTabase as measured on 24
and 4 cores. Speedup is measured relative to the latency
reduction in MS/batch, and BS refers to batch size.

ence server configurations as shown in table 15.
Full inference performance results can be found
in the appendix. In analyzing performance, we
can see that the introduction of quantization to a
dense model delivers roughly a 4x speedup while
quantization on sparse models is closer to 2x. With
the introduction of sparsity, 90% leads to slightly
under 4x speedup, while 95% leads to slightly over
4x. The impact of structural pruning is roughly
equivalent to the size of the as a 6-layer model
is two times faster than a 12-layer, and a 3-layer
model is four times faster. Combing compression
forms is only partially additive, as a small (3-layer)
90% quantized model performance is 24x vs the
expected 32x (4x from structural pruning, 2x quan-
tization, 4x unstructured pruning.
Looking at the variation in a speedup by batch size
and the number of cores, we can see that allocat-
ing more cores leads to a smaller gap in inference
speedup, especially with small batches. From this,
we extract that compression is significant when
performing streaming inference (batch size 1) on
smaller CPUs.
Next, we go ahead and benchmark the oBERTa
model performance against existing sparse-transfer
models such as oBERT and PruneOFA using the
models that have been published 8 in Neural
Magic’s Sparse-Zoo 9. We run these models us-
ing four cores and a batch size of 1 and compare
their speedup (or slowdown) relative to their per-

8Since the PruneBERT model is not available in the
zoo, we extrapolate numbers using the performance of our
oBERTabase pruned 90% as both models feature 12 transformer
encoders and 90% sparsity.

9https://sparsezoo.neuralmagic.com/

formance on the SQUAD v1.1 question-answering
benchmark. Results can be found in table 16 and
full results in 45. Looking at the improvements
in accuracy and inference throughput, we find the
oBERTa models are 1.3 to 4 times better than mod-
els with approximately the same accuracy.

Looking at the competitive results, we find

Vs. BERTbase Vs. BERTlarge

Model F1 Recovery Speedup Recovery Speedup
oBERTabase 90% 91.00 102.77% 3.57 100.44% 20.21
oBERTlarge 95% Quantized 90.21 101.87% 3.41 99.57% 19.31

prunedOFAlarge 90% Quantized 89.96 101.59% 2.38 99.29% 13.47
oBERTabase 90% Quantized 89.46 101.03% 7.62 98.74% 43.07

oBERTaMEDIUM 90% 89.26 98.99% 7.78 96.75% 43.99
obertbase 90% Quantized 88.00 99.38% 6.96 97.13% 39.37

oBERTaSMALL 90% 84.66 90.97% 13.95 88.91% 78.91
pruneBERT 90% 84.90 95.88% 3.57 93.71% 73.82

Table 16: Speedups of the oBERTa-family compared to
existing published sparse models compared to the per-
formance of BERTbase and BERT-large. Speedup mea-
sures the reduction in latency of MS/batch. oBERTabase
90% exceeds the accuracy of oBERTlarge 95% quan-
tized despite being faster, oBERTabase 90% quantized
performs at the level of pruneOFAlarge 90% Quantized
despite being 3x faster, oBERTaMEDIUM 90% can out-
perform oBERTbase 90% Quantized despite being 30%
faster, and oBERTaSMALL 90% performs on par with
pruneBERT 90% despite being nearly four times faster.

that the oBERTa-* models can deliver significant
gains in performance (F1) relative to speedups.
The oBERTabasePruned 90% Quantized model
achieves an undertaking that nearly matches
pruneOFA-large 90% Quantized while deliver-
ing nearly 13x faster inference. Similarly, the
oBERTASMALL 90% model provides similar accu-
racy to PruneBERT despite being over four times
faster.

5 Discussion

Sparse Models require higher learning rates as
shown in the tables in A.8 sparse language mod-
els can be used as general-purpose contextual lan-
guage models but require the use of a much higher
learning rate. When using structurally pruned mod-
els like the 6-layer oBERTaMEDIUM and the 3-layer
oBERTaSMALL, the optimal learning rate does not
vary much within the same task despite the model
size. With the introduction of sparsity, the learning
rate needs to scale, usually by a factor of five or ten.
We find this counterintuitive as the sparse models
have fewer parameters to tune, so we would expect

8
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them to prefer a much lower learning rate. We at-
tribute this to the loss of expressivity in the network
driven by its sparsity. Since the network has fewer
degrees of freedom to optimize the points which
can be optimized move much more than those that
cannot.
Larger models compress better as shown by the
gap between the sparse and dense models and the
gap between models and their quantized counter-
parts. While 12-layer models can receive 90 or 95
% sparsity and quantization with little to no loss in
accuracy, the three and 6-layer models see a much
bigger dip. This aligns with Li et al. 2020 (Li et al.,
2020) in which they demonstrate that larger models
are more robust to pruning and quantization. Em-
pirically, this makes sense as the smaller models
have fewer degrees of freedom, and other portions
of the network cannot counteract the reduction in
expressivity caused by pruning and quantization.
Bigger Teachers are not always better as shown
in the table in A.9 the introduction of larger teach-
ers does not always lead to improvements in accu-
racy. The impact is highly task and model depen-
dent as some datasets like MNLI or QQP see little
impact in using larger teachers, yet datasets like
SQUAD or SQUAD v2.0 see large impacts, which
are even more pronounced when the student model
is smaller.
Frozen embeddings can help, but not always. As
shown by A.10 the impact of freezing the embed-
dings is highly task-specific and inconsistent across
tasks or models. In question answering, freezing
leads to 1-2 point movement for unpruned mod-
els and 5-7 points for pruned models. In other
tasks like QQP and MNLI, the impact of frozen
embeddings tends to be minor or none.

6 Limitations

While our approach is effective at compressing
models, it is not the most efficient. In order to
discover the most optimal compression approaches
and evaluate their performance performed hun-
dreds of experiments. As a result, scaling our
approach to every novel language understanding
language model is not tractable. Another limita-
tion of our work is we did not track the complete
compute utilization of our entire experimentation
process but we can provide some estimates. Exper-
iments in pruning during fine-tuning leveraged a

single V100 16 GB GPU and took approximately
14 hours per experiment. The pre-training of struc-
turally pruned models with knowledge distillation
required 4 A100 40GB GPUs for approximately
72 hours. Pruning during pre-training with Knowl-
edge distillation required approximately 100 hours
on the same setup. Task-specific fine-tuning hap-
pened on a single V100 16GB GPU and depending
on the size of the task was anywhere from a few
minutes to 20 hours. Based on all of our exper-
iments we estimate 400 V100 hours of pruning
during fine-tuning, roughly 16,000 A100 hours10

for pretraining, and assuming an average of 10
V100 hours per sparse transfer run, a total of 4000
V100 hours for sparse-transfer and sparse-transfer
with quantization.

7 Conclusion and Future Work
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A Appendix

A.1 Model Generation Approach
oBERTa models are generated in a multi-stage ap-
proach with details found in figure 2

A.2 Roberta and Training Methodology
RoBERTa (Liu et al., 2019) is a language model
that can best be considered more robust and op-
timized for the popular BERT model. While the
models share architectures, their training differs as
RoBERTA uses a 160 GB corpus for 10 epochs
compared to the 4GB one used by BERT. As a
result, the training time of RoBERTA is about 100
times higher than its predecessor.
Given this high cost of training and the regular need
for longer training when pruning a model (Kurtić
et al., 2022), we focus on compressing RoBERTa
without following its expensive pre-training regime.

Our research leverages the popular open-source
compression library SparseML11 to implement un-
structured pruning, structured pruning, and quanti-
zation via quantization-aware training. In all our
experiments, we prune each network component
independently using either GMP or OBS (Kurtic et
al.). One exception is the embeddings layer, which
we do not prune.

Table 17: Pretraining performance using knowledge
distillation from a RoBERTa large model.

Model ACC Loss Perplexity
oBERTabase 0.580 3.775 43.593
oBERTabase 90% 0.506 4.448 85.420
oBERTabase 95% 0.439 4.734 113.702
oBERTamedium 0.533 4.296 73.391
oBERTamedium 90% 0.631 1.896 6.662
oBERTasmall 0.465 4.561 95.670
oBERTasmall 90% 0.404 4.669 106.614

A.3 Model Details

Model details can be found in table 18

A.4 Dataset Details

Dataset statistics are detailed in Table 19.

A.5 Teacher models

Performance of the RoBERTabaseand
RoBERTalarge models on our sparse transfer
datasets. We explore the optimal hyperparameters
relative to performance in published results as
shown in table 20 and 21

A.6 Upstream Pruning

Following the findings that more extensive teach-
ers distill better (Liu et al., 2019) and our experi-
ments, we use both RoBERTabaseand RoBERTalarge
as teachers eventually find the large model works
better. Using this teacher, we use the parameters
shown in table 22 to prune the models for oBERTa.
This same set of parameters is applied to the struc-
turally pruned models, but there is no induced spar-
sity.

11https://github.com/neuralmagic/sparseml
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Figure 2: The set of oBERTa language models follows a compounding compression approach. First models are
structurally pruned and further pre-trained using KD and a RoBERTalarge teacher. Next, each model is pruned during
additional pre-training to a target sparsity. After pruning, the sparsity pattern is locked, and models are fine-tuned
with KD on specialized NLP tasks. During fine-tuning, models may be quantized for additional improvements in
inference efficiency.

Model Parameters Prunable Sparse Sparsity size (MB) Compression GZIP size (MB) Compression
oBERTabase 124,647,170 85,526,016 1,539 0.0% 474 1.00 435 1.00
oBERTabase Quantized 124,647,170 85,526,016 1,539 0.0% 119 3.98 85 5.12
oBERTabase 90% 124,647,170 85,526,016 76,442,738 89.4% 474 1.00 183 2.38
oBERTabase 90% Quantized 124,647,170 85,526,016 76,442,738 89.4% 119 3.98 42 10.36
oBERTabase 95% 124,647,170 85,526,016 80,689,466 94.3% 474 1.00 163 2.67
oBERTabase 95% Quantized 124,647,170 85,526,016 80,689,466 94.3% 119 3.98 37 11.76
oBERTaMEDIUM 82,119,938 43,058,688 1,538 0.0% 312 1.52 289 1.51
oBERTaMEDIUM Quantized 82,119,938 43,058,688 1,538 0.0% 78 6.08 53 8.21
oBERTaMEDIUM 90% 82,119,938 43,058,688 38,222,138 88.8% 312 1.52 161 2.70
oBERTaMEDIUM 90% Quantized 82,119,938 43,058,688 38,222,138 88.8% 78 6.08 33 13.18
oBERTaSMALL 60,856,322 21,825,024 1,538 0.0% 233 2.03 214 2.03
oBERTaSMALL Quantized 60,856,322 21,825,024 1,538 0.0% 60 7.90 39 11.15
oBERTaSMALL 90% 60,856,322 21,825,024 19,111,068 87.6% 233 2.03 149 2.92
oBERTaSMALL 90% Quantized 60,856,322 21,825,024 19,111,838 87.6% 60 7.90 30 14.50

Table 18: Description of the oBERTa model family and their sparsity and size. Prunable parameters are the sum of
all non-embedding parameters in the model. Since sparsity profiles are assigned at a module level, overall sparsity
profiles do not perfectly match the target 90% or 95% which are targeted.

A.7 Sparse Transfer Hyper-parameters

Our work aims not to produce the highest possible
performance of a sparse language model. Instead,
we aim to make light language models that perform
well on various tasks with minimal hyperparameter
optimization. As a result, in all of our experiments,
we leverage the parameters shown in 23 and 24
and perform a grid search over them.

A.8 Learning Rate

In our exploration of sparse transfer learning, we
perform a wide study on the impact of the optimal
learning rate for each task and each model in the
oBERTa family. The results as shown in table 25

A.9 Knowledge Distillation

In our exploration of sparse transfer learning, we
perform a wide study on the impact of knowledge
distillation. Across tasks, we look at the impact
using no teacher, RoBERTabaseand RoBERTalarge
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Dataset Train Eval

SQuAD v1.1 (examples) 87599 10570
SQuAD v2.0 (examples) 130319 11873

MNLI (examples) 392702 19628

QQP (examples) 363,846 40,430

IMDB (examples) 25000 25000

CONLL2003 (examples) 14041 3250

SST2 (examples) 67349 872

Wikipedia (words) 6078422 -

TBC (words) 74004228 -

Table 19: Statistics for training and evaluation datasets

as shown in tables 26,27,28,29,30,31

A.10 Freezing Embeddings

In our exploration of sparse transfer learning, we
perform a wide study on the impact of freezing
the embeddings during finetuning. Across tasks,
we look at the impact of frozen and unfrozen em-
beddings as shown in tables 32,33,34,35,36, and
37. Besides question answering, we do not find
a strong trend with the impact of frozen embed-
dings. In some tasks, sparse and dense models
perform better with frozen embeddings while not
for others. Focusing on question answering, by
using frozen embeddings dense models see large
losses in F1 score and the opposite can be seen for
pruned models.

A.11 Inference Benchmarks

We provide full results for our experiments
in benchmarking the impact of compression
on inference efficiency as shown in tables
45,43,42,38,40,39,44,44

A.12 Limitations

While much of our work has focused on show-
casing the broad usability of compressed language
models, they are not without fault. While our exper-
iments focus on the compression of RoBERTa, the
size of its training dataset makes complete explo-
ration of the ability of pruning during pretraining
somewhat limited. The work in the paper shows
the ability to compress RoBERTa on a smaller pre-
training dataset but does not contrast it with the
impact of compression on the full dataset.

A second limitation of our work is the high com-
putational demand required for creating public do-
main sparse language models. Despite amortiz-
ing the cost of compression to a few pretraining
training regimes, the reduction of other language
models like ALBERT (Lan et al., 2019) or XLM-
R (Conneau et al., 2019) require completely new
training, pruning, and transfer experiments.

A.13 Responsible NLP Research -
Reproducibility Checklist

A.13.1 Scientific Artifacts

Datasets. We experiment with well-established
benchmarks with usage in many broad domains.
We do not perform any modification or augmenta-
tion in any dataset. Since datasets are not modified,
we did not look for any personal or sensitive con-
tent.
In our pre-training experiments, we leverage the
Toronto Book Corpus (TBC) (Zhu et al., 2015)12

and the Wikipedia (Foundation, 2021)13. For fine-
tuning we make use of SQuAD v1.1 (Rajpurkar
et al., 2016b) 14, SQuAD v2.0 (Rajpurkar et al.,
2018) 15, Quora Duplicate Question Dataset (QQP)
(Shankar, 2017)16, and Multi-Genre Natural Lan-
guage Inference (MNLI) (Williams et al., 2018)
17, Large Movie Review Dataset (IMDB) (Maas
et al., 2011)18, Stanford Sentiment Treebank (SST-
2) (Socher et al., 2013)19, and the shared task
of CoNLL-2003 concerns language-independent
named entity recognition (CONLL-2003) (Tjong
Kim Sang and De Meulder, 2003)20datasets.

Models. The model used as a starting point for
all of our experiments is RoBERta, publicly avail-
able via HuggingFace Hub 21. All other models
presented in this paper will be released in openly-
available repositories along with their compression
recipes, training metrics, and hyper-parameters.

12https://huggingface.co/datasets/bookcorpus
13https://huggingface.co/datasets/wikipedia
14https://huggingface.co/datasets/squad
15https://huggingface.co/datasets/squadv2
16https://huggingface.co/datasets/glue
17https://huggingface.co/datasets/glue
18https://huggingface.co/datasets/imdb
19https://huggingface.co/datasets/glue
20https://huggingface.co/datasets/conll2003
21https://huggingface.co/bert-base-uncased
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Model Training Epochs Batch Size Learning Rate Weight Decay Warmup Target Metric Target Score Actual Recall
SQUAD V1.1 3 16 1.00E-05 0 0 F1 90.40 92.15 101.94%
SQUAD V2.0 3 16 3.00E-05 0 0 F1 82.91 83.53 100.74%
QQP 5 16 2.00E-05 0 0 ACC 91.90 91.52 99.59%
MNLI 3 16 1.00E-05 0 0 ACC 87.60 87.88 100.31%
SST-2 3 16 2.00E-05 0 0 ACC 94.80 94.61 99.80%
CONLL2003 3 16 3.00E-05 0 0 ACC 99.10 99.29 100.19%
IMDB 3 16 1.00E-05 0 0 ACC 94.67 95.24 100.60%

Table 20: Training parameters along with performance metrics and the recovery vs. the published performance of
the same model for the RoBERTa base model

Model Training Epochs Batch Size Learning Rate Weight Decay Warmup Target Metric Target Score Actual Recall
SQUAD V1.1 3 16 1.00E-05 0 0 F1 94.50 94.62 100.12%
SQUAD V2.0 3 16 1.00E-05 0 0 F1 89.40 89.14 99.71%
QQP 3 16 1.00E-05 0 0 ACC 92.20 91.76 99.52%
MNLI 3 16 1.00E-05 0 0 ACC 90.20 90.61 100.45%
SST-2 3 16 1.00E-05 0 0 ACC 96.40 96.22 99.81%
CONLL2003 3 16 3.00E-05 0 0 ACC 99.10 99.39 100.29%
IMDB 3 16 1.00E-05 0 0 ACC 94.67 96.12 101.53%

Table 21: Training parameters along with performance metrics and the recovery vs. the published performance of
the same model for the RoBERTa large model

A.13.2 Computational Experiments
Upstream. During upstream pruning due to the
large size of language models and their associ-
ated teachers we leverage 4x A100 40GB NVIDIA
GPUs. We train for 5 epochs and an entire train-
ing and pruning run takes approximately 72 hours.
Since the cost of such a large compute instance
is high, these experiments were only run with a
single seed and without major hyper-parameter ex-
ploration.
Sparse-Transfer Our experimentation on finetun-
ing our compressed models uses the workhorse
16GB V100. Our sparse-transfer datasets vary
greatly in size and as a result, so do experiments.
Finetuning for CONL2003 takes less than 10 min-
utes while larger datasets like QQP take about 24
hours. Due to the number of datasets which we
evaluate and the number of models in the oBERTa
family, we only perform experimentation with a
single fixed seed.
DeepSparse inference. We pair our compressed
models with DeepSparse (Magic, 2023) a publicly-
available sparsity-aware CPU inference engine. All
models are exported using the standard ONNX22

format. For our competitive benchmarking against
existing compressed language models, we leverage
the model representations shared in the SparseZoo
23. This approach means that some older mod-

22https://onnx.ai/
23https://sparsezoo.neuralmagic.com/

els such as oBERT may have had less optimized
ONNA exports. We believe this difference in ex-
portation causes the nearly 4x improvement in the
performance of oBERTa base vs bert-base.

A.13.3 Computational Packages
All of our experimentation is done using public
libraries and datasets to ensure extensibility and
reproducibility. Our experimentation is done using
NeuralMagic’s SparseML 24 which has specialized
integration with HuggingFace’s Transformers 25

and Datasets 26 libraries.

24https://github.com/neuralmagic/sparseml
25https://github.com/huggingface/transformers
26https://github.com/huggingface/datasets

14

52



5 Epochs

Datasets BookCorpus & English Wikipedia

Batch size 256

Initial learning rate 5e-4
Learning rate schedule linear decay with rewinds
Learning rate rewinds periodic every 0.5 epochs

Max sequence length 512
Weight decay 0.01

Knowledge Distillation
(hardness, temperature) (1.0, 5.5)

Student model dense oBERTa-* model
Teacher model RoBERTalarge

Pruning frequency 100x per epoch

Initial Sparsity 0.7 for 12 layer model, 0.5 for the 6-layer, and 0.3 for the 3-layer

Table 22: Upstream pruning hyper-parameters.

10 Epochs

Initial learning rate 2.1e-4,1.9e-4,1.7e-4,1.5e-4,1.3e-4,1.1e-4,9e-5,7e-5,5e-5,3e-5,2e-5,1e-5
Learning rate schedule linear decay to 0

Batch size 12

Weight Decay 0.0, 0.01, 0.05, 0.1

Knowledge Distillation hardness 1.0, 0.0

Frozen Embeddings 1.0, 0.0

Knowledge Distillation temperature 7.0

Knowledge Distillation Teacher RoBERTabase, RoBERTalarge

Table 23: Sparse-transfer learning hyper-parameters used to fine-tune upstream-pruned models at downstream tasks.
Each Experiment tunes this set of parameters to find a task-specific optimal combination.

20 Epochs

Initial learning rate 2.1e-4,1.9e-4,1.7e-4,1.5e-4,1.3e-4,1.1e-4,9e-5,7e-5,5e-5,3e-5,2e-5,1e-5
Learning rate schedule linear decay to 0. Rewind to 5e-5 for QAT at epoch 10

Freeze Batch Norm Epoch 18

Batch size 12

Weight Decay 0.0, 0.01, 0.05, 0.1

Knowledge Distillation hardness 1.0, 0.0

Frozen Embeddings 1.0, 0.0

Frozen Embeddings Schedule Frozen until epoch 10, unfrozen for QAT

Knowledge Distillation temperature 7.0

Knowledge Distillation Teacher RoBERTabase, RoBERTalarge

Table 24: Sparse-transfer learning with Quantization hyper-parameters used to fine-tune upstream-pruned models
at downstream tasks. Each Experiment tunes this set of parameters to find a task-specific optimal combination.
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Optimal Learning Rate
model SQUAD SQUAD V2 MNLI QQP IMDB SST2 CONLL2003
RoBERTabase 1.00E-05 3.00E-05 1.00E-05 2.00E-05 1.00E-05 2.00E-05 3.00E-05
RoBERTalarge 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 3.00E-05
oBERTabase 1.00E-05 1.00E-05 1.00E-05 2.00E-05 1.00E-05 2.00E-05 3.00E-05
oBERTabase 90% 1.50E-04 1.50E-04 7.00E-05 1.70E-04 1.30E-04 9.00E-05 1.50E-04
oBERTabase 95% 1.50E-04 1.30E-04 9.00E-05 2.10E-04 1.30E-04 9.00E-05 5.00E-05
oBERTaMEDIUM 5.00E-05 5.00E-05 2.00E-05 3.00E-05 3.00E-05 2.00E-05 3.00E-05
oBERTaMEDIUM 90% 1.50E-04 1.30E-04 1.50E-04 1.50E-04 5.00E-05 1.50E-04 1.50E-04
oBERTaSMALL 1.50E-04 1.50E-04 3.00E-05 5.00E-05 3.00E-05 5.00E-05 3.00E-05
oBERTaSMALL 90% 1.50E-04 1.50E-04 2.10E-04 2.10E-04 1.50E-04 2.10E-04 1.90E-04

Table 25: Sparse-transfer learning with Quantization hyper-parameters used to fine-tune upstream-pruned models
at downstream tasks. Each Experiment tunes this set of parameters to find a task-specific optimal combination.

model No KD KD-Base KD-Large
oBERTabase(Target) 91.52% N/A N/A
oBERTabase 90% 91.97 92.78 92.55
oBERTabase 95% 91.40 91.17 91.514
oBERTaMEDIUM 90.94 91.86 91.78
oBERTaMEDIUM 90% 87.16 87.16 89.56
oBERTaSMALL 89.56 88.65 90.83
oBERTaSMALL 90% 85.58 89.22 89.45

Table 26: Impact of knowledge distillation on the accu-
racy (matched) MNLI Dataset across model sizes for
the various sizes of oBERTa as compared to the regu-
larly trained baseline

model No KD KD-Base KD-Large
oBERTabase(Target) 91.52 N/A N/A
oBERTabase 90% 63.18 91.01 90.93
oBERTabase 95% 90.46 90.45 90.72
oBERTaMEDIUM 90.75 90.96 90.96
oBERTaMEDIUM 90% 89.93 90.41 89.82
oBERTaSMALL 86.63 87.34 87.65
oBERTaSMALL 90% 88.72 89.40 87.50

Table 27: Impact of knowledge distillation on the ac-
curacy QQP Dataset across model sizes for the various
sizes of oBERTa as compared to the regularly trained
baseline

model No KD KD-Base KD-Large
oBERTabase(Target) 91.52 N/A N/A
oBERTabase 90% 91.97 92.78 92.55
oBERTabase 95% 91.4 91.17 91.514
oBERTaMEDIUM 90.94 91.86 91.78
oBERTaMEDIUM 90% 87.16 87.16 89.56
oBERTaSMALL 89.56 88.65 90.83
oBERTaSMALL 90% 85.58 89.22 89.45

Table 28: Impact of knowledge distillation on the accu-
racy SST-2 Dataset across model sizes for the various
sizes of oBERTa as compared to the regularly trained
baseline

model No KD KD-Base KD-Large
oBERTabase(Target) 91.52% N/A N/A
oBERTabase 90% 99.17 99.08 99.11
oBERTabase 95% 98.89 98.47 97.51
oBERTaMEDIUM 99.21 99.16 99.19
oBERTaMEDIUM 90% 99.01 98.8 98.79
oBERTaSMALL 99.05 98.95 98.94
oBERTaSMALL 90% 98.88 98.55 98.55

Table 29: Impact of knowledge distillation on the ac-
curacy on the CONLL2003 Dataset across model sizes
for the various sizes of oBERTa as compared to the
regularly trained baseline

model No KD KD-Base KD-Large
oBERTabase(Target) 91.52% N/A N/A
oBERTabase 90% 89.01 90.86 90.92
oBERTabase 95% 87.06 89.84 89.21
oBERTaMEDIUM 84.36 88.20 85.74
oBERTaMEDIUM 90% 84.71 89.26 88.61
oBERTaSMALL 82.00 80.77 77.08
oBERTaSMALL 90% 73.31 84.66 83.13

Table 30: Impact of knowledge distillation on the F1
SQUAD v1.1 Dataset across model sizes for the various
sizes of oBERTa as compared to the regularly trained
baseline

model No KD KD-Base KD-Large
oBERTabase(Target) 91.52% N/A N/A
oBERTabase 90% 75.57852204 80.25256971 81.32561567
oBERTabase 95% 72.61 77.67 77.98
oBERTaMEDIUM 69.42634 70.97328 71.55996
oBERTaMEDIUM 90% 68.25281 76.02975 76.64135
oBERTaSMALL 66.8281 62.9573 63.1224
oBERTaSMALL 90% 55.3959 70.0796 70.7913

Table 31: Impact of knowledge distillation on the F1
SQUAD v2.0 Dataset across model sizes for the various
sizes of oBERTa as compared to the regularly trained
baseline
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model Frozen Unfrozen
oBERTabase (Target) N/A 87.88%
oBERTabase 90% 84.50 83.81
oBERTabase 95% 83.91 83.41
oBERTaMEDIUM 84.37 83.32
oBERTaMEDIUM 90% 81.61 77.00
oBERTaSMALL 80.24 80.36
oBERTaSMALL 90% 78.46 74.25

Table 32: Impact of frozen vs trained embeddings on
the accuracy (matched) MNLI Dataset across model
sizes for the various sizes of oBERTa as compared to
the uncompressed baseline

model Frozen Unfrozen
oBERTabase (Target) N/A 91.52%
oBERTabase 90% 90.93% 90.99%
oBERTabase 95% 90.72% 90.85%
oBERTaMEDIUM 90.96% 91.35%
oBERTaMEDIUM 90% 89.82% 90.48%
oBERTaSMALL 90.59% 90.72%
oBERTaSMALL 90% 89.40% 89.74%

Table 33: Impact of frozen vs trained embeddings on
the accuracy on QQP across model sizes for the various
sizes of oBERTa as compared to the uncompressed
baseline

model Frozen Unfrozen
oBERTabase (Target) N/A 91.52%
oBERTabase 90% 92.55 91.74
oBERTabase 95% 91.514 91.4
oBERTaMEDIUM 91.78 92.89
oBERTaMEDIUM 90% 89.56 88.76
oBERTaSMALL 90.83 90.48
oBERTaSMALL 90% 89.45 89.34

Table 34: Impact of frozen vs trained embeddings on
the accuracy SST2 Dataset across model sizes for the
various sizes of oBERTa as compared to the uncom-
pressed baseline

model Frozen Unfrozen
oBERTabase (Target) N/A 91.52%
oBERTabase 90% 97.51 98.55
oBERTabase 95% 99.11 99.13
oBERTaMEDIUM 99.19 99.18
oBERTaMEDIUM 90% 98.79 98.9
oBERTaSMALL 98.94 98.94
oBERTaSMALL 90% 98.55 98.69

Table 35: Impact of frozen vs trained embeddings on the
accuracy on CONLL2003 Dataset across model sizes
for the various sizes of oBERTa as compared to the
uncompressed baseline

model Frozen Unfrozen
oBERTabase (Target) N/A 91.52%
oBERTabase 90% 90.92 83.99
oBERTabase 95% 89.21 87.08
oBERTaMEDIUM 85.74 89.95
oBERTaMEDIUM 90% 88.61 86.63
oBERTaSMALL 77.08 84.64
oBERTaSMALL 90% 83.13 77.43

Table 36: Impact of frozen vs trained embeddings on
SQUAD v1.1 F1 across model sizes for the various sizes
of oBERTa as compared to the uncompressed baseline

model Frozen Unfrozen
oBERTabase (Target) N/A 91.52%
oBERTabase 90% 71.56 78.05
oBERTabase 95% 81.33 78.45
oBERTaMEDIUM 77.98 76.86
oBERTaMEDIUM 90% 76.64 72.77
oBERTaSMALL 71.32 63.12
oBERTaSMALL 90% 70.79 59.38

Table 37: Impact of frozen vs trained embeddings on the
SQUAD v2.0 Dataset across model sizes for the various
sizes of oBERTa as compared to the uncompressed
baseline
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model Throughput (items/sec) Speedup Latency Mean (ms/batch) Latency Median (ms/batch Latency Std (ms/batch)
oBERTabase 16.69 1.00 59.90 59.82 1.02
oBERTabase Quantized 51.68 3.10 19.34 19.28 0.58
oBERTabase 90% 54.87 3.29 18.21 18.15 0.31
oBERTabase 90% Quantized 68.70 4.12 14.55 14.50 0.20
oBERTabase 95% 145.57 8.72 6.86 6.86 0.11
oBERTabase 95% Quantized 78.90 4.73 12.66 12.68 0.31
oBERTaMEDIUM 32.78 1.96 30.49 30.44 1.19
oBERTaMEDIUM Quantized 103.47 6.20 9.65 9.60 0.57
oBERTaMEDIUM 90% 106.01 6.35 9.42 9.34 0.28
oBERTaMEDIUM 90% Quantized 149.25 8.94 6.69 6.65 0.42
oBERTaSMALL 64.93 3.89 15.39 15.31 0.66
oBERTaSMALL Quantized 208.09 12.47 4.80 4.78 0.28
oBERTaSMALL 90% 203.95 12.22 4.89 4.86 0.33
oBERTaSMALL 90% Quantized 270.63 16.21 3.69 3.68 0.25

Table 38: Inference performance of the oBERTa model family using a batch size of 1, 24 cores, and a sequence
length of 384

model Throughput (items/sec) Speedup Latency Mean (ms/batch) Latency Median (ms/batch Latency Std (ms/batch)
oBERTabase 19.55 1.00 818.23 811.93 15.52
oBERTabase Quantized 83.92 4.29 190.65 189.55 4.21
oBERTabase 90% 74.29 3.80 215.35 214.31 2.47
oBERTabase 90% Quantized 137.83 7.05 116.07 115.43 2.56
oBERTabase 95% 89.07 4.56 179.62 178.92 3.19
oBERTabase 95% Quantized 160.68 8.22 99.56 98.91 2.63
oBERTaMEDIUM 38.95 1.99 410.73 408.13 6.11
oBERTaMEDIUM Quantized 157.12 8.04 101.82 101.27 2.21
oBERTaMEDIUM 90% 144.95 7.41 110.37 109.62 1.56
oBERTaMEDIUM 90% Quantized 251.32 12.86 63.65 63.40 1.76
oBERTaSMALL 77.49 3.96 206.46 205.75 2.07
oBERTaSMALL Quantized 276.10 14.12 57.94 57.43 1.63
oBERTaSMALL 90% 281.57 14.40 56.81 56.73 0.64
oBERTaSMALL 90% Quantized 417.35 21.35 38.32 38.01 1.55

Table 39: Inference performance of the oBERTa model family using a batch size of 16, 24 cores, and a sequence
length of 384

model Throughput (items/sec) Speedup Latency Mean (ms/batch) Latency Median (ms/batch Latency Std (ms/batch)
oBERTabase 19.02 1.00 3365.11 3352.63 29.49
oBERTabase Quantized 84.80 4.46 754.73 749.38 18.69
oBERTabase 90% 72.22 3.80 886.13 881.75 10.65
oBERTabase 90% Quantized 140.14 7.37 456.67 453.59 11.03
oBERTabase 95% 88.35 4.64 724.41 720.43 10.85
oBERTabase 95% Quantized 162.76 8.56 393.21 390.45 12.15
oBERTaMEDIUM 37.94 1.99 1686.85 1685.03 8.09
oBERTaMEDIUM Quantized 160.48 8.44 398.80 396.47 9.27
oBERTaMEDIUM 90% 130.02 6.84 492.22 486.90 9.64
oBERTaMEDIUM 90% Quantized 259.51 13.64 246.61 244.54 7.13
oBERTaSMALL 75.81 3.99 844.15 841.30 8.72
oBERTaSMALL Quantized 267.70 14.07 239.06 237.86 7.02
oBERTaSMALL 90% 278.93 14.67 229.43 228.41 3.43
oBERTaSMALL 90% Quantized 455.71 23.96 140.43 139.81 5.40

Table 40: Inference performance of the oBERTa model family using a batch size of 64, 24 cores, and a sequence
length of 384

model Throughput (items/sec) Speedup Latency Mean (ms/batch) Latency Median (ms/batch Latency Std (ms/batch)
oBERTabase 4.89 1.00 204.65 204.93 1.82
oBERTabase Quantized 20.01 4.09 49.95 49.88 0.66
oBERTabase 90% 17.60 3.60 56.82 56.70 0.72
oBERTabase 90% Quantized 37.50 7.67 26.66 26.61 0.38
oBERTabase 95% 20.15 4.12 49.62 49.60 0.54
oBERTabase 95% Quantized 46.02 9.41 21.72 21.70 0.31
oBERTaMEDIUM 9.59 1.96 104.28 104.33 0.90
oBERTaMEDIUM Quantized 41.23 8.43 24.25 24.18 0.33
oBERTaMEDIUM 90% 38.30 7.83 26.10 26.05 0.41
oBERTaMEDIUM 90% Quantized 73.28 14.99 13.64 13.60 0.19
oBERTaSMALL 19.31 3.95 51.78 51.74 0.35
oBERTaSMALL Quantized 75.81 15.50 13.18 13.18 0.19
oBERTaSMALL 90% 68.70 14.05 14.55 14.50 0.20
oBERTaSMALL 90% Quantized 145.57 29.77 6.86 6.86 0.11

Table 41: Inference performance of the oBERTa model family using a batch size of 1, 4 cores, and a sequence
length of 384
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model Throughput (items/sec) Speedup Latency Mean (ms/batch) Latency Median (ms/batch Latency Std (ms/batch)
oBERTabase 5.14 1.00 3113.07 3113.92 19.89
oBERTabase Quantized 22.14 4.31 722.72 719.24 11.40
oBERTabase 90% 17.15 3.34 932.97 931.21 5.76
oBERTabase 90% Quantized 39.03 7.59 409.90 408.71 4.64
oBERTabase 95% 19.80 3.85 808.16 806.80 4.15
oBERTabase 95% Quantized 46.54 9.06 343.75 342.75 4.12
oBERTaMEDIUM 10.24 1.99 1563.00 1557.90 16.53
oBERTaMEDIUM Quantized 42.82 8.33 373.61 372.88 4.05
oBERTaMEDIUM 90% 33.69 6.56 474.88 474.25 3.64
oBERTaMEDIUM 90% Quantized 76.10 14.81 210.24 209.41 2.45
oBERTaSMALL 20.41 3.97 783.81 782.99 6.59
oBERTaSMALL Quantized 79.57 15.48 201.07 200.60 2.12
oBERTaSMALL 90% 72.92 14.19 219.40 218.84 2.53
oBERTaSMALL 90% Quantized 139.50 27.14 114.68 114.45 1.53

Table 42: Inference performance of the oBERTa model family using a batch size of 16, 4 cores, and a sequence
length of 384

model Throughput (items/sec) Speedup Latency Mean (ms/batch) Latency Median (ms/batch Latency Std (ms/batch)
oBERTabase 5.06 1.00 12655.34 12680.81 57.78
oBERTabase Quantized 21.88 4.32 2924.89 2921.95 31.78
oBERTabase 90% 17.18 3.40 3724.72 3724.23 15.27
oBERTabase 90% Quantized 37.44 7.40 1709.44 1699.64 26.97
oBERTabase 95% 22.13 4.37 2892.15 2893.08 22.94
oBERTabase 95% Quantized 43.94 8.68 1456.53 1451.76 20.45
oBERTaMEDIUM 10.21 2.02 1567.70 1562.90 14.53
oBERTaMEDIUM Quantized 42.74 8.45 374.35 373.15 4.00
oBERTaMEDIUM 90% 33.99 6.72 470.67 469.99 3.58
oBERTaMEDIUM 90% Quantized 75.64 14.95 211.53 210.80 2.61
oBERTaSMALL 20.42 4.03 783.67 783.29 5.16
oBERTaSMALL Quantized 79.44 15.70 201.40 201.43 2.90
oBERTaSMALL 90% 71.50 14.13 223.77 223.41 1.78
oBERTaSMALL 90% Quantized 139.55 27.58 114.65 114.48 1.53

Table 43: Inference performance of the oBERTa model family using a batch size of 64, 4 cores, and a sequence
length of 384

Model Throughput (items/sec) Speedup vs BERT-Base Speedup vs BERT-Large Latency Mean (ms/batch) Latency Median (ms/batch Latency Std (ms/batch)
bertbase 4.923 1.00 5.65 203.1165 202.7077 1.3646
bert-large 0.8706 0.18 1.00 1148.6105 1145.145 9.5526
oBERTabase 4.89 0.99 5.61 204.65 204.93 1.82
oBERTabase Quantized 20.01 4.07 22.99 49.95 49.88 0.66
oBERTabase 90% 17.60 3.57 20.21 56.82 56.70 0.72
oBERTabase 90% Quantized 37.50 7.62 43.07 26.66 26.61 0.38
oBERTabase 95% 20.15 4.09 23.14 49.62 49.60 0.54
oBERTabase 95% Quantized 46.02 9.35 52.86 21.72 21.70 0.31
oBERTaMEDIUM 9.59 1.95 11.01 104.28 104.33 0.90
oBERTaMEDIUM Quantized 41.23 8.37 47.36 24.25 24.18 0.33
oBERTaMEDIUM 90% 38.30 7.78 43.99 26.10 26.05 0.41
oBERTaMEDIUM 90% Quantized 73.28 14.89 84.18 13.64 13.60 0.19
oBERTaSMALL 19.31 3.92 22.18 51.78 51.74 0.35
oBERTaSMALL Quantized 75.81 15.40 87.07 13.18 13.18 0.19
oBERTaSMALL 90% 68.70 13.95 78.91 14.55 14.50 0.20
oBERTaSMALL 90% Quantized 145.57 29.57 167.21 6.86 6.86 0.11
pruneOFA-large 80% Quantized 12.7315 2.59 14.62 78.5322 78.3961 0.4826
prunedOFA-large 90% Quantized 11.7265 2.38 13.47 85.2647 85.1616 0.4292
obert-large 0.876 0.18 1.01 1141.5707 1138.5756 9.0121
obert-large 95% 7.508 1.53 8.62 133.1785 132.9672 1.0091
obert-large 95% Quantized 16.8077 3.41 19.31 59.4828 59.322 0.6445
pruneBERT 17.60 3.57 20.21 56.82 56.70 0.72
obert-large 97% 8.0414 1.63 9.24 124.3431 124.1421 1.0249
obert-large 97% Quantized 15.8631 3.22 18.22 63.0278 62.9979 0.6018
obertbase 90% 18.2881 3.71 21.01 54.6688 54.5896 0.5476
obertbase 90% Quantized 34.2797 6.96 39.37 29.1616 29.0977 0.3156
obertbase 95% 25.1818 5.12 28.92 39.6997 39.5986 0.5805
obertbase 95% Quantized 40.6387 8.25 46.68 24.5986 24.5222 0.3231

Table 44: Inference performance of the other sparse models using a batch size of 1, 4 cores, and a sequence length
of 384 comparing the oBERTa models to previous sparse language models such as pruneOFA (Zafrir et al., 2021)
PruneBERT (Sanh et al., 2020) and oBERT (Kurtić et al., 2022)
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Vs. BERT-Base Vs. BERT-Large
Model F1 Recovery Speed up Recovery Speed up
BERTbase 88.55 100.00% 1.00 97.74% 5.65
BERT-large 90.60 102.32% 0.18 100.00% 1.00
oBERTabase 92.20 104.12% 0.99 101.77% 5.61
oBERTabase Quantized 93.18 105.23% 4.07 102.85% 22.99
oBERTabase 90% 91.00 102.77% 3.57 100.44% 20.21
oBERTabase 90% Quantized 89.46 101.03% 7.62 98.74% 43.07
oBERTabase 95% 89.84 101.46% 4.09 99.16% 23.14
oBERTabase 95% Quantized 88.40 99.83% 9.35 97.57% 52.86
oBERTaMEDIUM 90.36 102.04% 1.95 99.74% 11.01
oBERTaMEDIUM Quantized 90.37 102.06% 8.37 99.75% 47.36
oBERTaMEDIUM 90% 89.26 100.80% 7.78 98.52% 43.99
oBERTaMEDIUM 90% Quantized 86.93 98.17% 14.89 95.95% 84.18
oBERTaSMALL 84.87 95.84% 3.92 93.68% 22.18
oBERTaSMALL Quantized 84.82 95.79% 15.40 93.62% 87.07
oBERTaSMALL 90% 84.66 95.61% 13.95 93.45% 78.91
oBERTaSMALL 90% Quantized 78.71 88.89% 29.57 86.88% 167.21
pruneOFA-large 80% Quantized 90.30 101.98% 2.59 99.67% 14.62
pruneOFA-large 90% Quantized 89.96 101.59% 2.38 99.29% 13.47
oBERT-large 95% 90.19 101.85% 1.53 99.55% 1.01
oBERT-large 95% Quantized 90.21 101.87% 3.41 99.57% 8.62
pruneBERT 84.90 95.88% 3.41 93.71% 19.31
oBERT-large 97% 90.18 101.84% 13.05 99.54% 73.82
oBERT-large 97% Quantized 90.13 101.78% 1.63 99.48% 9.24
oBERTbase 90% 88.47 99.91% 3.22 97.65% 18.22
oBERTbase 90% Quantized 88.00 99.38% 3.71 97.13% 21.01
oBERTbase 95% 88.19 99.59% 6.96 97.34% 39.37
oBERTbase 95% Quantized 88.11 99.50% 5.12 97.25% 28.92

Table 45: Speedups of the oBERTa-family as compared to existing published sparse models as compared to the
performance of BERTbase and BERT-large. Speedup measures the reduction in latency of MS/batch.
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