
Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 274–289
July 13, 2023 ©2023 Association for Computational Linguistics

Small Character Models Match Large Word Models for Autocomplete
Under Memory Constraints

Ganesh Jawahar♣∗, Subhabrata Mukherjee♠, Debadeepta Dey♠,
Muhammad Abdul-Mageed♣♢, Laks V.S. Lakshmanan♣, Caio Cesar Teodoro Mendes♠,

Gustavo Henrique de Rosa♠, Shital Shah♠
♣University of British Columbia, ♠Microsoft ♢MBZUAI

ganeshjwhr@gmail.com, {laks,amuham01}@cs.ubc.ca,
{Subhabrata.Mukherjee,dedey,caiocesart,gderosa,shitals}@microsoft.com

Abstract

Autocomplete is a task where the user inputs
a piece of text, termed prompt, which is con-
ditioned by the model to generate semanti-
cally coherent continuation. Existing works
for this task have primarily focused on datasets
(e.g., email, chat) with high frequency user
prompt patterns (or focused prompts) where
word-based language models have been quite
effective. In this work, we study the more chal-
lenging setting consisting of low frequency user
prompt patterns (or broad prompts, e.g., prompt
about 93rd academy awards) and demonstrate
the effectiveness of character-based language
models. We study this problem under memory-
constrained settings (e.g., edge devices and
smartphones), where character-based represen-
tation is effective in reducing the overall model
size (in terms of parameters). We use WikiText-
103 benchmark to simulate broad prompts and
demonstrate that character models rival word
models in exact match accuracy for the auto-
complete task, when controlled for the model
size. For instance, we show that a 20M pa-
rameter character model performs similar to
an 80M parameter word model in the vanilla
setting. We further propose novel methods to
improve character models by incorporating in-
ductive bias in the form of compositional infor-
mation and representation transfer from large
word models. Datasets and code used in this
work are available at https://github.com/
UBC-NLP/char_autocomplete.

1 Introduction

Autocomplete models are conditioned on user-
written prompts or text to generate semantically
coherent continuations. For example, given the
user input “Filmmaker George Lucas used Tikal as

a ”, a semantically coherent continuation can
be “filming location” (Example 1). Autocomplete
models can dramatically reduce keystrokes and im-
prove user’s productivity in a wide range of appli-

∗Part of work was done as an intern in Microsoft.

cations including email, chat and document author-
ing. Some typical challenges in building a real-
time autocomplete model include: (i) processing
arbitrary length user input (e.g., paragraphs), (ii)
handling low frequency user prompt patterns (or
broad prompts that typically cover wider vocabu-
lary (as in Example 1), and (iii) satisfying memory
constraints of the target device (such as cap on peak
memory utilization).

Despite the importance of the task, there has
been limited research on autocomplete. Existing
works such as Smart Compose (Chen et al., 2019)
and (Trajanovski et al., 2021) train autoregressive
language models on emails and chats, where user
prompt patterns tend to be high-frequency. That
is, the prompts are focused prompts, e.g., a prompt
about office standups, that typically cover narrower
vocabulary. All these models are trained at word
level, which leads to two issues: (i) input/output
embedding parameters (less compressible compo-
nent of the Transformer model (Shen et al., 2020)1)
occupy a significant share (e.g., more than 77%) of
the parameter budget due to the large vocabulary
size and (ii) tendency to memorize high-frequency
prompt patterns resulting in poor generalization on
the low-frequency ones.

n-gram unigram bigram trigram

Wikitext-103 95.44 84.35 60.63
Reddit 86.41 77.04 54.36

Table 1: Percentage of unique out of vocabulary (OOV)
n-grams in test set of WikiText-103 (broad prompts) vs.
Reddit (focused prompts) datasets.

In this paper, we focus on the autocomplete
task of broad prompts from domains such as
Wikipedia, where user prompt patterns often have

1Shen et al. (2020) study the effects of quantization on
different components of Transformer model, on the perfor-
mance in various NLP tasks. They find that the embedding
layer is most sensitive to quantization than other components
and requires more bits to keep performance loss acceptable.

274

https://github.com/UBC-NLP/char_autocomplete
https://github.com/UBC-NLP/char_autocomplete

low frequency (e.g., prompt about 93rd academy

awards). For instance, from Table 1, we observe
that WikiText-103 (broad prompts) contains at least
10% more unique out of vocabulary (OOV) n-
grams compared to the Reddit dataset (focused
prompts). This makes our task more challenging
than conventional settings considered in prior work
which do one of the following: (i) adopt word-
based models that are good at memorizing high-
frequency patterns for focused prompts or (ii) rely
on conventional language modeling which is not
geared for generating precise and short horizon
continuations (see Section 4).

Furthermore, we study this problem for prac-
tical applications under memory-constrained set-
tings. Lower-end edge platforms (e.g., Raspberry
Pi with 256MB of memory (Cai et al., 2020)) have
memory constraints that are more limiting than la-
tency constraints, for supporting various on-device
models. Also, given that autoregressive language
models are memory-bounded (Wang et al., 2021),
we focus on improving the accuracy-memory trade-
off for autocomplete task of broad prompts. Our
work is complementary to existing works in model
compression including those on pruning (Gordon
et al., 2020), quantization (Han et al., 2016) and
distillation (Sanh et al., 2019) that primarily fo-
cus on natural language understanding tasks (e.g.,
text classification). In contrast to these works, we
study the effectiveness of character-based language
models for a natural language generation task (e.g.,
autocomplete).

In this paper, we focus on two research ques-
tions. RQ1: How do character-based autocom-
plete models compare against word counterparts
under memory constraints? RQ2: How to improve
character-based autocomplete models with no neg-
ative impact on memory? We answer RQ1 by
showing that compared to word models, character
models (i) contribute 96% fewer parameters in the
embedding layer due to a much smaller vocabulary,
(ii) work well on low-frequency (or broad) prompt
patterns (e.g., 21% accuracy improvement by us-
ing 20M character model over 20M word model,
see Figure 2 (a)) and (iii) result in high savings
on peak memory utilization (e.g., 4.7% memory
savings by using 20M character model over 20M
word model, see Figure 2 (b)). When controlled
for model size (number of parameters), we find
that smaller character models (e.g., 20M parame-
ters) perform similar to large word models (e.g.,

80M parameters). We answer RQ2 by developing
novel methods to improve the accuracy of char-
acter models, which unlike previous work, have
minimal impact on memory usage. These methods
introduce inductive bias in the form of composi-
tional information and representation transfer from
large word models (best method). We show that
the best method achieves 1.12% and 27.3% relative
accuracy improvements over vanilla character and
vanilla word models respectively with no impact
on memory usage. We discuss the limitations of
our work in Section 8 and defer the analysis of
accuracy-latency trade-off to future work while fo-
cusing only on memory-constrained settings in this
work.

Our major contributions are as follows: (1) To
the best of our knowledge, this is the first study
of the autocomplete task for broad prompts in a
memory-constrained setting. (2) We perform an
extensive comparison of character and word mod-
els across diverse architectures and demonstrate
the advantage of character models over large word
models for the autocomplete task on dimensions
like peak memory utilization and model parame-
ters. (3) We introduce novel methods leveraging
inductive bias to further improve the accuracy of
character models with minimal impact on memory
usage.

2 Related Work

Our work leverages advances in neural language
models, autocompletion, and efficient deep learn-
ing.
Neural Language Models. The autocomplete
models we study in this work utilize Transformer-
based (Vaswani et al., 2017) autoregressive neural
language models as backbone. Compared to word
models, character models lag behind in language
modeling performance when controlled for model
size (Al-Rfou et al., 2019; Choe et al., 2019) and
have a high computational complexity due to long
sequence length (Tay et al., 2022). In this work,
we focus on deploying models on lower-end edge
platforms (e.g., Raspberry Pi) where memory, as
opposed to latency, is the major bottleneck.
Autocomplete Task. Despite the pervasiveness
of autocomplete models, there is limited research
in the academic community on the autocomplete
task. Gmail Smart Compose (Chen et al., 2019) is a
popular word-based autocomplete model for email
suggestions. They find the encoder-decoder archi-

275

tecture to have a higher latency than the decoder-
only architecture. They also find the Transformer
architecture to be marginally better than the LSTM
architecture (Hochreiter and Schmidhuber, 1997).
Motivated by these findings, we employ a decoder-
only, Transformer based architecture for building
our autocomplete model. Trajanovski et al. (2021)
leverage word-based autocomplete models for pro-
viding email and chat suggestions.

In this work, we focus on building autocomplete
models for broad prompts from domains such as
Wikipedia, where user prompt patterns can be quite
low frequency (e.g., prompt about Bruce Vilanch

(Oscars writer), with frequency of only 6 times).
Unlike our prompt completion task, query auto-
completion task is a well researched problem (Bar-
Yossef and Kraus, 2011; Cai and de Rijke, 2016;
Wang et al., 2020; Gog et al., 2020), where the
goal is to complete the user’s query, e.g., search
query. Since user queries are generally short, query
autocomplete models need not track long-range
dependencies to understand the user’s intent. In
contrast, it is a requirement in our prompt comple-
tion setting, as the user prompt can be arbitrarily
large, e.g., sentences or paragraphs.

ChatGPT (OpenAI, 2023b) and GPT-4 (OpenAI,
2023a) are recent dialogue models, which have gar-
nered a great attention from the AI community for
their ability to converse with human-like capabil-
ities. The data used to train these models are not
disclosed by the authors. As it is entirely possi-
ble for their training data to include the test sets
we study in our work and train-test overlap anal-
ysis cannot be performed, we cannot make a fair
comparison of our work with these ‘closed’ AI
models (Rogers et al., 2023). Models such as Al-
paca (Taori et al., 2023), Vicuna (Chiang et al.,
2023), GPT-4-LLM (Peng et al., 2023) that claim
to perform similarly as ChatGPT with few billion
parameters are usually finetuned with outputs from
ChatGPT or GPT-4. Hence, these models cannot
be fairly compared with our work either.

Efficient Deep Learning. Exponential growth in
the size of Transformer-based autoregressive lan-
guage models (e.g., 175B (Brown et al., 2020)) has
given rise to a strong need to make these models
efficient so they can be used on commodity de-
vices like laptop, tablet, and mobile, which have
various resource constraints such as peak memory
utilization and latency, while yielding the best per-
formance under the constraints. To this end, there

has been extensive research on building efficient
Transformer models that are smaller, faster, and bet-
ter, as summarized thoroughly by Tay et al. (2020)
and Menghani (2021). Our work is focused on im-
proving the efficiency of a natural language gener-
ation task (e.g., autocomplete), which has received
less attention from an efficiency perspective. Wang
et al. (2021) observe that 73% of the overall latency
of autoregressive language models goes to memory
intensive data movement operations (e.g., splitting
heads, transpose, reshape) and conclude that these
models are memory intensive. Since lower-end
edge platforms have tighter memory constraints
than latency constraints (Cai et al., 2020), we fo-
cus on improving the accuracy-memory trade-off
of autocomplete models.

3 Autocomplete – Fundamentals

Problem. Given a text sequence x =
(x1, . . . , x|x|) (user input) with tokens from a fixed
vocabulary xi ∈ V , the goal of the autocomplete
task is to generate a completion x̂k+1:N such that
the resulting sequence (x1, . . . , xk, x̂k+1, . . . , x̂N)
resembles a sample from p∗, where p∗(x) denotes
the reference distribution. x can be arbitrarily large
(e.g., paragraphs), while x̂k+1:N is generally short
(e.g., three words). Each token xk can be a word,
character, or subword. The vocabulary V contains
unique tokens from the dataset D consisting of a
finite set of text sequences from p∗.
Data. Most datasets in the autocomplete litera-
ture come from domains with focused prompts
(e.g., emails (Chen et al., 2019; Trajanovski et al.,
2021), chat messages (Trajanovski et al., 2021)).
In this work, we target the autocomplete task on
datasets with broad prompts (e.g., Wikipedia) with
a lot of low-frequency prompt patterns (e.g., the
prompt EACL 2023 conference). Autocomplete mod-
els trained to answer broad prompts can be used to
assist users in completing documents such as essay,
report, letter, etc.
Metrics. The commonly used metric for evaluat-
ing the quality of an autocomplete model is Ex-
actMatch@N (Rajpurkar et al., 2016) which mea-
sures the percentage of the first N words in the
predicted suggestion that exactly match the first
N words in the ground truth suggestion. Exact-
Match@Overall (Chen et al., 2019) is a weighted
average of the ExactMatch for all subsequence
lengths up to K. For our setting, larger n-grams
are increasingly difficult to predict for both word

276

and character models as shown in Figure 3. Hence
we set K to 3. Since the exact match metric strictly
looks for full match of the subsequence, it is a hard
metric to improve on, especially for broad prompts.
One can utilize a less stringent metric such as Par-
tialMatch (Trajanovski et al., 2021). PartialMatch
measures the percentage of characters in the first
N words in the predicted suggestion that exactly
match those of the ground truth suggestion. How-
ever, PartialMatch might not adequately penalize
for the grammatical incorrectness of the predicted
suggestion. Trajanovski et al. (2021) also utilize
metrics that require interactions from real users,
which are difficult to acquire in practice. Given
that the user-based metrics and PartialMatch met-
ric have a strong correlation with ExactMatch in
all the experiments carried out by Trajanovski et al.
(2021), we use the exact match metric to quantify
the performance of the autocomplete model in this
work. We further perform human evaluation to
compare the naturalness and user acceptability of
the suggestions generated by different models.2

Model. We adopt the Transformer architecture,
specifically Transformer-XL (Dai et al., 2019), for
our autocomplete model. We choose Transformer-
XL for the following two reasons: (i) as Dai et al.
(2019) show, the model achieves strong results
on word and character-based language modeling
benchmarks and (ii) the model can handle long text
sequences (e.g., 1600 word tokens or 3800 charac-
ter tokens) which is crucial for treating arbitrarily
long user inputs (x).
Training. We train a decoder-only, Transformer-
XL model that conditions on user input to generate
the suggestion autoregressively. The parameters θ
of the autocomplete model pθ(x) can be optimized
using the standard language modeling objective.
Inference. During inference, the model pθ(x)
takes the user input x1:k ∼ p∗ and generates
the suggestion x̂k+1:N ∼ pθ(.|x1:k) such that
(x1, . . . , xk, x̂k+1, . . . , x̂N) resembles a sample
from p∗. In this work, we choose greedy search
and select the token that receives the highest prob-
ability as the generated token; that is, x̂t =
argmax pθ(xt|x1, . . . , xt−1). As shown in Ap-
pendix A.5 (see Figure 7), beam search performs
poorly on our task and the trends we see in the
next section do not depend on the choice of the

2For our final comparison, however, we report Partial-
Match vs. ExactMatch (Table 2). We do not experiment
with ranking metrics (e.g., mean reciprocal rank) since our
autocomplete model produces just a single suggestion.

decoding algorithm. For simplicity, we assume the
autocomplete model generates exactly one sugges-
tion x̂k+1:N .

4 Character vs. Word Model

Existing autocomplete models are primarily word-
based, i.e., the representation choice for xk is word.
Word-based autocomplete models have the follow-
ing properties: (i) they invest most of the param-
eters (e.g., more than 77%) from the overall pa-
rameter budget on the embedding layer, which is
less likely compressible using standard techniques
such as quantization (Shen et al., 2020) and (ii)
they can memorize high-frequency prompt patterns
and perform well on datasets with focused prompts
(e.g., Reddit posts). In this work, we focus on auto-
completion on broad prompts and we aim to keep
the parameter allocation to the embedding layer
as small as possible thereby improving the overall
memory footprint. To this end, we choose char-
acter as the representation choice and study the
memory-accuracy tradeoff of character based mod-
els on the autocomplete task for broad prompts.
Character-based autocomplete models have several
desirable properties compared to their word based
counterpart, as they (i) invest far fewer parameters
(e.g., less than 4%) of the parameter budget on
the embedding layer and invest most parameters
on other highly compressible Transformer compo-
nents such as self-attention network, feedforward
network, and softmax layer; (ii) perform well on
datasets with broad prompts (as we will show);
and (iii) provide a better tradeoff between accuracy
and memory (model size and peak memory utiliza-
tion). To demonstrate these properties, we perform
extensive experiments on the WikiText-103 bench-
mark (Merity et al., 2017) (unless stated otherwise).
This benchmark contains about 100M tokens from
Wikipedia to simulate broad prompts. Since we
focus on improving the memory footprint of au-
tocomplete models, we do not experiment with
subword models, which introduce a large number
of token embeddings in the embedding layer (e.g.,
50K), compared to their character based counter-
part. In other words, we focus only on character
models that keep the parameter allocation to the
embedding layer as small as possible thereby im-
proving the overall memory footprint.
Component-Wise Parameter Breakdown.
Transformer-XL model can be broken down
into four components: (i) adaptive embedding

277

AdaEmb Softmax Attn FFN
0

20

40

60

80

100
 =77.21

 =0.00 =13.39 =7.50

(a) Word

AdaEmb Softmax Attn FFN
0

20

40

60

80

100

 =3.75 =2.69

 =52.05

 =39.72

(b) Character

Figure 1: Percentage of parameters allocated to a given component w.r.t. different components in Transformer-XL
model aggregated across 100 random architectures.

21% acc.

(a) Accuracy vs. No. of Parameters

4.7% mem.

(b) Accuracy vs. Peak Memory Utilization

Figure 2: Accuracy-Memory Pareto Curve. Each point in the curve has number of model parameters at the end.

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
N

0.05

0.10

0.15

0.20

0.25

0.30

Ex
ac

tM
at

ch
@

N

char80M
word80M

(a) Wikitext-103

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
N

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ex
ac

tM
at

ch
@

N

char_80M
word_80M

(b) Reddit

Figure 3: ExactMatch@N vs. N for word and char. model on first 500 samples from Wiki-103 and Reddit Dev sets.

layers (AdaEmb) (Baevski and Auli, 2019), which
contain shared input and output token embeddings;
(ii) self-attention layers (Attn); (iii) feedforward
network layers (FFN); and (iv) output softmax
layers (Softmax). Figure 1 shows the percentage of
parameters allocated to each component for both
word- and character-based models, averaged over
100 random architectures for each representation.3

Word-based models allocate more than 77% of
the parameters to the embedding layers, which
are less amenable to compression, for purposes of
generating efficient and smaller models. These
models allocate less than 14% and 8% of the
parameter budget to highly compressible layers
such as self-attention and feedforward network
layers. In contrast, character-based models
allocate more than 90% of the parameters to these
highly compressible layers and less than 4% to
the embedding layers. Hence, character-based

3The hyperparameter space used to sample architectures is
shown in Appendix A.2.

100 150 200 250 300 350 400 450 500
cutoff

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Ex
ac

tM
at

ch
@

1

word (Reddit)
char (Reddit)
word (Wikitext)
char (Wikitext)

Figure 4: ExactMatch@1 vs. Cutoff for word and char-
acter model. Cutoff refers to the top k prompts based
on the percentage of OOV n-grams (upto 3) in ascend-
ing (descending) order for WikiText (Reddit), where
k ∈ {100, 250, 500}. Character models perform better
than word models on WikiText (broad prompts) and
vice versa on Reddit (focused prompts).

models have the potential to admit much greater
compression using standard techniques such as
distillation and quantization with a negligible
performance drop.
Accuracy vs. Memory Tradeoff. Although
character-based models seem to have better com-
pression potential, their autocomplete performance
gap over word-based models as a function of mem-

278

ory is not immediately obvious. We study the effect
of memory in two ways: (i) model size, which cor-
responds to the total number of model parameters,
and (ii) peak memory utilization, which measures
the peak amount of memory utilized by a process
during inference. In all our experiments, the de-
coding of character models stops once the desired
number of words (identified by space character) are
predicted. The hyperparameter values for word and
character autocomplete models of different sizes
can be seen in Table 5 and Table 6 respectively. Fig-
ure 2 shows the accuracy-memory pareto curve4.
Surprisingly, we observe that small character mod-
els (e.g., 20M) can rival large word models (e.g.,
80M) in terms of accuracy-memory tradeoff. For
instance, if we use a character model of size 20M
instead of a word model of size 80M, we can save
75% of the model parameters and more than 60%
of the peak memory utilization for a performance
drop of < 0.5 points.
Broad vs. Focused Domain. Prior works (Al-
Rfou et al., 2019; Choe et al., 2019) have found
character models to be lagging behind word models
in language modeling performance. Surprisingly,
small character models perform similarly to or bet-
ter than big word models on the autocomplete task.
We hypothesize that the reason behind the superior
performance of character models in our setting is
due to their ability to answer broad prompts better
than word-based models. To validate this claim, we
compare character and word models on their ability
to answer broad and focused prompts, controlled
for the model size consisting of 80M parameters
each.

From Table 1, we observe that the percentage
of unique out-of-vocabulary (OOV) n-grams in
WikiText-103 is 10% higher than that in the Reddit
dataset. While WikiText and Reddit by nature have
a different vocabulary distribution, the significant
gap in the relative proportions of OOV n-grams in-
dicates that Wikipedia articles cover more diverse
and broad domains. Therefore we simulate broad
prompts using articles from WikiText-103 and fo-
cused prompts with user posts from Reddit.com
website (The Pushshift Reddit Dataset (Baumgart-
ner et al., 2020), see Appendix A.1 for more de-
tails). As shown in Figure 3, the performance
of the word-based model is superior to that of
the character-based model in answering focused

4Hyperparameter values of different model sizes for word
and character models can be found in Appendix A.3.

prompts, but not for answering broad prompts. A
potential reason is the tendency of word-based mod-
els to memorize high-frequency patterns that are
rife in datasets with focused prompts. On the other
hand, character-based models excel on answering
broad prompts (which are the focus of our work)
which can be attributed to their superior ability
in handling low-frequency patterns. We observe
this trend with character-based models when we
report the accuracy on the the top k (‘cutoff’) low
(high) frequent prompt patterns for WikiText (Red-
dit) selected by ranking the prompts based on the
percentage of OOV n-grams (up to 3) in the as-
cending (descending) order (see Figure 4). We also
observe the trend for unseen datasets with broad
prompts (e.g., Penn Treebank, see Appendix A.8).

5 Methods to Improve Character Models

In the previous section, we demonstrated character-
based models to be more efficient than word-based
models for the autocomplete task on broad prompts.
Unlike word-based models, which directly con-
sume words, character-based models are forced
to learn and compose semantically meaningful tex-
tual units (e.g., suffixes, words) from more granular
lexical units in the form of characters. Therefore,
methods that can explicitly integrate information
from semantic units higher than characters (such
as from words or word segments) can propel the
performance of character based models (Park and
Chiba, 2017). However, existing methods primar-
ily focus on improving the accuracy of character
models, often at the expense of memory. For ex-
ample, Park and Chiba (2017) augment a character
model with explicit model parameters for word
embeddings, which add several millions of addi-
tional parameters (e.g., 13M parameters with mod-
est embedding size of 50 and standard WikiText-
103 word vocabulary size of 267K). We introduce
some novel methods that explicitly integrate word
information into the character model with negligi-
ble impact on memory, as discussed next.
BERT-Style Word Segment Embedding. In this
method, we introduce a word segment embedding
layer which acts as an inductive bias by provid-
ing the word segment information explicitly in ad-
dition to character and position embedding lay-
ers (Figure 5 (a)). This word segment embedding
layer is inspired by the sentence segment layer of
BERT (Devlin et al., 2019) which helps the model
distinguish sentences in the textual input. In our

279

Reddit.com

I <space> s a w <space>

EI E<space> Es Ea Ew E<space>

E0 E1 E2 E3 E4 E5

Input

Char.

Position

ws0 ws1 ws2 ws3 ws4 ws5Word

(a) BERT-Style method

I <space> s a w <space>

EI E<space> Es Ea Ew E<space>

E0 E1 E2 E3 E4 E5

Input

Char.

Position

EI E<space> Es Pool (Es,Ea) Pool (Es,Ea ,Ew) E<space>Word

(b) Character pooling method

I <space> s a w

Untrained character model

random init. I saw a cat .

Trained word model

transfer

random init.

(c) Transfer from word models method

Figure 5: Methods to improve character models. Note ‘Position’ in (a), (b) refers to character position embeddings.

case, the word segment embedding layer can help
the model distinguish words in the textual input.
The number of additional model parameters intro-
duced by this layer equals the maximum number
of words in a training input sequence times the em-
bedding dimension, which is generally negligible.

Character Pooling. In this method, we compute
word embeddings by pooling from embeddings of
characters seen so far for the current word (see
Figure 5 (b)). The pooling function takes a set
of character embeddings as input, and outputs
the word embedding which is concatenated with
other embeddings (as additional input) similar to
the previous method. We experiment with non-
parameterized, simple pooling functions such as
sum, mean, and maximum. Unlike the previous
method, the character pooling method does not in-
troduce additional model parameters, due to the
choice of our pooling function. The computation
of word embedding does not involve look-ahead
embeddings from characters belonging to the cur-
rent word (that are not seen at the current timestep),
thus preventing data leakage that could render the
language modeling task trivial.

Transfer from Word Models. In this method, we
initialize a subset of decoder layers of the charac-
ter model with decoder layers from a trained word
model. Unlike previous methods, the decoder layer
transfer method can appropriately exploit the rich
syntactic and semantic information learned by the
word model, which serves as a good starting point
for training a character model rather than training
from scratch. Figure 5 (c) illustrates the transfer of
the bottom 50% of decoder layers from the word
model to the character model. Similar to the charac-
ter pooling method, this method does not introduce
additional model parameters. Rather, this method
introduces a novel hyperparameter that controls the
percentage of word-level bottom layers to transfer
into our character-level model, which is tuned on
the validation set. To the best of our knowledge, no
prior work has explored transferring layers from
a source trained model, where the source and the
target model have very different vocabularies.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Context Percent

0.115
0.120
0.125
0.130
0.135
0.140
0.145
0.150

Ex
ac

tM
at

ch
@

Ov
er

al
l

baseline
BERT-style
mean pool
max pool
sum pool

Figure 6: Improvements of char. models of size 80M
with BERT-style word segment and char. pooling over
baseline char. model on WikiText-103 validation set.

6 Results

We now discuss improvements on training charac-
ter models by employing our novel methods over
training a baseline character model from scratch.
Improvements w.r.t context percent. Figure 6
shows improvements of character models of size
80M with BERT-style word segment embedding
and character pooling methods. Context percent
corresponds to the percentage of initial tokens
taken from a Wikipedia paragraph to construct
the prompt, while the rest of the tokens form the
ground truth. BERT-style word segment outper-
forms the baseline and character pooling methods
on all context percent values. We attribute the infe-
rior performance of the character pooling methods
to their inability to track the order of the characters
while computing the word representation. Among
different pooling functions, the max function per-
forms well on most context percent values. When
the context percent is very low (e.g., 0.2-0.35), it
is interesting to see that all methods perform sim-
ilar or outperform the baseline. This result shows
that integrating word information explicitly is es-
pecially crucial when the prompts are ambiguous
or contain few tokens (i.e., context percent is low).
We omit the character pooling method from our
further analysis due to its inferior performance.
Quantitative Analysis. Table 2 shows the perfor-
mance improvements of proposed baseline char-
acter model as well as its proposed variants over
baseline word model of size 10M. To transfer de-
coder layers from the word model, we first train
a 20-layer word model that has the same Trans-

280

Models Exact Match
Overall (%)

Partial Match
Overall (%)

Naturalness
(%)

Acceptability
(%)

Human 100 100 88 100

Base (Word) 8.51 13.76 53 87

Base (Char) 10.71
(+25.9%)

15.37
(+11.7%)

62
(+16.9%)

93 (+6.9%)

BERT-st.
(Char)

10.78
(+26.7%)

15.42
(+12.1%)

59
(+11.3%)

93 (+6.9%)

Transfer fr.
word (Char)

10.83
(+27.3%)

15.5 (+12.6%) 69 (+30%) 94 (+8.1%)

Table 2: Improvements of various proposed models over
baseline word model of the same size (10M parameters)
on the WikiText-103 test set.

former shape (i.e., number of heads, head dimen-
sion, model dimension, and inner dimension in
feedforward layer) as the baseline word model and
transfer the bottom 10% of the decoder layers from
the word model to initialize our character model.5

Consistent with the findings of Trajanovski et al.
(2021), we observe the improvements in Exact-
Match@Overall and PartialMatch@Overall met-
rics to be highly correlated. Both “BERT-style
word segment" and “transfer from word model"
methods improve upon the baseline word model
by at least 26% and 12% (shown in Table 2), in
terms of ExactMatch and PartialMatch respectively.
These methods also improve upon the baseline char-
acter model by at least 0.7% and 0.3% (not explic-
itly shown in Table 2), in terms of ExactMatch
and PartialMatch respectively. Importantly, com-
pared to the “BERT-style word segment” method
that introduces 384K additional parameters, our
“transfer from word model” method does not intro-
duce any additional parameters. This demonstrates
the advantage of “transfer from word models” in
improving baseline character model (as compared
to our other methods), while leaving no impact on
memory. We also perform human evaluation of sug-
gestions generated by various autocomplete models
based on their naturalness and acceptability. Natu-
ralness measures how natural the suggestion is with
respect to the prompt while acceptability measures
how likely the suggestion will be accepted by user
(details in A.11). Human suggestions taken from
WikiText-103 have a naturalness and user accept-
ability score of 88% and 100% as rated by anno-
tators. We observe that the “transfer from word
models” method generates most natural and user
acceptable suggestions (69%, 94% resp.), which is
better than the baseline character (62%, 93% resp.)

5The hyperparameter space for the transfer from word
models method can be seen in Appendix A.4.

second only to the human baseline (88%, 100%
resp.).

Prompt and Suggestions
Prompt: The Olmec civilization developed in the lowlands of southeastern Mexico ...
, the Indus Valley Civilization of south Asia
Ground truth: , the civilization
Baseline: , and the
BERT-style: , the indus
Transfer from word models: , the civilization
Prompt: Typhoon Lupit formed on November 18 from the monsoon trough to the
west of the Marshall Islands . Early in its duration , it moved generally to
Ground truth: the west or
Baseline: the north of
BERT-style: the west of
Transfer from word models: the west of

Table 3: Sample suggestions of length 3 words gener-
ated by baseline and proposed character autocomplete
models. See Appendix A.9 for more examples.

Qualitative Analysis. Tables 3 and 9 (Ap-
pendix A.9) show sample suggestions generated
by the proposed baseline character autocomplete
model as well as its proposed variants. Suggestions
generated by the strongest method seem to have
better match with the ground truth and factually
(e.g., direction of typhoon) correct.6

7 Conclusion

In this work, we investigated the challenging task of
building autocomplete models for answering broad
prompts under memory-constrained settings. To
this end, we introduced some novel methods that
integrate word information into a character model
with negligible impact on memory. Employing our
methods, we demonstrated that character models
can achieve a better accuracy-memory trade-off as
compared to word models.

8 Limitations

The limitations of this work are as follows:

• English. Our work builds autocomplete mod-
els for English language only.

• Accuracy-memory tradeoff only. Our work
primarily focuses on deploying models on
lower-end edge platforms where memory, as
opposed to latency, is the major bottleneck.
Hence, our methods may not improve the
accuracy-latency tradeoff, which is a focus
for future work.

• WikiText-103 dataset Our work explores
only WikiText-103 dataset for creating broad
prompts. In the future, we will study

6We provide a qualitative analysis of the baseline and
proposed character models in the Appendix A.10.

281

other datasets (e.g., 1 Billion Word Lan-
guage Model benchmark (Chelba et al., 2013))
that explore the full range of low-frequency
prompt patterns, which can arise in real-world
situations.

• Transformer-XL architecture Our work
studies only Transformer-XL architecture to
build word based and character based auto-
complete models. In the future, we will study
other popular architectures (e.g., GPT-2 (Rad-
ford et al., 2018)) to see the generalizability
of proposed techniques.

Acknowledgements

MAM acknowledges support from Canada Re-
search Chairs (CRC), the Natural Sciences and En-
gineering Research Council of Canada (NSERC;
RGPIN-2018-04267), Canadian Foundation for In-
novation (CFI; 37771), and Digital Research Al-
liance of Canada.7 Lakshmanan’s research was sup-
ported in part by a grant from NSERC (Canada).

References
Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy

Guo, and Llion Jones. 2019. Character-level lan-
guage modeling with deeper self-attention. In AAAI.

Alexei Baevski and Michael Auli. 2019. Adaptive input
representations for neural language modeling. In In-
ternational Conference on Learning Representations.

Ziv Bar-Yossef and Naama Kraus. 2011. Context-
sensitive query auto-completion. In Proceedings of
the 20th International Conference on World Wide
Web, WWW ’11, page 107–116. Association for
Computing Machinery.

Jason Baumgartner, Savvas Zannettou, Brian Keegan,
Megan Squire, and Jeremy Blackburn. 2020. The
Pushshift Reddit Dataset. CoRR, abs/2001.08435.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.
7https://alliancecan.ca

Fei Cai and Maarten de Rijke. 2016. A Survey of Query
Auto Completion in Information Retrieval. Now Pub-
lishers Inc.

Han Cai, Chuang Gan, Ligeng Zhu, and Song Han.
2020. Tinytl: Reduce memory, not parameters for
efficient on-device learning. In Advances in Neural
Information Processing Systems, volume 33, pages
11285–11297.

Ciprian Chelba, Tomás Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, and Phillipp Koehn. 2013. One
billion word benchmark for measuring progress in
statistical language modeling. CoRR, abs/1312.3005.

Mia Xu Chen, Benjamin N. Lee, Gagan Bansal, Yuan
Cao, Shuyuan Zhang, Justin Lu, Jackie Tsay, Yi-
nan Wang, Andrew M. Dai, Zhifeng Chen, Timothy
Sohn, and Yonghui Wu. 2019. Gmail Smart Com-
pose: Real-Time Assisted Writing. In Proceedings of
the 25th ACM SIGKDD International Conference on
Knowledge Discovery And Data Mining, KDD ’19,
page 2287–2295.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Dokook Choe, Rami Al-Rfou, Mandy Guo, Heey-
oung Lee, and Noah Constant. 2019. Bridging the
Gap for Tokenizer-Free Language Models. CoRR,
abs/1908.10322.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2978–2988, Florence, Italy. Asso-
ciation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Yao Dou, Maxwell Forbes, Rik Koncel-Kedziorski,
Noah Smith, and Yejin Choi. 2022. Is GPT-3 text
indistinguishable from human text? scarecrow: A
framework for scrutinizing machine text. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 7250–7274, Dublin, Ireland. Association
for Computational Linguistics.

Simon Gog, Giulio Ermanno Pibiri, and Rossano Ven-
turini. 2020. Efficient and effective query auto-

282

https://openreview.net/forum?id=ByxZX20qFQ
https://openreview.net/forum?id=ByxZX20qFQ
https://doi.org/10.1145/1963405.1963424
https://doi.org/10.1145/1963405.1963424
http://arxiv.org/abs/2001.08435
http://arxiv.org/abs/2001.08435
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://alliancecan.ca
http://arxiv.org/abs/1312.3005
http://arxiv.org/abs/1312.3005
http://arxiv.org/abs/1312.3005
https://doi.org/10.1145/3292500.3330723
https://doi.org/10.1145/3292500.3330723
https://vicuna.lmsys.org
https://vicuna.lmsys.org
https://vicuna.lmsys.org
http://arxiv.org/abs/1908.10322
http://arxiv.org/abs/1908.10322
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.acl-long.501
https://doi.org/10.18653/v1/2022.acl-long.501
https://doi.org/10.18653/v1/2022.acl-long.501

completion. In Proceedings of the 43rd Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, SIGIR ’20, page
2271–2280.

Mitchell A. Gordon, Kevin Duh, and Nicholas Andrews.
2020. Compressing BERT: Studying the Effects
of Weight Pruning on Transfer Learning. CoRR,
abs/2002.08307.

Song Han, Huizi Mao, and William J. Dally. 2016. Deep
compression: Compressing deep neural networks
with pruning, trained quantization and huffman cod-
ing. ICLR.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Comput.,
9(8):1735–1780.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of english: The penn treebank. Comput. Lin-
guist., 19(2):313–330.

Gaurav Menghani. 2021. Efficient deep learning: A sur-
vey on making deep learning models smaller, faster,
and better. CoRR, abs/2106.08962.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In International Conference on Learning Repre-
sentations.

OpenAI. 2023a. Gpt-4 technical report.

OpenAI. 2023b. Introducing chatgpt.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Ngoc Quan Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. 2016. The LAMBADA dataset: Word
prediction requiring a broad discourse context. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1525–1534, Berlin, Germany.
Association for Computational Linguistics.

Dae Hoon Park and Rikio Chiba. 2017. A neural lan-
guage model for query auto-completion. In Proceed-
ings of the 40th International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, SIGIR ’17, page 1189–1192. Association
for Computing Machinery.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277.

Alec Radford, Karthik Narasimhan, Tim Salimans,
and Ilya Sutskever. 2018. Improving Language Un-
derstanding by Generative Pre-Training. https://
s3-us-west-2.amazonaws.com/openai-assets/
research-covers/language-unsupervised/
language_understanding_paper.pdf.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Anna Rogers, Niranjan Balasubramanian, Leon Der-
czynski, Jesse Dodge, Alexander Koller, Sasha Luc-
cioni, Maarten Sap, Roy Schwartz, Noah A. Smith,
and Emma Strubell. 2023. Closed ai models make
bad baselines.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W. Mahoney, and Kurt
Keutzer. 2020. Q-BERT: hessian based ultra low pre-
cision quantization of BERT. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of
Artificial Intelligence Conference, IAAI 2020, The
Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020, pages 8815–8821. AAAI
Press.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Met-
zler. 2020. Efficient transformers: A survey. CoRR,
abs/2009.06732.

Yi Tay, Vinh Q. Tran, Sebastian Ruder, Jai Gupta,
Hyung Won Chung, Dara Bahri, Zhen Qin, Simon
Baumgartner, Cong Yu, and Donald Metzler. 2022.
Charformer: Fast character transformers via gradient-
based subword tokenization. In International Con-
ference on Learning Representations.

Stojan Trajanovski, Chad Atalla, Kunho Kim, Vipul
Agarwal, Milad Shokouhi, and Chris Quirk. 2021.
When does text prediction benefit from additional
context? an exploration of contextual signals for chat
and email messages. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies: Industry Papers, pages 1–9,
Online. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Pro-
cessing Systems, pages 6000–6010.

Hanrui Wang, Zhekai Zhang, and Song Han. 2021. Spat-
ten: Efficient sparse attention architecture with cas-

283

http://arxiv.org/abs/2002.08307
http://arxiv.org/abs/2002.08307
http://arxiv.org/abs/2106.08962
http://arxiv.org/abs/2106.08962
http://arxiv.org/abs/2106.08962
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
http://arxiv.org/abs/2303.08774
https://openai.com/blog/chatgpt
https://doi.org/10.18653/v1/P16-1144
https://doi.org/10.18653/v1/P16-1144
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://hackingsemantics.xyz/2023/closed-baselines/
https://hackingsemantics.xyz/2023/closed-baselines/
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
http://arxiv.org/abs/2009.06732
https://openreview.net/forum?id=JtBRnrlOEFN
https://openreview.net/forum?id=JtBRnrlOEFN
https://doi.org/10.18653/v1/2021.naacl-industry.1
https://doi.org/10.18653/v1/2021.naacl-industry.1
https://doi.org/10.18653/v1/2021.naacl-industry.1

cade token and head pruning. In 2021 IEEE Interna-
tional Symposium on High-Performance Computer
Architecture (HPCA), pages 97–110. IEEE.

Sida Wang, Weiwei Guo, Huiji Gao, and Bo Long. 2020.
Efficient neural query auto completion. In Proceed-
ings of the 29th ACM International Conference on
Information and Knowledge Management, CIKM
’20, page 2797–2804.

A Appendices

A.1 Reproducibility

We experiment with both Reddit and WikiText-
103 datasets. WikiText-103 is a public dataset and
widely adopted as a language modeling benchmark.
WikiText-103 is downloaded from tinyurl.com/
yajy5wjm. The Reddit dataset used in this work
is a sample of publicly available Pushshift Red-
dit dataset (Baumgartner et al., 2020). The sam-
ple contains 4M train, 20K validation and 20K
test posts. The key feature of the Reddit dataset
is the significantly low percentage of unique out
of vocabulary n-grams compared to WikiText-103,
as shown in Table 1 and discussed in Section 4.
For reproducibility, datasets and code used in
this work is available at tinyurl.com/bdd69r34
(anonymized) and will be made publicly available
should paper be accepted.

A.2 Hyperparameter space for computing
component-wise parameter breakdown

Table 7 displays the Transformer-XL hyperparame-
ter space used to create 100 random architectures
for computing component-wise parameter break-
down plot (Figure 1) for both word and charac-
ter models. Rest of the hyperparameters come
from the default configuration of Transformer-XL
model.

A.3 Hyperparameter values for word and
character models of different sizes

Table 5 displays the hyperparameter values for
word models of different sizes used in the paper.
Table 6 displays the hyperparameter values for char-
acter models of different sizes used in the paper.

A.4 Hyperparameter space for transfer from
word models method

Table 7 displays the hyperparameter space for the
proposed transfer from word models method.

A.5 Greedy vs. Beam search decoding

Figure 7 shows the pareto-curve for greedy and
beam search. It is clear that smaller character
models rival bigger word models regardless of the
choice of decoding algorithm. Strikingly, we find
greedy search to outperform beam search by a large
margin. Two possible reasons are: (i) the noise in-
jected by the adaptive softmax approximation of
predicted probability distribution over vocabulary,
and/or (ii) sensitivity of beam search to explore

284

https://doi.org/10.1145/3340531.3412701
tinyurl.com/yajy5wjm
tinyurl.com/yajy5wjm
tinyurl.com/bdd69r34

Hyperparameter Name Hyperparameter Values for Sampling
Number of hidden layers { 2, 4, 8, 12, 16, 24, 32 }
Number of attention heads { 2, 4, 8, 16, 32, 64 }
Dimension of attention head { 8, 16, 32, 64, 128 }
Dimension of input/output embedding { 256, 512, 1024, 2048 }
Inner dimension of feedforward layer { 256, 512, 1024, 2048 }
Dimension of model { 256, 512, 1024, 2048 }

Table 4: Hyperparameter space for computing component-wise parameter breakdown for both word and character
models.

Hyperparameter name / Model size 5M 10M 20M 30M 40M 50M 80M
Number of hidden layers 3 4 6 12 14 16 16
Number of attention heads 4 4 8 8 8 8 32
Dimension of attention head 24 24 32 32 32 32 32
Dimension of input/output embedding 18 36 74 100 128 160 256
Inner dimension of feedforward layer 60 150 200 768 900 800 768
Dimension of model 18 36 74 100 128 160 256
Number of tokens to predict during training 192 192 192 192 192 192 192
Number of tokens cached from previous iterations
during training

192 192 192 192 192 192 192

Learning rate 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Number of iterations for learning rate warmup 1K 1K 1K 1K 1K 1K 1K
Maximum number of training steps 200K 200K 200K 200K 200K 200K 200K
Batch size 256 256 256 256 256 256 256
Number of tokens to predict during evaluation 192 192 192 192 192 192 192
Number of tokens cached from previous iterations
during evaluation

192 192 192 192 192 192 192

Vocabulary size 267736 267736 267736 267736 267736 267736 267736

Table 5: Hyperparameter values for word models of different sizes.

spurious hypothesis when the user prompt patterns
are low frequency.

A.6 Differences of Autocomplete from
Conventional Language Modeling Task.

The autocomplete task is a well-defined problem
with rich prior literature (see Section 2). Existing
autocomplete research, including ours, is focused
on building a conventional language model that
computes the likelihood of a text sequence. The
training procedure for our autocomplete task and
that for conventional language modeling (CLM)
task are generally similar. However, the goal of
our autocomplete task is to generate suggestions
with high precision (as captured by ExactMatch)
while the main goal of CLM is to maximize the
overall data likelihood (as captured by perplex-
ity). Chen et al. (2019) show that perplexity and
ExactMatch metrics are only weakly correlated as
improvements in perplexity could be “mostly in
places where the model is relatively low in likeli-
hood score”. As shown in Figure 8, autocomplete
models with poorer perplexity scores (e.g., char-
acter model of size 20M) can enjoy better Exact-
Match scores compared to models with better per-
plexity scores (e.g., word model of size 20M). We

also perform a theoretical analysis to show how per-
plexity scores can change drastically for the same
ExactMatch score (details in Appendix A.7). Thus,
building a good language model is not enough to
solve the autocomplete task. Another major con-
ceptual difference between CLM and autocomplete
tasks is that the former focuses mainly on generat-
ing long horizon (typically 128-512 tokens) contin-
uation while the latter focuses on generating short
horizon (typically 3-5 tokens) continuation.

A.7 Theoretical analysis on differences in
perplexity and Exact Match metrics

We will conduct a theoretical study to show the
differences in the information captured by perplex-
ity and Exact Match metric. Specifically, we show
that the exact match score can be perfect whereas
perplexity score can either be perfect or worsen
by a large margin (Claim 1). Conversely, we also
show that the exact match score can be the worst
(i.e., zero) whereas the perplexity score can be poor
or better by a large margin (Claim 2). Without loss
of generality, we assume the vocabulary size V to
be 2. Let A, B be the two tokens corresponding to
the first and second index in the vocabulary respec-
tively. Consider a single token prediction (x̂j) and

285

Hyperparameter name / Model size 5M 10M 20M 80M
Number of hidden layers 12 12 12 16
Number of attention heads 8 8 8 8
Dimension of attention head 32 32 64 64
Dimension of input/output embedding 278 512 550 750
Inner dimension of feedforward layer 128 165 250 2048
Dimension of model 278 512 550 750
Number of tokens to predict during training 512 512 512 512
Number of tokens cached from previous iterations during training 512 512 512 512
Learning rate 0.001 0.001 0.001 0.001
Number of iterations for learning rate warmup 4K 4K 4K 4K
Maximum number of training steps 400K 400K 400K 400K
Batch size 128 128 128 128
Number of tokens to predict during evaluation 512 512 512 512
Number of tokens cached from previous iterations during evaluation 2K 2K 2K 2K
Vocabulary size 128 128 128 128

Table 6: Hyperparameter values for character models of different sizes.

Hyperparameter Name Hyperparameter Values
Number of hidden layers { 4, 8, 12, 16, 20, 24 }
Percentage of bottom most layers to transfer { 10%, 20%, 30%, 40%, 50% }

Table 7: Hyperparameter space for transfer from word models method.

10 20 30 40 50 60 70 80
No. of Parameters (M)

7

8

9

10

11

12

Ex
ac

tM
at

ch
@

O
ve

ra
ll

char_5

char_10

char_20

char_80

word_5

word_10
word_20

word_30

word_40
word_50

(a) Greedy search

10 20 30 40 50 60 70 80
No. of Parameters (M)

6

7

8

9

10

Ex
ac

tM
at

ch
@

O
ve

ra
ll

char_5
char_10

char_20

char_80

word_5

word_10word_20

word_30

word_40
word_50

(b) Beam search

Figure 7: Greedy search vs. Beam search on WikiText-103 test set. Beam size and prompt context percentage is set
as 5 and 20% respectively.

25 50 75 100 125 150 175 200
Perplexity

7

8

9

10

11

12

Ex
ac

tM
at

ch
@

Ov
er

al
l

char_20

char_10

char_5

word_80
word_40

word_20

word_5

word_50

word_10

word_30

Figure 8: Perplexity vs. ExactMatch. For comparison,
perplexity output by character models (also known as
bits per byte) is converted to perplexity per word using
the formula proposed in Choe et al. (2019).

let the ground truth token be B, that is, x̂j = [0, 1].
Table 8 shows the differences in perplexity score
and Exact Match score as a function of x̂j , as it
varies slightly. The first six rows in the table vali-
date Claim 1, where exact match score is 1 but the
perplexity ranges −9.9e−10 to 0.67. The rest of
the rows validate Claim 2, where the exact match
score is 0 but the perplexity score ranges from 0.69
to 20.72.

A.8 Accuracy-Memory Pareto-Curve on
Unseen Datasets

We study the accuracy-memory pareto curve of au-
tocomplete models trained on WikiText-103 and
evaluate on the test set of two unseen datasets:
LAnguage Modeling Broadened to Account for
Discourse Aspects (Paperno et al., 2016) (LAM-
BADA, mostly focused prompts) and Penn Tree-
bank (Marcus et al., 1993) (PTB, mostly broad
prompts). From Figure 9, we observe that the

286

Ground truth (xj) Prediction (x̂j) Exact Match Perplexity

[0, 1] [0, 1] 1 −9.9e−10
[0, 1] [0.1, 0.9] 1 0.11
[0, 1] [0.2, 0.8] 1 0.22
[0, 1] [0.3, 0.7] 1 0.36
[0, 1] [0.4, 0.6] 1 0.51
[0, 1] [0.49, 0.51] 1 0.67
[0, 1] [0.5, 0.5] 0 0.69
[0, 1] [0.51, 0.49] 0 0.71
[0, 1] [0.6, 0.4] 0 0.92
[0, 1] [0.7, 0.3] 0 1.2
[0, 1] [0.8, 0.2] 0 1.61
[0, 1] [0.9, 0.1] 0 2.3
[0, 1] [1.0, 0] 0 20.72

Table 8: Differences in perplexity and Exact Match as function of small changes in x̂j when the ground truth is
[0, 1].

trend where smaller character models rival larger
word models that holds true for answering broad
prompts (PTB) but not clearly for answering fo-
cused prompts (LAMBADA). It is striking that the
trend holds true for broad prompts even when the
examples are unseen during the training of the au-
tocomplete model.

A.9 Qualitative examples of suggestions from
autocomplete models

Table 9 displays sample suggestions generated by
vanilla and proposed character autocomplete mod-
els, grouped by the type of artifact in the genera-
tion.

A.10 Qualitative analysis of vanilla and
proposed character models

We manually inspect the suggestions generated by
vanilla and proposed character models8. Table 10
displays the percentage of different artifacts: plau-
sible (plausible suggestion that does not have exact
match with the ground truth), semantic error (e.g.,
new n-gram, incorrect n-gram usage), repetition
(e.g., n-gram with repetitions), and grammatical
error. Compared to baseline and BERT-style word
segment model, character model with decoder layer
transfer from word model results in less undesir-
able artifacts overall.

A.11 Human annotation of suggestions

We conduct human annotation of suggestions out-
putted by various autocomplete models based on
naturalness (how natural the suggestion is with re-
spect to the prompt?) and acceptability (whether

8Sample suggestions from different autocomplete models
can be seen in Appendix A.9.

the suggestion will be accepted by user or not?).
Some aspects of natural suggestion are borrowed
from Dou et al. (2022). The annotation guideline
for naturalness and acceptability can be seen in
Table 11 and Table 12 respectively. We ask 8 anno-
tators to rate 10 suggestions each.

287

10 20 30 40 50 60 70 80
No. of Parameters (M)

4.0

4.5

5.0

5.5

6.0

Ex
ac

tM
at

ch
@

O
ve

ra
ll

char_5

char_10

char_20

char_80

word_5

word_10

word_20

word_30

word_40word_50
word_80

lambda

(a) LAMBADA (Paperno et al., 2016)

10 20 30 40 50 60 70 80
No. of Parameters (M)

2.5

3.0

3.5

4.0

4.5

Ex
ac

tM
at

ch
@

O
ve

ra
ll

char_5

char_10
char_20

char_80

word_5

word_10
word_20

word_30
word_40

word_50

word_80

ptb

(b) PTB (Marcus et al., 1993)

Figure 9: Accuracy-Memory Pareto Curve for Autocomplete models trained on WikiText-103 and evaluated on test
set of two unseen datasets: LAMBADA and PTB.

Artifact
type

Prompt and Suggestions

Plausible

Prompt: In 2006 Boulter starred in the play Citizenship written by Mark Ravenhill . The play was part of a
series which featured different playwrights , titled Burn / Chatroom / Citizenship . In a 2006
Ground truth: interview , fellow
Baseline: interview , ravenhill
BERT-style: interview with the
Transfer from word models: interview with the

Plausible

Prompt: In December 759 , he briefly stayed in Tonggu (modern Gansu) . He departed on December 24 for
Chengdu (Sichuan province) , where he was hosted by local Prefect and
Ground truth: fellow poet Pei
Baseline: servant and served
BERT-style: chief executive officer
Transfer from word models: commissioned as a

Semantic
error

Prompt: In his lifetime and immediately following his death , Du Fu was not greatly appreciated . In part this
can be attributed to his stylistic and formal innovations, some of which are still "considered extremely daring
and bizarre by Chinese critics ." There are few contemporary references to him — only eleven poems from six
writers — and these describe him in terms of affection, but not as a
Ground truth: paragon of poetic
Baseline: reference to his
BERT-style: poem . the
Transfer from word models: consequence of his

Semantic
error

Prompt: Other translators have placed much greater weight on trying to convey a sense of the poetic forms
used by Du Fu . Vikram Seth in Three Chinese Poets uses English @-@ style rhyme schemes , whereas Keith
Holyoak in Facing the Moon approximates the Chinese rhyme scheme ; both use end @-@ stopped lines and
preserve some degree of parallelism . In The Selected Poems of Du Fu , Burton Watson follows the parallelisms
quite strictly , persuading the western reader to adapt to the poems rather than
Ground truth: vice versa .
Baseline: to the poems
BERT-style: adapt the poems
Transfer from word models: the parallelisms of

Repetition

Prompt: Although initially he was little @-@ known to other writers , his works came to be hugely influential
in both
Ground truth: Chinese and Japanese
Baseline: the writers and
BERT-style: writers and writers
Transfer from word models: the ancient and

Repetition

Prompt: In the 20th century , he was the favourite poet of Kenneth
Ground truth: Rexroth , who
Baseline: kenneth kenneth kenneth
BERT-style: county . the
Transfer from word models: kenneth kenneth kenneth

Grammatical
error

Prompt: Hung summarises his life by concluding that ,
Ground truth: " He appeared
Baseline: according to ksummarises
BERT-style: in the same
Transfer from word models: as a result

Table 9: Sample suggestions of length 3 words generated by vanilla and proposed character autocomplete models,
grouped by the type of artifact in the generation.

288

Artifact type Baseline BERT-style w. seg. Transfer from word models

Plausible (↑) 40 40 42
Semantic Error (↓) 7 6 7
Repetition (↓) 7 7 5
Gram. Error (↓) 3 3 2

Table 10: Percentage of different artifacts in the generated suggestion from vanilla and proposed character models,
by manual inspection of 100 WikiText-103 examples. ↑ indicates higher the better, ↓ indicates lower the better.

Autocomplete is a task where the user inputs a text, which is conditioned by the model to generate
‘natural’ continuation (or suggestion). The goal of this annotation effort is to rate the quality of
suggestions generated by various autocomplete models based on the ‘natural’ness. Each suggestion
will be at most three words. Keep in mind that there could be more than one ‘natural’ suggestion for a
text.

Some aspects of suggestion (but don’t restrict only to these) that makes a suggestion NOT natural
can be: grammatical error (missing words, extra words, incorrect or out of order words), redundancy
(extra unnecessary information, word repetition), off-prompt (suggestion is unrelated to the text),
self-contradiction (suggestion contradicts the text), incoherence (grammatical, not redundant, on
prompt, not contradictory but still CONFUSING), factual or commonsense errors (violates our basic
understanding of the world) and so on. Assume a broad definition of ‘natural’ness and use your best
judgement to rate.

You will be asked to annotate TEN texts. For each text, you will see a suggestion and you will rate by
picking exactly one of the two choices:
(i) natural - Select this option if suggestion is natural with respect to the text
(ii) NOT natural - Select this option if suggestion is NOT natural with respect to the text

Table 11: Annotation guideline for human annotators to rate the quality of suggestions generated by autocomplete
models and humans based on naturalness.

Autocomplete is a task where a user inputs a text (prompt), which is conditioned by the model to
generate ‘natural’ continuation (or suggestion). For example, the user can give the prompt “Filmmaker
George Lucas used Tikal as a”, and the system may give a suggestion such as “filming location”.
An autocomplete system is successful if it can reduce the keystrokes a user would need to make,
improving user productivity. The goal of this annotation task is to decide if (i) a suggestion generated
by an autocomplete model will be accepted by a user (to reduce the keystrokes) or (ii) not. Each
suggestion will be at most three words.

You can accept the suggestion if it is useful. A suggestion can be useful for one or more reasons
(but don’t restrict only to these): (i) the suggestion seems completely relevant to the prompt; (ii) the
suggestion can be minimally edited for it to be useful. Note that reasons for acceptability are generally
subjective. Hence, please assume a broad definition of “usefulness” and employ your best judgment to
rate.

You will be asked to annotate 10 texts. For each text, you will see a suggestion and you will rate by
picking exactly one of the two choices:
(i) yes - Select this option if you will accept the suggestion
(ii) no - Select this option if you will not accept the suggestion

The following is an example:
Filmmaker George Lucas used Tikal as a
Suggestion: filming location
Rating choices:
(i) yes - Select this option if you will accept the suggestion
(ii) no - Select this option if you will not accept the suggestion
Rating [type ’yes’ or ’no’ here in this line]: yes

Table 12: Annotation guideline for human annotators to rate the quality of suggestions generated by autocomplete
models and humans based on acceptability.

289

