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Abstract

Due to the high costs associated with finetuning
large language models, various recent works
propose to adapt them to specific tasks with-
out any parameter updates through in-context
learning. Unfortunately, for in-context learn-
ing there is currently no way to leverage unla-
beled data, which is often much easier to ob-
tain in large quantities than labeled examples.
In this work, we therefore investigate ways to
make use of unlabeled examples to improve the
zero-shot performance of pretrained language
models without any finetuning: We introduce
Semantic-Oriented Unlabeled Priming (SOUP),
a method that classifies examples by retrieving
semantically similar unlabeled examples, as-
signing labels to them in a zero-shot fashion,
and then using them for in-context learning. We
also propose bag-of-contexts priming, a new
priming strategy that is more suitable for our
setting and enables the usage of more examples
than fit into the context window.

1 Introduction

In recent years, there has been a trend in NLP to-
wards larger and larger language models (LMs)
(Radford et al., 2018, 2019; Raffel et al., 2020;
Brown et al., 2020; Fedus et al., 2021). Different
from prior pretrained LMs that are typically fine-
tuned for specific downstream tasks using labeled
training datasets (Devlin et al., 2019; Liu et al.,
2019), recent work proposes to use such large mod-
els in zero- or few-shot settings without any fine-
tuning (Brown et al., 2020; Sanh et al., 2021) due
to the often prohibitive costs associated with train-
ing, storing and deploying large models (Strubell
et al., 2019). In particular, Brown et al. (2020) pro-
pose priming where training examples are simply
provided as additional context together with test
examples; this in-context learning does not require
updating the parameters of the model.

In prior work on in-context learning, only la-
beled examples are used for priming (Brown et al.,
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Figure 1: Schematic representation of the steps involved
in SOUP for binary sentiment classification of movie
reviews. (1) Semantic Search: For a given input x, we
retrieve semantically similar, unlabeled examples from a
set UD using a sentence encoder E. (2) Self-Prediction:
We obtain zero-shot predictions for all similar examples
using natural language prompts. (3) Bag-of-Contexts
Priming: We use the retrieved examples along with
their most probable labels one at a time as in-context
examples to obtain predictions for x; the resulting dis-
tributions over possible labels are finally averaged.

2020; Lu et al., 2021; Kumar and Talukdar, 2021;
Min et al., 2021; Jiang et al., 2021). But in many
settings, these are extremely scarce or even entirely
unavailable, while unlabeled examples can easily
be accessed. Unfortunately, there is currently no
way to leverage unlabeled examples for priming.
Other approaches for leveraging unlabeled data
such as domain-adaptive pretraining (Gururangan
et al., 2020) would again require finetuning.

Therefore, we investigate how we can make use
of unlabeled examples to improve the performance
of large-scale language models without requiring
changes to their parameters: We propose a self-
supervised method called Semantic-Oriented Unla-
beled Priming (SOUP), which uses unlabeled exam-
ples for in-context learning. Following the observa-
tion that semantically similar examples are better
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candidates as in-context examples than dissimilar
ones (Gao et al., 2021a; Liu et al., 2021), we first
retrieve the semantically most similar unlabeled
examples as contexts for a given input; then, we
query the language model to obtain predictions for
these unlabeled examples, and finally provide them
along with their most likely labels as additional
context. Intuitively, this approach is particularly
helpful whenever the retrieved examples are easier
to classify then the actual input of interest.

Whereas in prior work, the in-context examples
and test example are usually concatenated to form a
single input that is provided to the LM, we propose
to use one in-context example at a time and com-
pute a weighted average of the so-obtained label
distributions to obtain a final prediction. Besides re-
sulting in much better performance, one benefit of
this methods is that we are no longer constrained by
the maximum sequence length of the used LM and
thus, more neighbors can be used for priming than
with the usual, concatenation-based approach. We
also investigate an iterative variant of our approach
where predictions for unlabeled examples are it-
eratively improved with SOUP. On four English
text classification datasets, we show that SOUP im-
proves performance of pretrained LMs.

2 Related Work

First proposed by Brown et al. (2020), in-context
learning has been studied by many recent works
(Lu et al., 2021; Kumar and Talukdar, 2021; Min
et al., 2021; Jiang et al., 2021). Concurrent with
our work, Min et al. (2021) also propose to perform
priming with individual examples and combine the
resulting predictions; however, they use a differ-
ent combination technique and, similar to all prior
work on in-context learning, only investigate set-
tings with labeled examples. Our approach is also
related to various approaches that leverage unla-
beled data in few- or zero-shot settings (Xie et al.,
2019; Gururangan et al., 2020; Schick and Schütze,
2021a), but all of them require finetuning the un-
derlying language model.

We make use of different Transformer-based sen-
tence encoders (Reimers and Gurevych, 2019; Gao
et al., 2021b) and of textual instructions to im-
prove model performance, an approach that was
first proposed by Radford et al. (2019) and has
since been investigated extensively (Schick and
Schütze, 2021a,b,c; Gao et al., 2021a, i.a.).

3 Semantic-Oriented Unlabeled Priming

We introduce Semantic-Oriented Unlabeled Prim-
ing (SOUP), our approach for in-context learning
with unlabeled examples. To this end, let M be a
masked language model (Devlin et al., 2019) where
for some sequence of tokens t1, . . . , tk that con-
tains exactly one mask token, M(t | t1, . . . , tk)
denotes the probability that M assigns to t at the
masked position.1 Further, let E be a sentence
encoder where E(x) denotes the representation as-
signed to x by E, and DU be a set of unlabeled
examples. We consider a text classification setup
where for a given input x, a label y from a set Y
has to be predicted.

Obtaining predictions for x with SOUP consists
of the following steps:

1. Semantic Search: We search for unlabeled
examples that are semantically most similar
to x using the sentence encoder E.

2. Self-Prediction: We use M to obtain predic-
tions for these neighboring examples.

3. Bag-of-Contexts Priming: We use the neigh-
bors and their estimated labels as additional
context for priming M and compute an av-
erage of the resulting label distributions to
obtain a final prediction for x.

3.1 Semantic Search
Similar to prior work (Gao et al., 2021a; Liu et al.,
2021), the unlabeled examples xu ∈ DU are en-
coded to obtain vector representations E(xu); this
can be done in advance for the entire set DU . We
also compute the representation e(x) of our test ex-
ample and use semantic search to find the k nearest
neighbors of x according to a specific similarity
measure (e.g., cosine similarity). We denote the set
of neighbors as Nx = {x1, ..., xk} ⊆ DU .

3.2 Self-Prediction for Unlabeled Examples
We use M to predict the label distribution for each
xi ∈ Nx, which is done similar to prior work by
providing a short prompt and assigning meaning-
ful names to all labels (e.g., Radford et al., 2019;
Schick and Schütze, 2021a,c). We use the same
notation as Schick and Schütze (2021a,c) in that
we make use of a pattern P that converts inputs x
into cloze questions P (x) containing a single mask,

1We focus on masked language models, but our approach
can easily be transferred to autoregressive language models.
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and a verbalizer v that maps each label y ∈ Y to
a single token v(y) representing its meaning. We
define the probability of y being the correct label
for x based on M (v(y) | P (x)), the probability
that M assigns to v(y) at the masked position in
P (x). We normalize this probability and set

p(y | x) ∝ M (v(y) | P (x))

M (v(y) | P (ε))
(1)

with ε denoting an empty sequence following prior
work (Brown et al., 2020).

3.3 Priming
Let N̂x = {(xi, ŷi)}ki=1 be the selected in-context
neighbors with their predicted labels. Based on
these semantically similar examples, we want to
obtain a prediction for x. In the following, let P̂ (xi)
denote P (xi) with the mask token replaced by ŷi.

Concatenation Priming Previous work usually
provides all in-context examples at a time to the
LM. That is, all examples are concatenated fol-
lowed by the test example to obtain the input
c = [P̂ (x1), P̂ (x2), ..., P̂ (xk), P (x)], which is
provided to the LM to get the final prediction. We
refer to this variant as CONCAT priming.

Bag-of-Contexts Priming We propose bag-of-
contexts (BOC) priming where instead, we only
use individual examples for priming and prediction
each time and then compute the average of the
resulting label distributions as the final prediction.
The key advantage of this method lies in the fact
that it allows us to use more examples than fit in
the context window of the used model.

For each in-context example xi ∈ N , we con-
struct a corresponding context ci = [P̂ (xi);P (x)],
similar to CONCAT with k = 1. For each ci, we
then use the LM to obtain a distribution qi(y) over
possible labels y ∈ Y for x, where we employ nor-
malization analogous to Eq. 1. Finally, we make
use of a weighting function w(xi) : N → R+ and
compute

qf (y) =
1

Z
·

k∑

i=1

w(xi) · qi(y) (2)

with Z =
∑k

i=1w(xi). We obtain the final predic-
tion for x as ŷ = argmaxy∈Y qf (y). We experi-
ment with the following two weighting functions.
uniform: w(xi) = 1. similarity-based: w(xi) is
the cosine similarity between xi and x.

3.4 Iterative SOUP

We also experiment with an iterative variant of
SOUP where the labels for the unlabeled examples
in DU are iteratively refined. To this end, we treat
each example xu ∈ DU as a test example: We
use SOUP to reclassify xu with DU \ {xu} as the
set of unlabeled examples. This means for each
example x, we select in-context neighbors from
DU \{xu} as priming contexts to allow us to refine
the prediction for x. We can repeat this process for
multiple iterations.

4 Experiments

Datasets We evaluate SOUP on four English
datasets: IMDb (Maas et al., 2011) and Yelp Re-
views (Zhang et al., 2015) for sentiment analy-
sis as well as AG’s News and Yahoo Questions
(Zhang et al., 2015) for text categorization. For
each dataset, we use one of the the patterns and ver-
balizers introduced by Schick and Schütze (2021a);
further details can be found in Appendix A. For
IMDb, the unlabeled in-context examples are se-
lected from the training set of SST-2 (Socher et al.,
2013) following Liu et al. (2021). For all other
datasets, the in-context examples are obtained from
the respective training sets.2

Experimental Setup For our main experiments,
we use ALBERT-xlarge-v2 (Lan et al., 2020) as
underlying LM and paraphrase-MiniLM-L6-v2
(Reimers and Gurevych, 2019) as sentence encoder.
As the context window of ALBERT is 512 tokens,
we truncate each example to 120 tokens for CON-
CAT. To enable a fair comparison between both
priming strategies, we also set the maximum to-
ken number for BOC to 120. We compare SOUP

to zero-shot performance using only the patterns
and verbalizers (“prompt only”), similar to Radford
et al. (2019) and Schick et al. (2021). We do not
compare to other baselines as we are not aware of
other approaches that enable leveraging unlabeled
data in zero-shot settings without finetuning. For
iterative SOUP, we use 3 iterations to improve the
labels assigned to unlabeled data.

Results As shown in Table 1, when using CON-
CAT with k = 3, our method clearly performs
worse than the prompt-only baseline. However, us-
ing our proposed BOC approach consistently out-

2To ensure a resource-friendly evaluation, we restrict both
the unlabeled sets and the test sets to a maximum of 10,000
randomly selected examples.
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k w(xi) AG’s Yahoo IMDb Yelp

Prompt only – – 66.01 48.04 72.67 43.37
SOUP (CONC.) 3 – 43.88 21.96 54.71 29.56

SOUP (BOC)

3
unif. 68.18 45.64 68.30 40.43
sim. 68.18 45.57 68.31 40.43

10
unif. 69.64 49.93 71.03 44.05
sim. 69.74 49.98 71.01 43.93

50
unif. 69.70 52.67 72.97 46.21
sim. 70.00 52.56 72.95 46.20

iSOUP (BOC) 50 unif. 69.88 45.22 73.78 45.79

Table 1: Accuracy with zero-shot prompting, SOUP with
CONCAT and BOC as well as iterative SOUP (iSOUP)
using different numbers of neighbors (k) and both uni-
form (“unif.”) and similarity-based (“sim.”) weighting.

Size Method AG’s Yahoo IMDb Yelp

xlarge Prompt only 66.01 48.04 72.67 43.37
xlarge SOUP 69.70 52.67 72.97 46.21

xxlarge Prompt only 73.51 57.89 76.67 45.84
xxlarge SOUP 74.89 61.82 79.54 41.00

Table 2: Performance of a prompt-only baseline and
SOUP with k = 50 and uniform weighting using differ-
ent model sizes

performs not only priming with CONCAT by a large
margin, but also leads to consistent improvements
over our baseline on three out of four datasets for
k ≥ 10. Moreover, performance grows consis-
tently with the number of in-context examples, with
k = 50 resulting in improvements for each dataset
considered. On average, similarity-based weight-
ing leads to negligible gains over uniform weight-
ing. For our iterative variant of SOUP, we therefore
only experiment with uniform weighting; iterative
SOUP leads to slight improvements for two tasks,
but performs much worse than SOUP for Yahoo.

5 Analysis

We examine the influence of both increasing the
language model’s size and replacing the Sentence
Transformer with different encoders on the per-
formance of SOUP. We also briefly discuss the
efficiency of our method.

Model Size We first focus on the impact of model
size on the performance of SOUP; to this end, we
also evaluate our method (with k = 50 and uni-
form weighting) and the prompt-only baseline us-
ing ALBERT-xxlarge-v2 (Lan et al., 2020), a model
that is about four times as large as ALBERT-xlarge-
v2. As shown in Table 2, for our prompt-only base-
line performance consistently improves with model

Sentence Encoder AG’s Yahoo IMDb Yelp

paraphrase-MiniLM-L6-v2 69.70 52.67 72.97 46.21
msmarco-bert-base-dot-v5 69.93 53.04 74.47 45.82
unsup-simcse-roberta-large 69.76 52.40 73.90 45.19

Table 3: SOUP (ALBERT-xlarge-v2, k = 50, uniform
weighting) is robust to choice of sentence encoder.

size for both methods. With exception of ALBERT-
xxlarge-v2 on Yelp, for which our method surpris-
ingly leads to worse performance, SOUP consis-
tently outperforms the baseline method.

Sentence Encoder We also investigate the im-
pact of the sentence encoder on downstream task
performance. As paraphrase-MiniLM-L6-v2 was
trained on a mixture of tasks that has some over-
lap with the tasks we evaluate on, we additionally
consider msmarco-bert-base-dot-v5 (Reimers and
Gurevych, 2019), a model that was trained exclu-
sively on MS MARCO passages (Bajaj et al., 2018),
and unsup-simcse-roberta-large (Gao et al., 2021b),
an encoder that was trained in a fully unsupervised
fashion. As can be seen in Table 3, the choice
of sentence encoder has little influence on perfor-
mance, illustrating that performance improvements
do not come from the encoder being pretrained on
downstream task data.

Efficiency One disadvantage of our approach is
that the number of required forward passes grows
linearly with k. After precomputing encodings and
labels for UD, classifying a single example with
k = 3 took about 0.6s using a single NVIDIA
GeForce GTX 1080Ti; for k = 10 and k = 50,
the required times were 1.5s and 6.8s. However,
performance can be improved a lot with decoder-
only LMs (e.g., Radford et al., 2018, 2019; Brown
et al., 2020), as this enables the precomputation of
contextualized representations for each xu ∈ UD.

6 Conclusion

We have presented SOUP, a method for unlabeled
priming that classifies inputs by retrieving semanti-
cally similar unlabeled examples, classifying these
examples in a zero-shot fashion and providing them
as additional contexts for in-context learning. Be-
yond that, we have proposed a new priming strategy
that leads to much better performance and scales to
more than just a few examples. We have shown that
with sufficiently many retrieved examples, SOUP

consistently leads to improved performance.
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A Dataset Details

For each task except IMDb, we use one of the
patterns and verbalizers introduced by Schick and
Schütze (2021a). In the following, we describe in
detail the patterns and verbalizers used.

IMDb For the IMDb Large Movie Review
Dataset (Maas et al., 2011), the task is to estimate
the binary sentiment of a movie review based on
the review’s text. We use the following pattern and
verbalizer for an input review a:

P (a) = a. The movie is [MASK].

v(0) = bad v(1) = good

Yelp For the Yelp Reviews Full Star dataset
(Zhang et al., 2015), the task is to estimate the
rating that a customer gave to a restaurant on a 1-to
5-star scale based on their review’s text. We use
the following pattern for an input text a:

P (a) = a. In summary, the restaurant is [MASK].

As a verbalizer v, we define:

v(1) = terrible v(2) = bad v(3) = okay
v(4) = good v(5) = great

AG’s News AG’s News (Zhang et al., 2015) is a
task to classify a news article as belonging to one
of the categories World (1), Sports (2), Business
(3) or Science/Tech (4). We define the following
pattern for an input news text a:

P (a) = a. News Category: [MASK].

Intuitively, we use a verbalizer that maps 1–4 to
“World”, “Sports”, “Business” and “Science”, re-
spectively.

Yahoo Yahoo Questions (Zhang et al., 2015) is a
text classification dataset. Given a question and an
answer, the text has to be classified to one of ten
possible categories. We make use of the following
pattern for a input question a and an answer b:

P (a, b) = a b. Question Category: [MASK].

Our verbalizer maps labels 1–10 to the tokens “So-
ciety”, “Science”, “Health”, “Education”, “Com-
puter”, “Sports”, “Business”, “Entertainment”,
“Relationship” and “Politics”.
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