
Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 32–38
July 13, 2023 ©2023 Association for Computational Linguistics

Semantic-Oriented Unlabeled Priming for Large-Scale Language Models

Yanchen Liu1 Timo Schick2 Hinrich Schütze3
1Harvard University 2Meta AI Research 3LMU Munich

yanchenliu@g.harvard.edu, schick@meta.com

Abstract

Due to the high costs associated with finetuning
large language models, various recent works
propose to adapt them to specific tasks with-
out any parameter updates through in-context
learning. Unfortunately, for in-context learn-
ing there is currently no way to leverage unla-
beled data, which is often much easier to ob-
tain in large quantities than labeled examples.
In this work, we therefore investigate ways to
make use of unlabeled examples to improve the
zero-shot performance of pretrained language
models without any finetuning: We introduce
Semantic-Oriented Unlabeled Priming (SOUP),
a method that classifies examples by retrieving
semantically similar unlabeled examples, as-
signing labels to them in a zero-shot fashion,
and then using them for in-context learning. We
also propose bag-of-contexts priming, a new
priming strategy that is more suitable for our
setting and enables the usage of more examples
than fit into the context window.

1 Introduction

In recent years, there has been a trend in NLP to-
wards larger and larger language models (LMs)
(Radford et al., 2018, 2019; Raffel et al., 2020;
Brown et al., 2020; Fedus et al., 2021). Different
from prior pretrained LMs that are typically fine-
tuned for specific downstream tasks using labeled
training datasets (Devlin et al., 2019; Liu et al.,
2019), recent work proposes to use such large mod-
els in zero- or few-shot settings without any fine-
tuning (Brown et al., 2020; Sanh et al., 2021) due
to the often prohibitive costs associated with train-
ing, storing and deploying large models (Strubell
et al., 2019). In particular, Brown et al. (2020) pro-
pose priming where training examples are simply
provided as additional context together with test
examples; this in-context learning does not require
updating the parameters of the model.

In prior work on in-context learning, only la-
beled examples are used for priming (Brown et al.,

x = Not worth watching.

UD

E(x)

Not worth the time! The movie is [MASK].
p(good) = 0.3

p(bad) = 0.7

Not worth the time! The movie is bad.
Not worth watching. The movie is [MASK].

p(good) = 0.1

p(bad) = 0.9

Do not watch this movie. The movie is bad.
Not worth watching. The movie is [MASK].

p(good) = 0.3

p(bad) = 0.7

(1)

(2)

(3)

Figure 1: Schematic representation of the steps involved
in SOUP for binary sentiment classification of movie
reviews. (1) Semantic Search: For a given input x, we
retrieve semantically similar, unlabeled examples from a
set UD using a sentence encoder E. (2) Self-Prediction:
We obtain zero-shot predictions for all similar examples
using natural language prompts. (3) Bag-of-Contexts
Priming: We use the retrieved examples along with
their most probable labels one at a time as in-context
examples to obtain predictions for x; the resulting dis-
tributions over possible labels are finally averaged.

2020; Lu et al., 2021; Kumar and Talukdar, 2021;
Min et al., 2021; Jiang et al., 2021). But in many
settings, these are extremely scarce or even entirely
unavailable, while unlabeled examples can easily
be accessed. Unfortunately, there is currently no
way to leverage unlabeled examples for priming.
Other approaches for leveraging unlabeled data
such as domain-adaptive pretraining (Gururangan
et al., 2020) would again require finetuning.

Therefore, we investigate how we can make use
of unlabeled examples to improve the performance
of large-scale language models without requiring
changes to their parameters: We propose a self-
supervised method called Semantic-Oriented Unla-
beled Priming (SOUP), which uses unlabeled exam-
ples for in-context learning. Following the observa-
tion that semantically similar examples are better

32

candidates as in-context examples than dissimilar
ones (Gao et al., 2021a; Liu et al., 2021), we first
retrieve the semantically most similar unlabeled
examples as contexts for a given input; then, we
query the language model to obtain predictions for
these unlabeled examples, and finally provide them
along with their most likely labels as additional
context. Intuitively, this approach is particularly
helpful whenever the retrieved examples are easier
to classify then the actual input of interest.

Whereas in prior work, the in-context examples
and test example are usually concatenated to form a
single input that is provided to the LM, we propose
to use one in-context example at a time and com-
pute a weighted average of the so-obtained label
distributions to obtain a final prediction. Besides re-
sulting in much better performance, one benefit of
this methods is that we are no longer constrained by
the maximum sequence length of the used LM and
thus, more neighbors can be used for priming than
with the usual, concatenation-based approach. We
also investigate an iterative variant of our approach
where predictions for unlabeled examples are it-
eratively improved with SOUP. On four English
text classification datasets, we show that SOUP im-
proves performance of pretrained LMs.

2 Related Work

First proposed by Brown et al. (2020), in-context
learning has been studied by many recent works
(Lu et al., 2021; Kumar and Talukdar, 2021; Min
et al., 2021; Jiang et al., 2021). Concurrent with
our work, Min et al. (2021) also propose to perform
priming with individual examples and combine the
resulting predictions; however, they use a differ-
ent combination technique and, similar to all prior
work on in-context learning, only investigate set-
tings with labeled examples. Our approach is also
related to various approaches that leverage unla-
beled data in few- or zero-shot settings (Xie et al.,
2019; Gururangan et al., 2020; Schick and Schütze,
2021a), but all of them require finetuning the un-
derlying language model.

We make use of different Transformer-based sen-
tence encoders (Reimers and Gurevych, 2019; Gao
et al., 2021b) and of textual instructions to im-
prove model performance, an approach that was
first proposed by Radford et al. (2019) and has
since been investigated extensively (Schick and
Schütze, 2021a,b,c; Gao et al., 2021a, i.a.).

3 Semantic-Oriented Unlabeled Priming

We introduce Semantic-Oriented Unlabeled Prim-
ing (SOUP), our approach for in-context learning
with unlabeled examples. To this end, let M be a
masked language model (Devlin et al., 2019) where
for some sequence of tokens t1, . . . , tk that con-
tains exactly one mask token, M(t | t1, . . . , tk)
denotes the probability that M assigns to t at the
masked position.1 Further, let E be a sentence
encoder where E(x) denotes the representation as-
signed to x by E, and DU be a set of unlabeled
examples. We consider a text classification setup
where for a given input x, a label y from a set Y
has to be predicted.

Obtaining predictions for x with SOUP consists
of the following steps:

1. Semantic Search: We search for unlabeled
examples that are semantically most similar
to x using the sentence encoder E.

2. Self-Prediction: We use M to obtain predic-
tions for these neighboring examples.

3. Bag-of-Contexts Priming: We use the neigh-
bors and their estimated labels as additional
context for priming M and compute an av-
erage of the resulting label distributions to
obtain a final prediction for x.

3.1 Semantic Search
Similar to prior work (Gao et al., 2021a; Liu et al.,
2021), the unlabeled examples xu ∈ DU are en-
coded to obtain vector representations E(xu); this
can be done in advance for the entire set DU . We
also compute the representation e(x) of our test ex-
ample and use semantic search to find the k nearest
neighbors of x according to a specific similarity
measure (e.g., cosine similarity). We denote the set
of neighbors as Nx = {x1, ..., xk} ⊆ DU .

3.2 Self-Prediction for Unlabeled Examples
We use M to predict the label distribution for each
xi ∈ Nx, which is done similar to prior work by
providing a short prompt and assigning meaning-
ful names to all labels (e.g., Radford et al., 2019;
Schick and Schütze, 2021a,c). We use the same
notation as Schick and Schütze (2021a,c) in that
we make use of a pattern P that converts inputs x
into cloze questions P (x) containing a single mask,

1We focus on masked language models, but our approach
can easily be transferred to autoregressive language models.

33

and a verbalizer v that maps each label y ∈ Y to
a single token v(y) representing its meaning. We
define the probability of y being the correct label
for x based on M (v(y) | P (x)), the probability
that M assigns to v(y) at the masked position in
P (x). We normalize this probability and set

p(y | x) ∝ M (v(y) | P (x))

M (v(y) | P (ε))
(1)

with ε denoting an empty sequence following prior
work (Brown et al., 2020).

3.3 Priming
Let N̂x = {(xi, ŷi)}ki=1 be the selected in-context
neighbors with their predicted labels. Based on
these semantically similar examples, we want to
obtain a prediction for x. In the following, let P̂ (xi)
denote P (xi) with the mask token replaced by ŷi.

Concatenation Priming Previous work usually
provides all in-context examples at a time to the
LM. That is, all examples are concatenated fol-
lowed by the test example to obtain the input
c = [P̂ (x1), P̂ (x2), ..., P̂ (xk), P (x)], which is
provided to the LM to get the final prediction. We
refer to this variant as CONCAT priming.

Bag-of-Contexts Priming We propose bag-of-
contexts (BOC) priming where instead, we only
use individual examples for priming and prediction
each time and then compute the average of the
resulting label distributions as the final prediction.
The key advantage of this method lies in the fact
that it allows us to use more examples than fit in
the context window of the used model.

For each in-context example xi ∈ N , we con-
struct a corresponding context ci = [P̂ (xi);P (x)],
similar to CONCAT with k = 1. For each ci, we
then use the LM to obtain a distribution qi(y) over
possible labels y ∈ Y for x, where we employ nor-
malization analogous to Eq. 1. Finally, we make
use of a weighting function w(xi) : N → R+ and
compute

qf (y) =
1

Z
·

k∑

i=1

w(xi) · qi(y) (2)

with Z =
∑k

i=1w(xi). We obtain the final predic-
tion for x as ŷ = argmaxy∈Y qf (y). We experi-
ment with the following two weighting functions.
uniform: w(xi) = 1. similarity-based: w(xi) is
the cosine similarity between xi and x.

3.4 Iterative SOUP

We also experiment with an iterative variant of
SOUP where the labels for the unlabeled examples
in DU are iteratively refined. To this end, we treat
each example xu ∈ DU as a test example: We
use SOUP to reclassify xu with DU \ {xu} as the
set of unlabeled examples. This means for each
example x, we select in-context neighbors from
DU \{xu} as priming contexts to allow us to refine
the prediction for x. We can repeat this process for
multiple iterations.

4 Experiments

Datasets We evaluate SOUP on four English
datasets: IMDb (Maas et al., 2011) and Yelp Re-
views (Zhang et al., 2015) for sentiment analy-
sis as well as AG’s News and Yahoo Questions
(Zhang et al., 2015) for text categorization. For
each dataset, we use one of the the patterns and ver-
balizers introduced by Schick and Schütze (2021a);
further details can be found in Appendix A. For
IMDb, the unlabeled in-context examples are se-
lected from the training set of SST-2 (Socher et al.,
2013) following Liu et al. (2021). For all other
datasets, the in-context examples are obtained from
the respective training sets.2

Experimental Setup For our main experiments,
we use ALBERT-xlarge-v2 (Lan et al., 2020) as
underlying LM and paraphrase-MiniLM-L6-v2
(Reimers and Gurevych, 2019) as sentence encoder.
As the context window of ALBERT is 512 tokens,
we truncate each example to 120 tokens for CON-
CAT. To enable a fair comparison between both
priming strategies, we also set the maximum to-
ken number for BOC to 120. We compare SOUP

to zero-shot performance using only the patterns
and verbalizers (“prompt only”), similar to Radford
et al. (2019) and Schick et al. (2021). We do not
compare to other baselines as we are not aware of
other approaches that enable leveraging unlabeled
data in zero-shot settings without finetuning. For
iterative SOUP, we use 3 iterations to improve the
labels assigned to unlabeled data.

Results As shown in Table 1, when using CON-
CAT with k = 3, our method clearly performs
worse than the prompt-only baseline. However, us-
ing our proposed BOC approach consistently out-

2To ensure a resource-friendly evaluation, we restrict both
the unlabeled sets and the test sets to a maximum of 10,000
randomly selected examples.

34

k w(xi) AG’s Yahoo IMDb Yelp

Prompt only – – 66.01 48.04 72.67 43.37
SOUP (CONC.) 3 – 43.88 21.96 54.71 29.56

SOUP (BOC)

3
unif. 68.18 45.64 68.30 40.43
sim. 68.18 45.57 68.31 40.43

10
unif. 69.64 49.93 71.03 44.05
sim. 69.74 49.98 71.01 43.93

50
unif. 69.70 52.67 72.97 46.21
sim. 70.00 52.56 72.95 46.20

iSOUP (BOC) 50 unif. 69.88 45.22 73.78 45.79

Table 1: Accuracy with zero-shot prompting, SOUP with
CONCAT and BOC as well as iterative SOUP (iSOUP)
using different numbers of neighbors (k) and both uni-
form (“unif.”) and similarity-based (“sim.”) weighting.

Size Method AG’s Yahoo IMDb Yelp

xlarge Prompt only 66.01 48.04 72.67 43.37
xlarge SOUP 69.70 52.67 72.97 46.21

xxlarge Prompt only 73.51 57.89 76.67 45.84
xxlarge SOUP 74.89 61.82 79.54 41.00

Table 2: Performance of a prompt-only baseline and
SOUP with k = 50 and uniform weighting using differ-
ent model sizes

performs not only priming with CONCAT by a large
margin, but also leads to consistent improvements
over our baseline on three out of four datasets for
k ≥ 10. Moreover, performance grows consis-
tently with the number of in-context examples, with
k = 50 resulting in improvements for each dataset
considered. On average, similarity-based weight-
ing leads to negligible gains over uniform weight-
ing. For our iterative variant of SOUP, we therefore
only experiment with uniform weighting; iterative
SOUP leads to slight improvements for two tasks,
but performs much worse than SOUP for Yahoo.

5 Analysis

We examine the influence of both increasing the
language model’s size and replacing the Sentence
Transformer with different encoders on the per-
formance of SOUP. We also briefly discuss the
efficiency of our method.

Model Size We first focus on the impact of model
size on the performance of SOUP; to this end, we
also evaluate our method (with k = 50 and uni-
form weighting) and the prompt-only baseline us-
ing ALBERT-xxlarge-v2 (Lan et al., 2020), a model
that is about four times as large as ALBERT-xlarge-
v2. As shown in Table 2, for our prompt-only base-
line performance consistently improves with model

Sentence Encoder AG’s Yahoo IMDb Yelp

paraphrase-MiniLM-L6-v2 69.70 52.67 72.97 46.21
msmarco-bert-base-dot-v5 69.93 53.04 74.47 45.82
unsup-simcse-roberta-large 69.76 52.40 73.90 45.19

Table 3: SOUP (ALBERT-xlarge-v2, k = 50, uniform
weighting) is robust to choice of sentence encoder.

size for both methods. With exception of ALBERT-
xxlarge-v2 on Yelp, for which our method surpris-
ingly leads to worse performance, SOUP consis-
tently outperforms the baseline method.

Sentence Encoder We also investigate the im-
pact of the sentence encoder on downstream task
performance. As paraphrase-MiniLM-L6-v2 was
trained on a mixture of tasks that has some over-
lap with the tasks we evaluate on, we additionally
consider msmarco-bert-base-dot-v5 (Reimers and
Gurevych, 2019), a model that was trained exclu-
sively on MS MARCO passages (Bajaj et al., 2018),
and unsup-simcse-roberta-large (Gao et al., 2021b),
an encoder that was trained in a fully unsupervised
fashion. As can be seen in Table 3, the choice
of sentence encoder has little influence on perfor-
mance, illustrating that performance improvements
do not come from the encoder being pretrained on
downstream task data.

Efficiency One disadvantage of our approach is
that the number of required forward passes grows
linearly with k. After precomputing encodings and
labels for UD, classifying a single example with
k = 3 took about 0.6s using a single NVIDIA
GeForce GTX 1080Ti; for k = 10 and k = 50,
the required times were 1.5s and 6.8s. However,
performance can be improved a lot with decoder-
only LMs (e.g., Radford et al., 2018, 2019; Brown
et al., 2020), as this enables the precomputation of
contextualized representations for each xu ∈ UD.

6 Conclusion

We have presented SOUP, a method for unlabeled
priming that classifies inputs by retrieving semanti-
cally similar unlabeled examples, classifying these
examples in a zero-shot fashion and providing them
as additional contexts for in-context learning. Be-
yond that, we have proposed a new priming strategy
that leads to much better performance and scales to
more than just a few examples. We have shown that
with sufficiently many retrieved examples, SOUP

consistently leads to improved performance.

35

References
Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,

Jianfeng Gao, Xiaodong Liu, Rangan Majumder, An-
drew McNamara, Bhaskar Mitra, Tri Nguyen, Mir
Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary,
and Tong Wang. 2018. Ms marco: A human gener-
ated machine reading comprehension dataset.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

William Fedus, Barret Zoph, and Noam Shazeer. 2021.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Computing
Research Repository, arXiv:2101.03961.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021a.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816–3830, Online. Association for Computa-
tional Linguistics.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021b.
Simcse: Simple contrastive learning of sentence em-
beddings.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Zhengbao Jiang, Jun Araki, Haibo Ding, and Graham
Neubig. 2021. How Can We Know When Language
Models Know? On the Calibration of Language Mod-
els for Question Answering. Transactions of the As-
sociation for Computational Linguistics, 9:962–977.

Sawan Kumar and Partha Talukdar. 2021. Reorder-
ing examples helps during priming-based few-shot
learning. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
4507–4518, Online. Association for Computational
Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In Interna-
tional Conference on Learning Representations.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021. What
makes good in-context examples for gpt-3? CoRR,
abs/2101.06804.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretrain-
ing approach. Computing Research Repository,
arXiv:1907.11692.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2021. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. Computing Research
Repository, arXiv:2104.08786.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2021. Noisy channel language
model prompting for few-shot text classification.
Computing Research Repository, arXiv:2108.04106.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training. Technical report,
Open AI.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. Techni-
cal report, Open AI.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing

36

http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.09268
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/2101.03961
http://arxiv.org/abs/2101.03961
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
http://arxiv.org/abs/2104.08821
http://arxiv.org/abs/2104.08821
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.18653/v1/2021.findings-acl.395
https://doi.org/10.18653/v1/2021.findings-acl.395
https://doi.org/10.18653/v1/2021.findings-acl.395
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
http://arxiv.org/abs/2101.06804
http://arxiv.org/abs/2101.06804
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2104.08786
http://arxiv.org/abs/2104.08786
http://arxiv.org/abs/2104.08786
http://www.aclweb.org/anthology/P11-1015
http://arxiv.org/abs/2108.04106
http://arxiv.org/abs/2108.04106
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410

and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H.
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja,
Manan Dey, M Saiful Bari, Canwen Xu, Urmish
Thakker, Shanya Sharma Sharma, Eliza Szczechla,
Taewoon Kim, Gunjan Chhablani, Nihal Nayak,
Debajyoti Datta, Jonathan Chang, Mike Tian-Jian
Jiang, Han Wang, Matteo Manica, Sheng Shen,
Zheng Xin Yong, Harshit Pandey, Rachel Bawden,
Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht
Sharma, Andrea Santilli, Thibault Fevry, Jason Alan
Fries, Ryan Teehan, Stella Biderman, Leo Gao, Tali
Bers, Thomas Wolf, and Alexander M. Rush. 2021.
Multitask prompted training enables zero-shot task
generalization. Computing Research Repository,
arXiv:2110.08207.

Timo Schick and Hinrich Schütze. 2021a. Exploiting
cloze questions for few shot text classification and
natural language inference. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, Kyiv, Ukraine
(Online). International Committee on Computational
Linguistics.

Timo Schick and Hinrich Schütze. 2021b. Few-shot
text generation with pattern-exploiting training. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

Timo Schick and Hinrich Schütze. 2021c. It’s not just
size that matters: Small language models are also few-
shot learners. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2339–2352, Online. Association
for Computational Linguistics.

Timo Schick, Sahana Udupa, and Hinrich Schütze. 2021.
Self-diagnosis and self-debiasing: A proposal for
reducing corpus-based bias in NLP. Transactions of
the Association for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 3645–3650, Florence, Italy. Asso-
ciation for Computational Linguistics.

Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Lu-
ong, and Quoc V. Le. 2019. Unsupervised data aug-
mentation for consistency training. Computing Re-
search Repository, arXiv:1904.12848.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems 28, pages
649–657. Curran Associates, Inc.

37

http://arxiv.org/abs/2110.08207
http://arxiv.org/abs/2110.08207
https://arxiv.org/abs/2001.07676
https://arxiv.org/abs/2001.07676
https://arxiv.org/abs/2001.07676
http://arxiv.org/abs/2012.11926
http://arxiv.org/abs/2012.11926
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://arxiv.org/abs/2103.00453
https://arxiv.org/abs/2103.00453
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
http://arxiv.org/abs/1904.12848
http://arxiv.org/abs/1904.12848
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf

A Dataset Details

For each task except IMDb, we use one of the
patterns and verbalizers introduced by Schick and
Schütze (2021a). In the following, we describe in
detail the patterns and verbalizers used.

IMDb For the IMDb Large Movie Review
Dataset (Maas et al., 2011), the task is to estimate
the binary sentiment of a movie review based on
the review’s text. We use the following pattern and
verbalizer for an input review a:

P (a) = a. The movie is [MASK].

v(0) = bad v(1) = good

Yelp For the Yelp Reviews Full Star dataset
(Zhang et al., 2015), the task is to estimate the
rating that a customer gave to a restaurant on a 1-to
5-star scale based on their review’s text. We use
the following pattern for an input text a:

P (a) = a. In summary, the restaurant is [MASK].

As a verbalizer v, we define:

v(1) = terrible v(2) = bad v(3) = okay
v(4) = good v(5) = great

AG’s News AG’s News (Zhang et al., 2015) is a
task to classify a news article as belonging to one
of the categories World (1), Sports (2), Business
(3) or Science/Tech (4). We define the following
pattern for an input news text a:

P (a) = a. News Category: [MASK].

Intuitively, we use a verbalizer that maps 1–4 to
“World”, “Sports”, “Business” and “Science”, re-
spectively.

Yahoo Yahoo Questions (Zhang et al., 2015) is a
text classification dataset. Given a question and an
answer, the text has to be classified to one of ten
possible categories. We make use of the following
pattern for a input question a and an answer b:

P (a, b) = a b. Question Category: [MASK].

Our verbalizer maps labels 1–10 to the tokens “So-
ciety”, “Science”, “Health”, “Education”, “Com-
puter”, “Sports”, “Business”, “Entertainment”,
“Relationship” and “Politics”.

38

