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Abstract

Scaling language models have revolutionized
widespread NLP tasks, yet little comprehen-
sively explored few-shot relation extraction
with large language models. In this paper, we
investigate principal methodologies, in-context
learning and data generation, for few-shot re-
lation extraction via GPT-3.5 through exhaus-
tive experiments. To enhance few-shot perfor-
mance, we further propose task-related instruc-
tions and schema-constrained data generation.
We observe that in-context learning can achieve
performance on par with previous prompt learn-
ing approaches, and data generation with the
large language model can boost previous so-
lutions to obtain new state-of-the-art few-shot
results on four widely-studied relation extrac-
tion datasets. We hope our work can inspire
future research for the capabilities of large lan-
guage models in few-shot relation extraction'.

1 Introduction

Few-shot Relation Extraction (RE) appeals to many
researchers in Natural Language Processing (NLP)
due to the capability to extract textual information
where only a few support examples are given (Han
et al., 2018; Yang et al., 2021; Han et al., 2021a;
Brody et al., 2021; Ma et al., 2023). Most previous
works focus on fine-tuning (Soares et al., 2019; Ye
et al., 2022) or prompt-tuning (Chen et al., 2022;
Han et al., 2021b) with relatively small language
models, e.g., ROBERTa (Liu et al., 2019). Recently,
with the scaling of model size and corpus size,
large language models (LLMs) such as ChatGPT
(OpenAl, 2022) and GPT-4 (OpenAl, 2023a) have
demonstrated powerful abilities by demonstrating
only a few instances, a.k.a In-Context Learning
(Dong et al., 2023). Although LLMs have achieved
remarkable results in many NLP tasks, their po-
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'Code is available in https://github.com/zjunlp/
DeepKE/tree/main/example/11lm.

tential in few-shot relation extraction has not been
fully explored yet.

In this paper, we take GPT-3.5 (OpenAl, 2023b)
as an exemplary LLM to investigate how to max-
imize the utilization of LLMs for the few-shot
relation extraction task with in-context learning
and data generation. Different from text classifica-
tion, the relation extraction task contains rich pre-
defined schemas (e.g., entity and relation type con-
straints) and a relatively large and complex classifi-
cation space with noisy data. We further design two
simple-yet-effective strategies to unleash the power
of large language models better: task-related in-
structions and schema-constrained data genera-
tion. We conduct exhaustive experiments on four
well-known relation extraction datasets. Empiri-
cal results indicate that LLMs can potentially be
advantageous to few-shot relation extraction and
boost previous prompt learning performance.

2 Background

2.1 Few-shot Relation Extraction

The relation extraction task aims to extract the re-
lationship between head and tail entities within
a plain context. Specifically, one instance for
the relation extraction task consists of a context
x = {71,792, ..., h, ..., 1, ..., 7|5}, head and tail en-
tity mentions h and £, entity types t; and %;, and
the relation y € ) between h and t, where ) is the
set of candidate relations. RE systems will predict
y given x, h, t,t; and t;. For few-shot relation
extraction, fine-tuning pre-trained language mod-
els (PLMs) is a direct solution (Han et al., 2019;
Yamada et al., 2020; Joshi et al., 2020; Lyu and
Chen, 2021; Zhou and Chen, 2022). To alleviate
the gap between pre-training objectives and down-
stream applications, prompt tuning has recently
been applied to relation extraction, especially for
low-resource scenarios (Chen et al., 2022; Han
et al., 2021b, 2022). Most of those approaches
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TEXT PROMPT

There are candidate relations: [RELATION List].

Context: TEXT. The relation between (HEAD TYPE) ” and (TAIL TYPE)
Context: TEXT. The relation between (HEAD TYPE) ‘ ” and (TAIL TYPE) “
INSTRUCT PROMPT

Given a context, a pair of head and tail entities in the context, decide the relationship between ti
candidate relations: [RELATION List].

Context: TEXT. The relation between (HEAD TYPE) *
Context: TEXT. The relation between (HEAD TYPE) *

” and (TAIL TYPE) *
”and (TAIL TYPE) ‘

Prompt for Schema-constrained Data Generation

One sample in relation extraction datasets consists of a relation, a context, a pair of head and tail entities in the context and their entity
types. The head entity has the relation with the tail entity and entities are pre-categorized as the following types: [ENTITY TYPE List].

Here are some samples for relation ‘RELATION’:
Relation: RELATION. Context: TEXT. Head Type: HEAD TYPE. Head Entity:
Generate more samples like above for the relation ‘RELATION’.

Figure 1: Strategies to unleash the power of LLMs for few-shot relation.
are entity mentions. RELATION refers the verbalized relation label words.

and

utilize relatively small language models (RoBERTa
(Liu et al., 2019), GPT2 (Radford et al., 2019)),
demonstrating empirical success regarding few-
shot relation extraction performance. To date, large
language models have demonstrated powerful abil-
ities by prompting a few instances without tuning
(Ding et al., 2022); however, the power of LLMs
for few-shot relation extraction is little known.

2.2 Large Language Models

Large language models, trained with exceedingly
large corpora and often with a great number of pa-
rameters (>10B), have achieved excellent perfor-
mance in numerous downstream NLP tasks (Taylor
et al., 2022; Zhang et al., 2022; Zeng et al., 2022;
Chowdbhery et al., 2022; Ouyang et al., 2022). Com-
pared to relatively small language models (SLMs),
LLM:s are usually not open-source and can not be
fine-tuned, which is challenging for downstream
task adaptation. Therefore, in-context learning
(Brown et al., 2020) is proposed to utilize prompts
with a few demonstrations for few-shot learning.
Previous studies (Yoo et al., 2021; Wang et al.,
2021) have investigated using LLMs for text classi-
fication and generation. In this work, we take the
first step to study few-shot RE with large language
models, which brings new challenges and insights.

3 LLMs for Few-shot Relation Extraction

In this section, we introduce two strategies to utilize
LLM:s for relation extraction: 1) in-context learning
(§3.1); 2) data generation (§3.2) with LLMs, as
shown in Figure 1.

3.1 In-Context Learning with LLMs

The first strategy applies in-context learning (ICL)
by providing LLMs with demonstrations in the

he head and tail entities from

”in the context is RELATION.
"in the context is

. Tail Type: TAIL TYPE. Tail Entity: . XN

”in the context is RELATION. X N Demonstrations
”in the context is

Text
@ Completion
—_ _—

RELATION

Relation: RELATION.
Context: TEXT.

Head Type: HEAD TYPE.
Head Entity: HE

Tail Type: TAIL TYPE.
Tail Entity:

Text
@ Completion

and are schemas.

prompt to elicit comprehension of the relation ex-
traction task from LLMs. To this end, specific and
compelling prompts for RE with demonstrations
are manually constructed and designed to instruct
LLMs to understand the relation extraction task
and how to execute relation extraction. Consid-
ering aspects and characteristics of the relation
extraction task, including task definition, candi-
date relation (label) words, entity types (schemas)
and so on, we design prompts of different articu-
lation and complexity to investigate how prompts
help LLMs release the power of few-shot RE. First,
TEXT PROMPT only contains essential elements
for RE, including relation categories, contexts, and
corresponding head and tail entities. Inspired by
the fantastic performance of InstructGPT (Ouyang
et al., 2022) and ChatGPT (OpenAl, 2022), we de-
sign the task-related instruction describing the
relation extraction task and add it to the prompt,
which is named INSTRUCT PROMPT. Meanwhile,
according to previous few-shot RE works (Zhou
and Chen, 2022), entity types (schemas) are help-
ful; therefore, we also explore the effectiveness of
schemas in prompts.

3.2 Data Generation with LLMs

To complement the scarcity of labeled data, we in-
troduce another strategy: data generation via LLMs.
Specifically, we utilize specific prompts with de-
scriptions of data forms to guide LLMs to generate
more in-domain labeled data autonomously, which
is subsequently employed to fine-tune a relatively
small language model with existing few-shot la-
beled training data. We design the prompt to tell the
essential components (x, h, t, iy, t; and y) of one
RE training instance and show few-shot instances
as demonstrations to teach LLMs to comprehend
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TACRED TACREV RE-TACRED SciERC
Method K=8 K=16 K=8 K=16 K=8 K=16 K=8 K=16
SpanBERT (Joshi et al., 2020) 84 175 52 57 142 293 29.0 387
% LUKE (Yamada et al., 2020) 95 215 98 220 141 375 332 489
£ GDPNet (Xue et al., 2021) 11.8 225 83 208 18.8 48.0 335 423
“é TANL (Paolini et al., 2021) 18.1 27.6 186 28.8 267 504 324 38.7
M  TYP Marker (Zhou and Chen, 2022) 26.5 299 26.7 295 448 541 504 59.0
KnowPrompt (Chen et al., 2022) 294 321 298 341 56.1 614 502 57.1
In-context Learning 31.9 324 49.9 46.6
&2 In-context Learningf(w/ Instruction) 31.0 31.9 51.8 48.8
o
O  Data Generation (TYP Marker) 358 366 367 365 584 60.6 632 643
Data Generation (KnowPrompt) 379 374 426 410 627 662 586 67.8

Table 1: Micro F1 (%) of few-shot performance. t refers to the performance with one-shot demonstrations.

Prompts TACRED TACREV RE-TACRED SciERC
TEXT 31.9 324 49.9 46.6
TEXT + Schema 36.9 37.7 543 459
INSTRUCT 31.0 31.9 51.8 48.8
INSTRUCT + Schema 38.3 36.7 58.5 50.2

Table 2: Micro F1 (%) of performance on different
prompt: TEXT PROMPT and INSTRUCT PROMPT.

features of labeled RE data. Note that schemas,
such as types of relations and entities, are signifi-
cant structural information in RE data. Therefore,
we propose schema-constrained data generation
by adding entity types as schema guidance to the
prompt (in Figure 1) to boost performance. Then,
the prompt is utilized to guide LLMs to create aug-
mented relation extraction data that are converted
into the expected format for future usage.

4 Experimental Setups

4.1 Methods and Datasets

GPT-3.5 is utilized via OpenAl API? as the large
language model in our experiments. We implement
experiments on four relation extraction datasets,
including TACRED (Zhang et al., 2017), TACREV
(Altet al., 2020), RE-TACRED (Stoica et al., 2021)
and SciERC (Luan et al., 2018). Compared with
the LLM, six baselines methods are conducted via
relatively small models (details in Appendix A).

4.2 Few-shot Settings

K instances per relation (/X -shot) are sampled
for training and validation. For all baselines, we
use randomly sampled 8-shot and 16-shot datasets

2https://platform.openai.com/docs/models/
gpt-3-5

for training and validation. As for in-context learn-
ing, because GPT-3.5 has the limitation of maxi-
mum request tokens (4097 tokens) and the series
of TACRED datasets have more than 40 relations,
one-shot demonstrations can only be used, and
the one-shot performance is reported in Table 1.
For the same reason, to generate more labeled data
for each relation independently, only three demon-
strations for the relation are added to the prompts.

In-context learning is implemented on the four
whole test sets. Different demonstrations are ran-
domly sampled from the shuffled training set every
time to avoid effects from permutations of demon-
strations (Lu et al., 2021). As for data generation,
generated data from GPT-3.5 and original few-shot
training data are combined to fine-tune two base-
lines, TYP Marker (Zhou and Chen, 2022) and
KnowPrompt (Chen et al., 2022). Using different
shots of generated data will lead to different results.
Therefore, we increasingly add generated k-shot
(k € {8,16,32,48}) data to the original 8-shot
and 16-shot training data respectively and report
the best performance over k in Tabel 1. More de-
tails are shown in Appendix A.3.

5 Results and Discussion

5.1 Main Findings for Relation Extraction

In-context learning on LLMs can achieve com-
parable performance for RE with tuning rel-
atively small PLMs. From Table 1, we notice
that ICL with only one-shot demonstrations can
obtain competitive performance with full parame-
ter tuning-based prompt learning baselines. Using
LLMs via ICL does not necessitate any parameter
updates, which contains the potential value of mak-
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Figure 2: Micro F1 (%) of k in-context demonstrations
in SciERC.

ing models scenario-adaptable, unlike supervised
learning requiring parameter optimization.

Data generation with LLMs can boost previous
solutions to obtain new state-of-the-art few-shot
RE results. We find that previous baselines can
significantly improve with 10.7% for 16-shot in
SciERC and 6.6% for 16-shot in RE-TACRED
by simply using generated data from GPT-3.5 in
Table 1. To be noted, data generation is a simple
yet effective approach to elicit the power from the
LLM to previous methods, and we demonstrate that
using schema-constrained generation with LLMs
can benefit all previous approaches with SLMs.

5.2 Prompts in In-context Learning with
LLMs

Instructions and schemas play an essential

role in in-context learning for RE with LLMs.

From Table 2, we notice that the model with
INSTRUCT PROMPT obtains better performance
than TEXT PROMPT in most cases, indicating task-
related information indeed helps to unlock more
ability of LLMs for RE. Aberrant results are shown
in TACRED and TACREYV because incorrectly la-
beled demonstrations from the two datasets will vi-
olate the correct instruction fed into LLMs, which
confuses LL.Ms and results on worse performance
than ICL without the instruction. Moreover, adding
schema information obtains much better perfor-
mance, exhibiting the importance of pre-defined
structural information for relation extraction.

More demonstrations, counter-intuitively, may
not lead to performance improvement for RE
with LLMs. We find performance will not im-
prove even drop and the gap between INSTRUCT
PROMPT and TEXT PROMPT becomes relatively
smaller as the number of in-context demonstrations
increases from Figure 2. We argue that there may
be two reasons: 1) it is challenging to select rep-
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Figure 3: Performance of data generation with LLMs
and different data augmentation methods. Roberta and
SciBERT are used on RE-TACRED and SciERC, respec-
tively, in the context embedding-based DA method.

resentative demonstrations; 2) it is non-trivial for
LLMs to understand structure prediction tasks with
more large output (relation) space. More case stud-
ies for GPT-3.5 can be found in Appendix B.1.

5.3 Utility of Generated Data from LLMs

Combining data generated from LLMs with
original training data can yield better RE per-
formance than from traditional data augmenta-
tion approaches. We compare data generation
through the LLM with previous widely used data
generation approaches, such as substituting words
in training sets with WordNet’s synonyms and con-
textual word embedding in Figure 3 (details in
Appendix A.3). Data generation with LLMs can
obtain better performance than all others, indicat-
ing guiding LL.Ms to generate data is an effective
method to compensate for the lack of labeled data.

Using more and more generated data from
LLMs can only boost RE performance to a cer-
tain extent, not continuously better. From Fig-
ure 4, we observe that with more generated data,
the result climbs up first and then declines, and
is always higher than without generated data. We
think low-quality generated data introduces much
noise in the training course, according to the anal-
ysis on generated data in Appendix B.2, and LMs
may have an anti-noise capacity (Song et al., 2020).

6 Discussion and Conclusion

In this paper, we take the first step to investi-
gate how to utilize the large language model for
few-shot relation extraction. We observe that
task-related information, including instructions or
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Figure 4: Micro F1 (%) of KnowPrompt with generated
training data and original 8-shot data.

schemas, helps to elicit the capability of LLMs and
boost few-shot relation extraction performance. At
this stage, using LLMs to generate data may be a
simple yet effective solution to enhance the power
of foundation models (relatively small PLMs) for
practical applications. We hope this work can de-
liver the benefits of using LLMs for the NLP com-
munity. Note that LLMs can make predictions only
based on contexts combined with a few training ex-
amples as demonstrations. We argue that it has the
potential to design sophisticated human-readable
prompts for scenario-adaptable (e.g., low-shot and
any domains) relation extraction.
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Limitations

Despite our best efforts, there may still be some
limitations remaining in this paper.

LLMs: Due to the limited budgets, we can not
afford all kinds of LLMs, so we only evaluate
GPT-3.5 (text-davinci-003). We will try to investi-
gate relation extraction with more LL.Ms, such as
OPT (Zhang et al., 2022), GLM-130B (Zeng et al.,
2022), or code language models (Bi et al., 2023)
like Codex.

Other Methods to utilize LLMs: There are
several other techniques to leverage LLMs, such

as black-box optimization (Sun et al., 2022) and
feature-based learning (Lang et al., 2022); however,
we find that most of those approaches cannot di-
rectly be applied to relation extraction due to the
large label space and complex schema structures.
We leave these for future work to leverage other
methods with LLMs for relation extraction.

Datasets: We only evaluate four relation extrac-
tion datasets and will try to investigate relation ex-
traction performance with LLMs on more diverse
datasets across different domains and languages.
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A Experimental Details

A.1 Datasets

TACRED? is a widely used RE dataset. It has 42
relation labels, including no_relation, meaning no
relation is found. TACREV* includes the same
training set and relabeled development and test sets
from TACRED. RE-TACRED?” is a re-annotated
version of TACRED with 40 relations. SciERC®
has seven relation categories and is constructed in
the scientific domain. All datasets are derived from
their official webs without modification, including
contents and train/test/dev splits.

A.2 Baselines

We compare LLLMs with recent baseline methods
using relatively small models. 1) Normal fine-
tuning methods: SpanBERT (Joshi et al., 2020),
a span-based PLM; LUKE (Yamada et al., 2020),
pre-trained contextualized representations of words
and entities based on the bidirectional transformer;
GDPNet, a gaussian dynamic time warping pool-
ing net able to select important words for rela-
tion prediction; TYP Marker (Zhou and Chen,
2022), fine-tuning with entity typed markers. 2)
Generative method: TANL (Paolini et al., 2021),
framing a structured prediction language task as
a translation task between augmented natural lan-
guages. 3) Prompt-tuning methods: KnowPrompt,
knowledge-aware continuous prompt-based tuning
with synergistic optimization.

A.3 Implementation Details

Generated data with existing training data is then
evaluated on KnowPrompt. Data augmentation

3https ://nlp.stanford.edu/projects/tacred/
*https://github.com/DFKI-NLP/tacrev

5https ://github.com/gstoica27/Re-TACRED
6http: //nlp.cs.washington.edu/scilE/

methods with Word-Net’s synonyms and contex-
tual word embedding are achieved by nipaug’. The
parameter temperature in OpenAl API is set to 0
for precision in ICL and 1 for generating diverse
RE data. One NVIDIA GeForce RTX 3090 GPU
with 24GB memory is employed to run all experi-
ments. We rerun the official code of baselines with
their original settings except on the SciERC dataset.
Due to the vertical domain of SciERC, SciBERT
(Beltagy et al., 2019) is used in TYP Marker and
KnowPrompt for fairness. And for another three
datasets, RoBERTa-large is utilized in TYP Marker
and KnowPrompt.

B Case Analysis
B.1 Wrong Cases from ICL

From Table 4, we notice that some RE instances
are challenging for LLMs, and there are several
limitations with LLMs: 1) LLMs are not good at
clearly distinguishing the order between head and
tail entities. 2) The same mention of head and tail
entities will confuse LLLMs. 4) If the distance be-
tween head and tail entities in the context is long, it
is difficult for LLMs to decide the relation correctly.
5) Semantically-similar relation label words and
entity mentions will puzzle LLMs because their em-
beddings are similar. 6) LLMs cannot afford very
long instances since there is a large label space for
relation extraction. 7) LLMs may mostly fail to ex-
tract those ambitious or wrongly labeled relations;
those are also challenging for humans. More high-
quality demonstrations may help mitigate these
issues. And we think it is necessary to develop
step-by-step (Chat-style) approaches with LLMs to
extract limited relations in one stage.

B.2 Generated Data from LLMs

There are some cases for generated data from GPT-
3.5 in Table 5. Through human checks on 100
generated samples per dataset, about 78% gener-
ated data are corrected labeled and of a high quality
(85% for TACRED, 82.5% for TACREY, 72% for
RE-TACRED, 75% for SciERC). Meanwhile, we
add generated data and original gold training data
respectively to 8-shot datasets and fine-tune Know-
Prompt, we evaluate the quality of generated data
as shown in Table 3. We observe that labeled data
generated by GPT-3.5 are mostly correct. As for
TACRED and TACREY, generated data achieve
more improvements than gold labeled data. Since

7https: //github.com/makcedward/nlpaug
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TACRED TACREV RE-TACRED SciERC

8-shot Dataset  oeperated gold generated gold generated gold generated  gold

add 0-shot 29.35 29.35 29.77 29.77 56.05 56.05 45.80 45.80
add 8-shot 31.63 30.73 34.30 33.16 59.85 60.92 48.30 57.08
add 16-shot 34.78 31.88 36.33 33.49 59.59 61.30 58.62 65.15
add 32-shot 36.45 33.35 38.19 33.98 60.06 64.65 57.70 72.11
add 48-shot 37.89 33.97 38.80 35.06 62.67 65.56 51.64 74.29
add 64-shot 36.67 34.36 42.61 35.57 61.07 67.28 54.52 75.36
add 72-shot 35.69 34.58 41.72 35.96 59.09 67.43 49.59 75.87

Table 3: Micro F1 (%) of KnowPrompt after adding labeled data generated by GPT-3.5 or gold labeled data to
8-shot datasets.

there are many incorrect labeled data in TACRED
and TACREV (Zhang et al., 2017; Alt et al., 2020),
we think better performance results from GPT-3.5’s
help. However, we also find that Some generated
data from GPT-3.5 are of less quality than gold data.
As for RE-TACRED and SciERC, using more gold
data perform better than generated data. Through
human checks, some generated samples are too
short and concatenated by some semantically ir-
relevant sentences. Meanwhile, big performance’s
difference on SciERC shows GPT-3.5 is not good
at vertical domains such as science.
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Dataset

Case

Gold Relation

In-context Learning

TACRED

Context: And strangely enough , Cain’s short , three-year
tenure at the NRA is evidently the only period in his
decades-long career during which he ’s alleged to have
been a sexual predator.

Head Type: ORGANIZATION. Head Entity: NRA.
Tail Type: PERSON. Tail Type: Cain

org:top_members/employees

per:employee_of

Context: "I learn from students and I challenge them,"
says Heloise, 58, who took over the family hints business
when her mother, also named Heloise, died in 1977.
Head Type: PERSON. Head Entity: Heloise.

Tail Type: PERSON. Tail Entity: Heloise.

per:parents

per: alternate_names

TACREV

Context: Anna Mae Pictou Aquash, a Mi * kmaq Indian
from Canada, was brutally murdered in 1975.

Head Type: PERSON. Head Entity: Anna Mae Pictou
Aquash.

Tail Type: COUNTRY. Tail Entity: Canada.

per:country_of_birth

per:countries_of_residence

Context: Messina Denaro has been trying to impose his
power in Palermo, the Sicilian capital, and become the
new head of the Sicilian Mafia, weakened by the arrest
of Provenzano in April 2006.

Head Type: PERSON. Head Entity: his.

Tail Type: CITY. Tail Entity: Palermo.

no_relation

per:cities_of_residence

RE-TACRED

Context: They say Vladimir Ladyzhenskiy died late Sat-
urday during the contest in southern Finland, while his
Finnish rival Timo Kaukonen was rushed to a hospital.
Head Type: PERSON. Head Entity: Vladimir Ladyzhen-
skiy.

Tail Type: PERSON. Tail Entity: his.

per:identity

per:date_of_death

President of the Central American Parliament (Parlacen)
Jacinto Suarez said on Monday that the presidents of the
Central American countries did not support Panama ’s
request of withdrawal from the Parlacen.

Head Type: ORGANIZATION. Head Entity: Central
American Parliament.

Tail Type: PERSON. Tail Entity: Jacinto Suarez.

org:top_members/employees

per:title

SciERC

Context: We evaluate across two corpora (conversational
telephone speech and broadcast news speech) on both
human transcriptions and speech recognition output.
Head Type: OtherScientificTerm. Head Entity: transcrip-
tions.

Tail Type: OtherScientific Term. Tail Entity: output.

CONJUNCTION

COMPARE

Context: We validate this new method on nine standard
person re-identification datasets including two large scale
Market-1501 and CUHKO3 datasets and show that we
improve upon the current state-of-the-art methods on all
of them.

Head Type: Material. Head Entity: CUHKO3 datasets.
Tail Type: Material. Tail Entity: datasets.

HYPONYM-OF

PART-OF

Table 4: Wrong cases predicted by GPT-3.5. The gold relation categories are listed in the third column and the
results predicted by in-context learning are in the fourth column.
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Dataset

Case

Corrective Data

TACRED

Context: The American Cancer Society is headquartered in Atlanta and was
founded in 1913 by 15 trained laywomen.

Head Type: ORGANIZATION. Head Entity: American Cancer Society.
Tail Type: ORGANIZATION. Tail Entity: 15 trained laywomen.
Relation: org:founded_by.

Tail Type: PERSON

Context: Mary Brown, CEO of Brown Corp and renowned businesswoman,
is a regular speaker at industry conferences and events.

Head Type: PERSON. Head Entity: Mary Brown.

Tail Type: PERSON. Tail Entity: CEO.

Relation: per:title.

Tail Type: TITLE

TACREV

Context: Gustav Mahler was born in Kalischt, Bohemia on July 7th, 1860.
Head Type: PERSON. Head Entity: Gustav Mahler.

Tail Type: PERSON. Tail Entity: 1860.

Relation: per:country_of_birth.

Tail Type: DATE
Relation: per:date_of_birth

Context: MTN Nigeria, a subsidiary of South African-based MTN Group, has
begun to list its shares on the Nigerian Stock Exchange.

Head Type: ORGANIZATION. Head Entity: MTN Group.

Tail Type: ORGANIZATION. Tail Entity: MTN Nigeria.

Relation: org:subsidiaries.

RE-TACRED

Context: Pope John Paul II was a hugely popular Catholic leader who was
based in the Vatican City for most of his papacy.

Head Type: PERSON. Head Entity: Pope John Paul II.

Tail Type: PERSON. Tail Entity: Vatican City.

Relation: per:countries_of_residence.

Tail Type: CITY
Reltaion:
per:cities_of_residence

Context: French drug manufacturer Sanofi-Aventis dissolved its Chinese
subsidiary Guangzhou Pharma following a bribery scandal.

Head Type: ORGANIZATION. Head Entity: Sanofi-Aventis.

Tail Type: ORGANIZATION. Tail Entity: Guangzhou Pharma.

Relation: org:dissolved.

SciERC

Context: The comparison between the two approaches indicates that the neural
method produces far better results than the rule-based system.

Head Type: Method. Head Entity: neural method.

Tail Type: Method. Tail Entity: rule-based system.

Relation: COMPARE.

Context: The combination of chromatography and mass spectrometry has
enabled scientists to achieve unparalleled levels of proteome analysis.

Head Type: Method. Head Entity: mass spectrometry.

Tail Type: Method. Tail Entity: chromatography.

Relation: FEATURE-OF.

Relation: CONJUNCTION
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Table 5: Generated data from LLMs. Errors are bold in the second column and corrected in the third column.



