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Abstract

Prior work typically describes out-of-domain
(OOD) or out-of-distribution (OODist) sam-
ples as those that originate from dataset(s) or
source(s) different from the training set but for
the same task. When compared to in-domain
(ID) samples, the models have been known to
usually perform poorer on OOD samples, al-
though this observation is not consistent. An-
other thread of research has focused on OOD
detection, albeit mostly using supervised ap-
proaches. In this work, we first consolidate and
present a systematic analysis of multiple defini-
tions of OOD and OODist as discussed in prior
literature. Then, we analyze the performance
of a model under ID and OOD/OODist settings
in a principled way. Finally, we seek to identify
an unsupervised method for reliably identifying
OOD/OODist samples without using a trained
model. The results of our extensive evaluation
using 12 datasets from 4 different tasks suggest
the promising potential of unsupervised metrics
in this task.

1 Introduction

What happens when you train a machine learning
model on a dataset and use it to predict a sam-
ple whose source is unknown? Would you fully
rely on the model’s prediction on the test sample?
Basically, this situation is encountered in most real-
world scenarios where the test sample may differ
considerably from the training samples. Recent
works show that models perform poorer on the
samples that come from a different distribution
(Gokhale et al., 2022). In many real-world sce-
narios, such as health and law, false predictions or
misclassified results could have significant conse-
quences, and as such identifying out-of-domain or
out-of-distribution data beforehand is critical.

Previous works have defined OOD and OODist
data in different ways or used them interchangeably.
Early works define data that comes from a related
but different domain as OOD (Dai et al., 2007),

whereas OODist data has been defined as the data
that might have been collected at a different time
(Ovadia et al., 2019). In recent studies, (Chrysos-
tomou and Aletras, 2022) use the term OOD to
describe different datasets for the same task (e.g.,
SST, IMDb, and Yelp for sentiment classification),
whereas (Lin et al., 2022) use OODist to describe
the datasets that are not in the training set, includ-
ing those that are subsets of the same dataset (e.g.,
PDTB 2.0 (Carlson et al., 2002)). In this paper, we
first present a focused analysis of all the various
terminologies used in this context in recent works.

Another thread of research has focused on iden-
tifying OOD/OODist samples, mostly through su-
pervised methods (Varshney et al., 2022; Chiang
and Lee, 2022; Gokhale et al., 2022). However,
considering that trained models may not always be
available, we take a complementary approach in
this work to identify metric(s) that may be able to
support OOD detection in an unsupervised manner.

The first part of our methodology focuses on
establishing to what extent performance (e.g., ac-
curacy) can inform the detection of OOD samples1.
Our results indicate that indeed performance can
serve as a reliable metric for estimating OODness,
however, this requires a supervised model. To ad-
dress this limitation, in the second part of this work,
we explore several unsupervised metrics for esti-
mating semantic similarity between the training
and test samples. We hypothesize that an unsu-
pervised metric which sufficiently correlates with
performance, may be considered as a feasible alter-
native for detecting OOD samples.

The major contributions of this paper are:

• an in-depth exploration of the usage of the
terms OOD and OODist in recent works;

• a systematic assessment of the effectiveness
1As formally distinguishing between the two terms re-

mains beyond the scope of this paper, in this work we use the
terms OOD and OODist interchangeably.
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Paper Setup Term Metrics Task

Chrysostomou and Aletras
(2022)

A OOD - Sentiment classification

Le Berre et al. (2022) A OOD Accuracy MCQ
Lin et al. (2022) A OODist - Extractive QA
Nejadgholi et al. (2022) A OOD AUC, F1 Sentiment classification
Chiang and Lee (2022) A OODist Cosine similarity, Confi-

dence score, Probability
distribution

Sentiment classification

Mishra and Arunkumar
(2022)

A OODist NLI diagnostics NLI

Varshney et al. (2022) A OOD Accuracy NLI, Duplicate detection,
Sentiment analysis, MCQ,
Commonsense Reasoning

Omar et al. (2022) A OODist Accuracy, Success rate,
Error rate, Diversity,
Fairness, IBP tightness,
Robustness

Classification, Paraphras-
ing, NLI

Adila and Kang (2022) A OODist Confidence, Variability NLI
Singhal et al. (2022) A OOD Accuracy NLI, Phrase identification
Agrawal et al. (2022) A OOD Accuracy Visual QA
Aghazadeh et al. (2022) A, B OODist Accuracy Metaphorical knowledge
Chen et al. (2023) A, B OODist Accuracy Sentiment analysis, Toxi-

city detection, News Clas-
sification, Dialogue Intent
Classification

Mai et al. (2022) B OODist - Anomaly detection
Garg et al. (2022) B OOD Accuracy Rating generation, Toxic-

ity classification
Jin et al. (2021) B OOD False Positive Ratio,

AUROC, AUPR
Text Classification

Atwell et al. (2022) C OOD h-discrepancy Discourse parsing
Gokhale et al. (2022) C OOD Accuracy, EM NLI, QA, Image classifi-

cation

Table 1: A survey of recent works using various setups to study OODist or OOD settings. Here, A describes the
cases where the train set is from one dataset, and the test set from another dataset; B describes the scenario where
the train and test sets are two subsets of the same dataset; and C is a combination of both A and B. The “Metrics"
column represents the metrics, while the “Task" column lists the tasks studied in these papers. Note that several
papers whose setup can be described as A use different terms.

of performance in estimating OODness, and
an investigation of unsupervised approaches
for identifying OODness;

• an extensive evaluation across four different
tasks using a total of twelve datasets; we will
also make our code available for facilitating
reproducibility.

2 Related Work

Prior research has often used the terms OOD and
OODist interchangeably. In some works, dataset X
is described to be OODist to dataset Y if they are
different datasets, but support the same task (Lin
et al., 2022; Aghazadeh et al., 2022; Chiang and
Lee, 2022; Mishra and Arunkumar, 2022; Omar
et al., 2022; Adila and Kang, 2022), while in other
works, the term OOD is used to describe the similar
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Task Datasets train/ val/ test

Sentiment IMDb, SST2, Yelp 3310/ 428/ 909
MCQ SCIQ, CS, QASC 8134/ 926/ 920
Extractive QA SQUAD, News, Trivia 61688/ -/ 4212
NLI MNLI, WNLI, QNLI 635/ 71/ 146

Table 2: Task and dataset details

setting (Chrysostomou and Aletras, 2022; Le Berre
et al., 2022; Nejadgholi et al., 2022; Varshney et al.,
2022). Beyond that, while some consider differ-
ent subsets of the same dataset to be OODist (Mai
et al., 2022; Garg et al., 2022; Jin et al., 2021), oth-
ers refer to these as OOD to describe distribution-
ally different datasets (Atwell et al., 2022; Gokhale
et al., 2022).

When it comes to detecting OOD or OODist sam-
ples, using the model’s accuracy (Le Berre et al.,
2022; Aghazadeh et al., 2022; Gokhale et al., 2022;
Omar et al., 2022), input features, hidden features
representations, and output probability distribution
of the network layers (Chiang and Lee, 2022), or
AUC and F1 score (Nejadgholi et al., 2022) have
been well-studied. Table 1 presents a brief sum-
mary of some recent works.

3 Method

3.1 Problem Definition

Given two datasets, X = {x1, ..., xm} and Y =
{y1, ..., ym}, the goal is to assess the correlation
between the performance of the two datasets under
ID/OOD settings and their (semantic) similarity.
The performance is measured by training a model
on one of the datasets, say, Xtrain and testing it on
the test set Xtest which represents the ID setting,
and Ytest representing the OOD setting. The ID
similarity is computed by averaging the similarity
between the instances of Xtrain and Xtest, while
OOD similarity is measured between Xtrain and
Ytest.

3.2 Datasets

We study four different tasks using a total of 12
datasets (3 datasets for per task). We include the
most common tasks that have been used in prior
work.
(i) Sentiment Analysis: given a text, classify its
sentiment as negative or positive.
(ii) Multiple Choice Question Answering (MCQ):
given a question and a context, select the correct

answer from a pool of possible answers.
(iii) Extractive Question Answering (QA): given
a question and a context, find the answer to the
question from the context.
(iv) Natural Language Inference (NLI): given a
premise and a hypothesis, determine whether the
hypothesis contradicts, entails, or is neutral with
respect to the premise.

Table 2 presents the details of the datasets and
the tasks. For sentiment classification, we use
IMDb (Maas et al., 2011), SST2 (Socher et al.,
2013), and Yelp (Zhang et al., 2015) datasets.
We experiment with SCIQ (Welbl et al., 2017),
CommonsenseQA (CS) (Talmor et al., 2019), and
QASC (Khot et al., 2020) for the MCQ task. For
the Extractive QA task, SQUAD, News, and Trivia
(Fisch et al., 2019) datasets are selected from the
MRQA dataset (note that since these datasets do
not have a separate test set, we use the validation
data as the test set). The NLI datasets include
MNLI, QNLI, and WNLI from the GLUE bench-
mark (Wang et al., 2018). All the other datasets
were accessed from the HuggingFace repository2.

Data preparation: Prior work has largely over-
looked the effect of an important aspect – dataset
size – in such studies. As such, we control the
dataset size as a variable in our study by main-
taining the size of all train, validation (when avail-
able), and test splits for all three datasets per task
by downsampling them to match the size of the
smallest dataset in each set. For instance, all the
splits of all three sentiment analysis datasets are
downsampled to be of equal size. Additionally,
we balance the number of instances for each class
when possible (e.g., in the sentiment datasets).

3.3 Metrics

We use three categories of metrics, one for mea-
suring the performance of the model, another for
estimating the similarity between the two datasets,

2https://huggingface.co/datasets/
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and the third for computing the correlation between
performance and similarity.

Performance Metrics. We report accuracy for the
classification tasks, i.e., sentiment analysis, MCQ,
and NLI tasks, and F1 score for extractive Ques-
tion Answering task to measure the correctness of
model predictions.

Similarity Metrics. To estimate the closeness
among the ID and OOD datasets, we use metrics re-
lated to semantic similarity (higher value means the
samples are from nearby distributions) and seman-
tic distance (higher value indicates less similarity).
These include: (i) Cosine Similarity: measures the
distance between the samples from two sources3.
(ii) Mauve Score: measures the similarity between
two texts4 (Pillutla et al., 2021). (iii) Wasserstein
Distance (Wstn): measures the distance between
the two distributions and if the distributions overlap
enough, then they are close to each other5 (Weng,
2019). (iv) Jensen Shannon Distance (JSD): quan-
tifies the similarity between two probability distri-
butions, where the smaller the value, the closer the
distributions6 (Manning and Schutze, 1999).

Correlation Metrics. Lastly, we use two com-
monly used correlation metrics – Kendall Tau and
Pearson7 (we also experimented with Spearman
which gave similar results), with the goal of under-
standing the relationship between performance and
similarity of datasets under ID/OOD settings.

3.4 Measuring Performance and Similarity
For measuring the performance, we fine-tune a
BERT base uncased model for 2 epochs on each
Xtrain and test it on Xtest (ID) and Ytest (OOD).
For estimating the similarity between the ID and
OOD datasets, we randomly sample two sets of
20 instances, Xtrain20 and Ytest20, and estimate
pairwise similarity between all of these samples,
obtaining a total of 400 similarity scores which are
then averaged to compute the similarity.

4 Results and Discussion

Performance analysis: Table 3 presents the results
of the performance experiments, where we observe

3We estimate this using word2vec embeddings.
4We use the default embeddings (GPT-2) https://

pypi.org/project/mauve-text/.
5We use the universal sentence encoder for estimating this.
6We used word2vec embeddings.
7https://pandas.pydata.org/docs/

reference/api/pandas.DataFrame.corr.html

Trained on Tested on Performance

IMDb-train
IMDb-test 0.90

Yelp-test 0.87
SST2-test 0.17

SST2-train
SST2-test 0.89
IMDb-test 0.21

Yelp-test 0.16

Yelp-train
Yelp-test 0.93

IMDb-test 0.86
SST2-test 0.19

SCIQ-train
SCIQ-test 0.64

QASC-test 0.18
CS-test 0.34

CS-train
CS-test 0.49

SCIQ-test 0.58
QASC-test 0.84

QASC-train
QASC-test 0.92
SCIQ-test 0.51

CS-test 0.48

SQUAD-train
SQUAD-test 0.86

News-test 0.51
Trivia-test 0.55

News-train
News-test 0.66

SQUAD-test 0.77
Trivia-test 0.56

Trivia-train
Trivia-test 0.66

SQUAD-test 0.52
News-test 0.31

MNLI-train
MNLI-test 0.57
WNLI-test 0.56
QNLI-test 0.54

WNLI-train
WNLI-test 0.42
MNLI-test 0.26
QNLI-test 0.47

QNLI-train
QNLI-test 0.83
MNLI-test 0.43
WNLI-test 0.56

Table 3: Performance results under different ID/OOD
settings. Instances where ID performance is better than
OOD performance are indicated in blue.

that the model performance under ID settings is
generally better than under OOD settings, except
for three exceptions, suggesting that performance
can indeed serve as a reasonably dependable met-
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ric for detecting OOD. However, this requires a
supervised model, which motivates us to explore
unsupervised approaches for estimating OODness.
It is worth noting that while Garg et al. (2022)
found that OOD accuracy is less than the ID ac-
curacy, this observation does not always hold true
according to our analysis.

Correlation between performance and similarity:
Figure 1 presents the heatmap visualizing the corre-
lation (Kendall and Pearson) between performance
and similarity metrics, across all 12 datasets for
the four tasks (the full set of results is included in
Appendix A). In looking at the results, we observe
that according to Kendall Tau correlation analysis,
Wasserstein distance (Wstn) shows the most con-
sistent correlation (in 10 out of 12 cases), whereas
according to Pearson correlation, both Wasserstein
and Cosine are acceptable metrics (in 9 out of 12
cases). In all the scenarios, however, JSD is clearly
the least correlated metric. This suggests the poten-
tial of unsupervised approaches in estimating OOD
samples.

5 Conclusion

In this work, we aim to identify unsupervised ap-
proaches for identifying OOD samples. We con-
ducted an in-depth analysis of different unsuper-
vised similarity metrics and estimated their correla-
tion with performance of a model under ID/OOD
settings. Our findings indicate that Wasserstein
distance presents a promising metric for determin-
ing OOD samples. The natural question of how
to determine the appropriate threshold, however,
remains to be explored in future work. Another di-
rection worth exploring is to verify the robustness
of these similarity metrics when estimated using
different embeddings.

Limitations

While our analysis suggests some promising results,
we acknowledge some limitations of this work such
as:

• on some datasets, the ID performance was ob-
served to be less than the OOD performance,
and further investigation is needed to study
this observation in detail and bring additional
insights.

• all the analysis in this study focuses on
datasets in English language, and it will be

(a)

(b)

Figure 1: (a) Kendall and (b) Pearson correlation be-
tween performance and dataset similarity, evaluated
over 12 datasets with each serving as an ID dataset
once. For Cosine and Mauve, darker shades are desir-
able, whereas for Wstn and JSD, lighter shades indicate
better correlation.

interesting to investigate whether our findings
will generalize to other languages.
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Trained Tested Model
Accu-
racy

Cosine Mauve Wstn JSD

IMDb IMDb 0.90 0.92 1 0.004 0.21
IMDb Yelp 0.87 0.87 0.91 0.0039 0.26
IMDb SST2 0.17 0.78 0.42 0.0052 0.36

SST2 SST2 0.89 0.66 0.99 0.0032 0.46
SST2 IMDb 0.21 0.77 0.22 0.0051 0.38
SST2 Yelp 0.16 0.72 0.004 0.0046 0.41

Yelp Yelp 0.93 0.86 0.98 0.0036 0.26
Yelp IMDb 0.86 0.87 0.76 0.0041 0.27
Yelp SST2 0.19 0.73 0.94 0.0038 0.4

SCIQ SCIQ 0.64 0.82 1 0.004 0.33
SCIQ QASC 0.18 0.66 0.01 0.008 0.46
SCIQ CS 0.34 0.78 1 0.004 0.37

CS CS 0.49 0.71 0.94 0.003 0.45
CS SCIQ 0.58 0.62 0.01 0.007 0.48
CS QASC 0.84 0.61 0.004 0.005 0.49

QASC QASC 0.92 0.75 1 0.003 0.4
QASC SCIQ 0.51 0.78 0.99 0.004 0.38
QASC CS 0.48 0.66 0.004 0.006 0.48

SQUAD SQUAD 0.86 0.84 0.99 0.0037 0.34
SQUAD NEWS 0.51 0.82 0.32 0.0041 0.33
SQUAD TRIVIA 0.55 0.81 0.04 0.0059 0.33

NEWS NEWS 0.66 0.89 0.91 0.0036 0.23
NEWS SQUAD 0.77 0.86 0.11 0.0046 0.31
NEWS TRIVIA 0.56 0.84 0.89 0.0039 0.27

TRIVIA TRIVIA 0.66 0.88 0.99 0.0031 0.23
TRIVIA SQUAD 0.52 0.82 0.04 0.0062 0.34
TRIVIA NEWS 0.31 0.82 0.99 0.0042 0.29

MNLI MNLI 0.57 0.72 0.97 0.0035 0.43
MNLI WNLI 0.56 0.71 0.27 0.0032 0.43
MNLI QNLI 0.54 0.73 0.99 0.0037 0.42

WNLI WNLI 0.42 0.74 0.79 0.0032 0.41
WNLI MNLI 0.26 0.68 0.66 0.0036 0.46
WNLI QNLI 0.47 0.67 0.004 0.0035 0.46

QNLI QNLI 0.83 0.75 0.97 0.0036 0.41
QNLI MNLI 0.43 0.64 0.66 0.0039 0.45
QNLI WNLI 0.56 0.58 0.01 0.0034 0.48

Table 4: The results for the sentiment, MCQ, extractive QA, and NLI datasets.
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