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We show that it is possible to derive a vector & first of all — foremost
representation for each of these stylistic notions ~ a whole bunch — full
from only a small number of seed pairs. Using my dad — father
these vectors, we can characterize new texts 2 bright — radiant
in terms of these dimensions by performing = heavy — burdened
simple calculations in the corresponding em- €| unsympathetic — cold-hearted

. . =) fall — plummet
bedding space. We conduct experiments on S alot of — a sea of
five datasets and find that static embeddings en- 2 quick — lightning
code these features more accurately at the level m hard —s ironclad

of words and phrases, whereas contextualized
LMs perform better on sentences. The lower
performance of contextualized representations
at the word level is partially attributable to the
anisotropy of their vector space, which can be
corrected to some extent using techniques like
standardization.!

1 Introduction

The style of a text is often reflected in its gram-
matical and discourse properties, but also in local
word choices made by the author. The choice of
one from a set of synonyms or paraphrases with
different connotations can define the style of a text
in terms of complexity (e.g., help vs. assist), for-
mality (e.g., dad vs. father), figurativeness (e.g.,
fall vs. plummet), and so on (Edmonds and Hirst,
2002). These lexical stylistic features can be useful
in various scenarios, such as analyzing the style of
authors or texts of different genres, and determining
the appropriate word usage in language learning
applications.

'Our code and data are publicly available at https: //
github.com/veronica320/Lexical-Stylistic
—-Features.

Table 1: Seed pairs for constructing vector represen-
tations of complexity (simple — complex), formality
(casual — formal), and figurativeness (literal — figura-
tive).

Previous approaches to formality detection relied
on word length, frequency, as well as on the pres-
ence of specific prefixes and suffixes (e.g., intra-,
-ation) (Brooke et al., 2010). Such features have
also been used for complexity detection, often com-
bined with information regarding the number of
word senses and synonyms (Shardlow, 2013; Kriz
et al., 2018). Recent studies have shown that the
representation space of pretrained LMs encodes a
wealth of lexical semantic information, including
similarity, polysemy, and hypernymy (Gari Soler
and Apidianaki, 2021a; Pimentel et al., 2020; Et-
tinger, 2020; Ravichander et al., 2020; Vuli¢ et al.,
2020, i.a.). In particular, abstract semantic notions
such as intensity (e.g., pretty — beautiful — gor-
geous) can be extracted using a lightweight ap-
proach based on simple calculations in the vector
space (Gari Soler and Apidianaki, 2020, 2021b).

In this paper, we explore whether lexical stylistic
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features can also be identified in the vector space
built by pretrained LMs. To do this, we extend the
method of Gari Soler and Apidianaki (2020) to ad-
dress complexity, formality, and figurativeness. We
first construct a vector representation for each of
these features using a small number of seed pairs
shown in Table 1. We then use these vectors to
characterize new texts according to these stylistic
dimensions, by applying simple calculations in the
vector space. We evaluate our method using a bi-
nary classification task: given a pair of texts that
are semantically similar but stylistically different
in terms of some target feature (e.g., formality), the
task is to determine which text exhibits the feature
more strongly (e.g., is more formal). Note that
the goal of our study is not to achieve high perfor-
mance on the task itself, but rather to probe for how
well these stylistic features are encoded in different
types of pretrained representations.

We experiment with various static and contex-
tualized embeddings on five datasets, containing
words and phrases (doctor vs. medical practi-
tioner), or sentences (Those recommendations were
unsolicited and undesirable. vs. that’s the stupi-
dest suggestion EVER.). Our results show that both
types of representations can capture these stylistic
features reasonably well, although static embed-
dings perform better at the word and phrase level,
and contextualized LMs at the sentence level. We
hypothesize that the sub-optimal performance of
contextualized LMs on short texts might be par-
tially due to the high anisotropy of their embedding
space. Anisotropic word representations occupy a
narrow cone instead of being uniformly distributed
in the vector space, resulting in highly positive cor-
relations even for unrelated words, thus negatively
impacting the quality of the similarity estimates
that can be drawn from the space (Ethayarajh, 2019;
Gao et al., 2019; Cai et al., 2021; Rajaee and Pile-
hvar, 2021). We verify this hypothesis by imple-
menting different anisotropy correction strategies
(Timkey and van Schijndel, 2021) and discuss the
observed improvements in contextualized represen-
tations’ performance on short texts.

Overall, our findings contribute to the big picture
of probing literature, showing that stylistic features
like complexity, formality, and figurativeness can
be decoded from the embedding space of pretrained
representations using simple calculations, without
any supervision. Our lightweight method can be
easily integrated into downstream applications like

authorship attribution and style transfer.

2 Related work

There has been an extensive body of literature on
probing techniques aimed at identifying the linguis-
tic and world knowledge encoded in LM represen-
tations. For example, given a Machine Translation
model, does it implicitly capture the syntax struc-
ture of the source text? Existing work addresses
such questions with methods like auxiliary classi-
fiers (a.k.a. probing/diagnostic classifiers) (Veld-
hoen et al., 2016; Adi et al., 2017; Conneau et al.,
2018), information-theoretic probing (Voita and
Titov, 2020; Lovering et al., 2020), behavioral tests
(Ebrahimi et al., 2018; Wallace et al., 2019; Petroni
etal., 2019), geometric probing (Chang et al., 2022;
Wartena, 2022; Kozlowski et al., 2019), visualiza-
tion of model-internal structures (Raganato and
Tiedemann, 2018), and so on. Using these meth-
ods, researchers have found that pretrained LMs
do encode various types of knowledge, including
syntactic (Linzen et al., 2016; Hewitt and Man-
ning, 2019), semantic (Ettinger et al., 2016; Adi
et al., 2017; Yanaka et al., 2020), pragmatic (Jeretic
et al., 2020; Schuster et al., 2020), as well as factual
and commonsense knowledge (Petroni et al., 2019;
Thukral et al., 2021).

Our work is along the line of probing for lexi-
cal semantics with simple geometry-based meth-
ods (Vuli¢ et al., 2020; Gari Soler and Apidianaki,
2021a), which uncovers the target knowledge en-
coded in the semantic space of LM representations
with simple geometric computations (Vuli¢ et al.,
2020; Gari Soler and Apidianaki, 2021a). Com-
pared to the most widely used auxiliary classifier
method, geometric probing does not rely on any
external model. Thus, it requires no annotated train-
ing data and avoids the potential issue of the ex-
ternal model itself learning the target knowledge
(Hewitt and Liang, 2019).

Directly related to our work, Gari Soler and
Apidianaki (2020) proposed a method to detect the
intensity of scalar adjectives, where an “intensity”’
dimension is identified in the vector space built by
the BERT model. The method draws inspiration
from word analogies in gender bias work, where
a gender subspace is identified in the embedding
space by calculating the main direction spanned by
the differences between vectors of gendered word
pairs (e.g., f?cz - sﬁ, man - womarn,) (Bolukbasi
et al., 2016; Dev and Phillips, 2019). Similarly,

371



—_— ——
medical practitioner — doctor

—_—
legislative texts — laws

hypertension — high blood pressure
_—

d,

I
ﬂ\/@ prevalent — very common  omplex

significant quantity — a lot
_— s —
impact negatively — be bad

— —
assist — help

Figure 1: Complexity vector generation.

Garf Soler and Apidianaki (2020) view intensity as
a direction in the embedding space which is calcu-
lated by subtracting the vector of a low-intensity
adjective from that of a high-intensity adjective on
the same scale (e.g., awesome - good, horrible -
m). Intuitively, this subtraction cancels out the
adjectives’ common denotation and retains their
variance in intensity, which is represented by the
resulting difference vector (dV ec). This vector can
then be used to determine the intensity of new ad-
jectives by simply taking the cosine similarity of
their vector to dVec. We extend this method to
other lexical stylistic notions, and address words of
different part-of-speech (POS) and longer texts.

3 Method

We adopt the definitions for the three stylistic fea-
tures of interest (complexity, formality, and figura-
tiveness) proposed by previous work. Simple lan-
guage is “used to talk to children or non-native En-
glish speakers”, whereas more complex language
is “used by academics or domain experts” (Pavlick
and Nenkova, 2015). Formal language is defined
as “the way one talks to a superior”, whereas ca-
sual language is “used with friends” (Pavlick and
Nenkova, 2015). Figurative language is defined
by Stowe et al. (2022) as utterances “in which the
intended meaning differs from the literal compo-
sitional meaning”, while literal language exhibits
no such difference. Unlike the previous two fea-
tures, figurativeness is often a contextual instead
of lexical feature (e.g., the word adhere is used in
a metaphorical sense in the expression “adhere to
the rules” and in its literal sense in “adhere to the
wall”).> We explore the usability of our method
for studying figurativeness by using a small seed

In the literature, figurativeness is generally studied at the
level of utterances (Stowe et al., 2022; Piccirilli and Schulte
Im Walde, 2022; Chakrabarty et al., 2022). Some studies
also look at the semantic properties of words and phrases as
indicators for metaphor identification (Birke and Sarkar, 2006;
Tsvetkov et al., 2013; Gutiérrez et al., 2016).

set of synonyms and paraphrases that have literal
and figurative connotations (e.g., unsympathetic —
cold-hearted) independent of their context. These
pairs are only used for constructing our figurative-
ness vector representation, while our evaluation is
performed on a dataset containing full sentences
(see Section 4 for details).

Our method involves two steps: (a) feature vec-
tor generation, where we construct a vector rep-
resentation for each feature; and (b) feature value
prediction, where we predict how strongly a new
piece of text exhibits some target feature using the
constructed feature vector. We illustrate the two
steps below.

Feature vector generation. We collect a small
number of seed pairs to illustrate each notion,
shown in Table 1.3 The seed pairs consist of rough
paraphrases that differ in the stylistic aspect of in-
terest. Consider complexity as an example. Given
a pair of “simple — complex” texts, we subtract
the vector of the simple from that of the complex

one (e.g., medical practitioner - doctor). After
performing this subtraction for each pair in the
seed set, we then average the resulting difference
vectors to obtain a vector representing complexity
which we call d;oppie.. This procedure is illus-
trated in Figure 1. Similarly, for formality, we
subtract the vector of the informal paraphrase from
that of 1t.s formal counterpar.t (e.g., respiratory
- breathing), and for figurativeness, we subtract
the vector of the literal expression from that with

figurative meaning (e.g., bright - radiant). By
averaging the difference vectors for all pairs in the
corresponding seed set, we obtain vectors represent-
ing formality (d formaq;) and figurativeness (c@).
We extend the method of Gar{ Soler and Apidianaki
(2020), which was only applied to scalar adjectives,
to words of other POS and to longer text (phrases
and sentences). Finally, we compare the vectors
that are built using representations from different
monolingual and multilingual models.

Feature value prediction. Given a new piece of
text (word, phrase, or sentence), we compute the
cosine similarity between its vector representation

and deompiezs A formal and dy;g. The more similar
the vector of the new text is to one of these feature

3This is based on the finding from Garf Soler and Apidi-
anaki (2020) that using only a few or even a single pair(s) is
almost as competitive as using an entire corpus in the case of
intensity ranking.
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Feature Short-text Long-text
(word/phrase) (sentence)
Complexity  SimplePPDB SimpleWikipedia
Formality StylePPDB GYAFC
Figurativeness - IMPLI

Table 2: Datasets used for each feature.

vectors, the more complex, formal, or figurative the
text is considered to be.

4 Experimental Setup

Evaluation task and metrics. We evaluate the rep-
resentation of the target features in a binary classi-
fication task: given a pair of texts (words, phrases,
or sentences) tg and ¢; that are semantically sim-
ilar but stylistically different in terms of some
feature F' (e.g., figurativeness), the task is to de-
cide which text exhibits the feature more strongly
(e.g., is more figurative). For example, given two
sentences “You must adhere to the rules.” (p) and
“You must obey the rules.” (¢1), the ground truth is
that ¢¢ is more figurative. We use accuracy as our
evaluation metric.

Seed pairs. For each feature, we use seven seed
pairs for vector generation, as shown in Table 1.
The seeds for complexity are examples from the pa-
per describing SimplePPDB (Pavlick and Callison-
Burch, 2016), and the seeds for formality are from
the paper on lexical style properties of paraphrases
(Pavlick and Nenkova, 2015). For figurativeness,
we manually compile a set of seven seed pairs.

Datasets. The datasets used in our feature value
prediction experiments (described in Table 2) con-
tain pairs of words or phrases (short text), and pairs
of sentences (long text). Note that this distinction is
not based on the number of tokens, but on whether
the text is a complete sentence. For complexity,
we use SimplePPDB (Pavlick and Callison-Burch,
2016) and SimpleWikipedia (Kauchak, 2013); for
formality, Style-annotated PPDB (StylePPDB for
short) (Pavlick and Nenkova, 2015) and GYAFC
(Rao and Tetreault, 2018). For figurativeness, since
there is no dataset of word and/or phrase pairs,
we only use the IMPLI (Idiomatic and Metaphoric
Paired Language Inference) dataset (Stowe et al.,
2022) that contains sentences.

For each dataset, we select the optimal configura-
tion (see the Configuration paragraph below) using
the validation set, and report its performance on the
test set. To make the label distribution balanced,

Token Frequency Distribution
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3

0 0

Figure 2: Distribution of token frequency in the evalua-
tion datasets.

we randomly shuffle the order of the two pieces
of text in each pair and re-assign the gold label
accordingly. This ensures that a majority baseline
only performs around chance. Figure 2 shows the
distribution of token frequency in each dataset.*

Baselines. We compare our method to two simple
baselines. The majority baseline always predicts
the majority label in the dataset. The frequency
baseline consults the frequency counts of each to-
ken in the Google N-gram corpus (Brants, 2006)
and considers more frequent tokens to be simpler,
more casual, and more literal. Frequency has been
a strong baseline for complexity and formality in
previous work, given that rare words tend to be
more complex than frequently used words (Brooke
et al., 2010).

Configuration. We experiment with two parame-
ters in the configuration: LM and layer. Note that
the purpose of experimenting with different config-
urations is not to solve the task, but rather to obtain
a comprehensive picture of which embeddings best
represent the target features.

* Language Models: We experiment with both
static and contextualized representations. For
static embeddings, we consider GloVe (Pen-
nington et al., 2014) and fastText (Bojanowski
et al., 2017). For contextualized LMs, we con-
sider encoder-only monolingual and multilin-
gual Transformer models of different sizes
(base and large), including BERT (Devlin
et al., 2019), mBERT (multilingual BERT)
(Devlin et al., 2019), RoBERTa (Liu et al.,
2019), and XLM-RoBERTa (Conneau et al.,
2020).5

*See Appendix A for more details including dataset statis-
tics, pre-processing method, dataset splits, and examples.
5See Appendix B for implementation details.

373



Pooling Model Complexity Formality Figurativeness
short long short long long
majority 55.1 50.6 51.2 51.8 51.4
frequemcy ________| 82 s 6o ate | O7
. 84.8 60.0 76.8 82.8 54.3
static glove glove glove glove glove
Mean """ """ " N 862 765 687 4 729
_ contextualized (single layer) | robertatarge () __ mbervbase (1) | bertbase () _ robertalarge (12) _| bertlarge (14) ___
. 84.4 76.0 67.6 86.7 67.2
contextualized (layer agg) mbert-base (10) mbert-base (11) bert-large (1) roberta-large (23) bert-large (19)
_frequemcy | 807 . a4 |72 25 | 479 .
. 894 58.0 76.0 63.4 56.0
sate | gove gove g gove | fastext
Max o 87.7 69.4 717 73.6 648
_ contextualized (single layer) | robertalarge () _robertarbase (12) | mbertbase ©)___ mbert-base (1)___| bertlarge (1) ___
. I 86.2 67.6 71.7 71.7 63.9
contextualized (layeragg) roberta-large (19) roberta-large (4) mbert-base (0) roberta-large (24) bert-large (14)

Table 3: Accuracy scores obtained on each test set using different types of embeddings and pooling methods. We
report the performance of the models and layers (in parentheses) that best predicted the feature on the corresponding
validation set. For contextualized representations, we report results using a single layer or layer aggregation (“layer
agg”). The highest performance obtained with each pooling method (Mean/Max) is in boldface.

Pooling  Stats Complexity | Formality | Figurativeness
short long | short long long
2beats 1 (%) | 63.0 78.0 | 929 724 54.3
Mean .
acc gain 26 4.1 43 53 0.1
Max 2beats 1 (%) | 66.1 724 | 953 64.6 44.9
acc gain 3.0 3.0 4.4 32 -0.5
Average 2beats 1 (%) | 64.6 752 | 94.1 68.5 49.6
acc gain 2.8 35 43 43 -0.2

Table 4: Comparison between single layer and layer
aggregation settings. “2 beats 1 (%)’ refers to the per-
centage of cases where layer aggregation performance
is at least as high as the single layer performance, under
the same configuration (LM & layer). “Acc gain” stands
for the average accuracy gain of layer aggregation over
single layer across all configurations. Positive accuracy
gains are highlighted in green, negative ones in pink.

¢ Layer (/): For contextualized LMs, another
configuration choice is which layer to ob-
tain the representation from. We explore the
knowledge encoded in different layers in the
range of 0-12 for base models and 0-24 for
large ones, including the embedding layer.

Pooling strategies. In order to obtain a score for a
feature of interest (complexity, formality, or figura-
tiveness) for text segments that contain more than
one token (i.e., phrases and sentences), we consider
two pooling strategies over the scores calculated
for individual tokens:®

* mean: We compute the cosine similarity be-
tween d fcqture and each word vector, and take
the average of the similarity scores as the fea-
ture value for the text.

®See Appendix B for details on tokenization and multi-
word expression handling.

* max: We compute the cosine similarity be-
tween d feqture and each word vector, and take
the maximum of the similarity scores as the
feature value for the text.

The intuition behind max pooling is that the ma-
jority of words in a phrase or sentence would not
be too extreme (i.e., too complex or too formal).
By looking at the most complex or formal word
in the text, we can get an idea of how extreme it
might be in that dimension. Naturally, we expect
this approach to perform less well than mean pool-
ing for figurativeness, where idiomaticity is most
often inferred by looking at the context of use and
the word combinations within a sentence.

5 Results and Discussion

Table 3 presents the results of our evaluation. Due
to space constraints, each row in the table only
shows the optimal performance obtained across all
configurations (LM and layers) for static and con-
textualized models.” For contextualized LMs in
particular, following Vuli¢ et al. (2020), we sepa-
rately show the optimal performance under two set-
tings: single layer, where only the representation
from a single layer [ is used; and layer aggrega-
tion (“layeragg” for short), where we average the
representations from all layers from the Oth to a
specific layer [ (included).

We observe that our method outperforms the
majority and frequency baselines with both static
and contextualized LMs. Furthermore, mean

"See Appendix C.1 for detailed accuracy scores for each
model.
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Figure 3: Performance change across layers of different LMs (under the layer aggregation setting).

pooling generally works better than max pool-
ing, although there is still room for improve-
ment. Taking a closer look at the optimal
configuration for each feature, for complexity,
roberta-large and mbert-base are the
dominant best-performing models, yet there are
no consistently dominant layers; for formality,
bert-base and mbert-base perform the best
on short texts and surprisingly with the initial lay-
ers (0 or 1), while roberta—-large is the best
model for long texts with middle or final layers; for
figurativeness, bert-1large is consistently the
best model across all settings.

Interestingly, contextualized LMs far outperform
static embeddings on long text sin almost all cases,
yet on short texts, static embeddings perform on
par or sometimes even better than contextualized
LMs. This is the case, for example, with formality
“short” (with both pooling strategies) and with com-
plexity “short” (with max pooling). This finding
sounds counter-intuitive, given the generally higher
performance of contextualized models in various
NLP tasks. In our probing setting, we suspect that
this might be due to two factors. First, the input
in short-text datasets consists of isolated, rather
than contextualized, instances of words. This is not
natural input for a contextualized LM. Second, pre-
vious work has demonstrated that the word-level
similarity estimates obtained from the vector space
of contextualized LMs might be distorted due to
the anisotropy of the space (Ethayarajh, 2019; Ra-

jaee and Pilehvar, 2021). Concretely, anisotropic
word representations occupy a narrow cone instead
of being uniformly distributed in the vector space,
resulting in excessively positive correlations even
for unrelated word instances. This has a negative
impact on the informativeness of measures such
as the cosine and the Euclidean distance, often
used for estimating representation similarity (Apid-
ianaki, 2023). These measures are dominated by
a small subset of “rogue dimensions” which drive
anisotropy and the drop in representational quality
in later layers of the models (Timkey and van Schi-
jndel, 2021). In Section 6, we investigate more
closely the impact of anisotropy on our results
through a series of experiments involving differ-
ent anisotropy reduction methods.

Finally, comparing the single layer and layer
aggregation settings, their respective optimal con-
figurations result in mostly similar performance
across datasets, as shown in Table 3. In order to
better understand their difference across all pos-
sible LM and layer configurations, we present in
Table 4 two types of averaged statistics: the per-
centage of configurations where the layer aggrega-
tion performance is equal or higher than the single
layer performance, as well as the average gain in
terms of accuracy. We observe that layer aggre-
gation improves the performance for complexity
and formality (across 64.6% to 94.1% of the con-
figurations and by an accuracy gain of 2.8 to 4.3),
but makes almost no difference for figurativeness.
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Figure 4: Optimal performance over different bins of text length (under the layer aggregation setting).

Together with the results from Table 3, this sug-
gests that although layer aggregation does not help
with the best configuration, it is beneficial to most
configurations on average.

In the next two subsections, we analyze the in-
fluence of two more factors on our method: layer
depth and text length. For conciseness, we only
report the results for the layer aggregation setting.
Results for the single layer setting are given in Ap-
pendix C.

5.1 How well do different layers represent the
target features?

We explore the representation of the three stylistic
features inside contextualized LMs by specifically
monitoring the change in accuracy observed across
layers. The results are shown in Figure 3. The solid
curves show results obtained using mean pooling,
while the dashed ones correspond to max pooling.

We observe that information about complexity
(3a and 3c) is more clearly and consistently en-
coded after layer 4 of the models, independent of
their size (base or large). Across all layers, mean
and max pooling exhibit mostly similar behavior
for short texts, while mean pooling is clearly bet-
ter for longer texts. The pattern for figurative-
ness is similar (3e), though with slightly more
fluctuations. For formality, we see a different
trend. As shown in Figure 3b, this feature is en-
coded more clearly in the early layers of the mod-
els for short texts. For longer texts, we see di-
verging patterns across layers of different models
(3d). In particular, roberta-large encodes
formality better than other tested models while
its multilingual versions (x1lm-roberta-base
and x1m-roberta-large) give much lower re-
sults.

5.2 How does text length influence our
method?

We analyze the performance change with regard to
text length, represented by the average number of
tokens in the two texts in a pair. For each feature,
we merge examples from the short-text and long-
text datasets (if available) and take the predictions
from the best-performing contextualized configura-
tion from Table 3. Based on the number of tokens,
we group all examples into several bins (unigram,
bigram, 3-4, 5-9, 10-14, 15-19, >20) and compute
the average accuracy in each bin. Figure 4 shows
the results.

Interestingly, we observe different patterns for
the three features. For complexity, accuracy scores
for shorter texts (0.86 to 0.9) are generally higher
than those for long texts (0.73 to 0.77). The drop
from 3-4 tokens to 5-9 tokens is particularly clear.
For formality, on the contrary, longer texts (0.84
to 0.93) tend to be easier than short ones (0.71 to
0.72). For figurativeness, we do not have results
for short texts since no such datasets are available.
Within full sentences, we observe that our method
works better for shorter sentences (with <5 tokens)
than for longer ones (with >=5 tokens) by an accu-
racy difference of 0.13 to 0.25. One caveat is that
these differences are not only influenced by text
length, but also by the intrinsic data distribution
in different datasets. For example, the domain of
the source texts in SimplePPDB (news, legal docu-
ments, and movie subtitles) is different from that
in SimpleWikipedia (encyclopedia articles). Thus,
the accuracy differences could be a result of both
factors — text length and text domain.

6 Anisotropy Reduction Experiments

As explained in the previous section, the anisotropy
of contextualized LMs’ representation space de-
grades the quality of the similarity estimates that
can be drawn from it (Ethayarajh, 2019). To see if
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Pooling Model Complexity | Formality | Figurativeness
short long | short long long
static 848 60.0 | 76.8 82.8 54.3
contextualized (singlelayer) 86.2 765 | 687 824 72.9
contextualized (singlelayer+abtt) 80.3 693 | 76.6 76.7 70.9
contextualized (singlelayer+standardization) | 90.4 739 | 74.1 80.6 68.3
Mean contextualized (singlelayer+rank) 856 76.0 | 70.8 81.7 71.8
contextualized (layeragg) 844 76.0 | 67.6 86.7 67.2
contextualized (layeragg+abtt) 81.7 685 | 76.6 63.0 72.6
contextualized (layeragg+standardization) 904 736 | 752 1799 67.6
contextualized (layeragg+rank) 83.7 757 | 68.1 82.1 67.0
static 89.4 58.0 | 76.0 634 56.0
contextualized (singlelayer) 87.7 694 | 71.7 73.6 64.8
contextualized (singlelayer+abtt) 80.6 649 | 782 80.8 66.7
contextualized (singlelayer+standardization) | 90.5 63.8 | 80.9 81.7 60.4
Max contextualized (singlelayer+rank) 87.1 69.6 | 70.3 76.0 66.5
contextualized (layeragg) 86.2 67.6 | 71.7 T1.7 63.9
contextualized (layeragg+abtt) 819 639 | 782 725 71.1
contextualized (layeragg+standardization) 90.5 63.7 | 80.9 80.6 61.9
contextualized (layeragg+rank) 86.1 693 | 71.7 715 67.4

Table 5: Performance of three anisotropy reduction methods (all-but-the-top/standardization/rank-based). The
highest performance within each pooling method (Mean/Max) is in boldface.

this has an impact on our method, we apply three
post-processing anisotropy reduction methods dis-
cussed by Timkey and van Schijndel (2021), which
can be used to correct for rogue dimensions and
reveal underlying representational quality.

We apply each of these methods to our feature
vector construction and feature value prediction
processes. Given that our stylistic characterization
of new text relies on similarity measurement, we
expect that a space that allows us to draw higher-
quality similarity estimates would better represent
these stylistic features and would also improve fea-
ture value prediction. The three methods used in
our experiments are:

All-but-the-top (abtt). The method was ini-
tially proposed for static embeddings by Mu and
Viswanath (2018). The main idea is to subtract
the common mean vector and eliminate the top
few principal components (PCs) (we use the top
ﬁ, where d represents the dimensionality of the
vector space, following their suggestion). These
subtracted vectors should capture the variance of
the rogue dimensions in the model and make the
space more isotropic. In Timkey and van Schijn-
del (2021), the mean vector and PCs are computed
from vector representations for an entire corpus.
Since our method is unsupervised, we do not as-
sume access to any large corpus and instead com-
pute them based only on the seed pairs (i.e., 14
words and phrases for each feature). Thus, our
method still remains lightweight and computation-
ally efficient. It is, however, important to note that

this is a local correction (rather than a global one)
since we are just using a small number of words
and phrases, as in Rajaee and Pilehvar (2021).

Formally, given a set of seed texts of size |S|
(here |S| = 14) containing token representations
r € RY, we compute the mean vector 1 € R?

1
qu-Zx (1)

zeS
as well as the PCs

Uty ....ug = PCA{z — p,z € S}).  (2)

Then, the new representation x,p;; for an unseen
word vector z is the result of eliminating the mean
vector and the top k£ PCs (here k = 1%0):

k
tan=v-p-y (e/o)u. @
i=1

Standardization. Based on a similar observation
as abtt (a non-zero common mean vector and a few
dominant directions), another way for adjustment
is to subtract the mean vector and divide each di-
mension by its standard deviation (std), such that
each dimension has p; = 0 and o; = 1. Similarly
to abtt, we compute the mean vector and standard
deviation using only the seed pairs for each feature.

Formally, we compute the same mean vector y
as in Equation 1, as well as the standard deviation
in each dimension o € R?¢

1
o \/\SI Se-w @
z€S
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The new representation Tgyqndqrd fOr an unseen
word vector x becomes

T —p
Tstandard = P (5)

Rank-based. This method treats a word vector
as d observations from an |S|-variate distribution
and uses correlation metrics as a measure of sim-
ilarity, instead of cosine similarity (Zhelezniak
et al., 2019). Specifically, Spearman’s p, a non-
parametric correlation measure, only considers the
ranks of embeddings rather than their values. Thus,
it will not be dominated by the rogue dimensions
of contextualized LMs. Unlike the previous two
methods, this method does not require any com-
putation over the seed pair texts. Formally, given
a word vector z, the new representation gy is
simply

Trank = rank(z). 6)

Table 5 shows the effect of applying the three
anisotropy reduction strategies under the single
layer and layer aggregation settings. Overall, after
anisotropy reduction, contextualized LMs outper-
form static embeddings in all cases except formality
“short”, confirming our initial hypothesis. Never-
theless, there is no universally optimal strategy,
although standardization works best most of the
time. Comparing the two pooling strategies, we
find that anisotropy correction helps more often
with max pooling than with mean pooling.

It is important to reemphasize that our anisotropy
correction approach is local, since it only consid-
ers a small set of words and phrases for calculat-
ing the mean vector, standard deviation, and PCs.
This might be the reason for the relatively small
observed effect of these correction procedures in
our experiments. In future work, we plan to ex-
periment with a larger corpus, and consequently
use a larger part of the vector space for calculat-
ing the mean/std/PC vectors, in order to investigate
the impact of the quantity of data on the induced
similarity estimates.

7 Conclusion

We have shown that the embedding space of pre-
trained LMs encodes abstract stylistic notions such
as formality, complexity, and figurativeness. Using
a geometry-based method, we construct a vector
representation for each of these features, which

can be used to characterize new texts. We find
that these notions are present in the space of both
static and contextualized representations, and that
static embeddings are better at capturing the style
of short texts (words and phrases) whereas contex-
tual embeddings at longer texts (sentences). By
correcting the anisotropy of contextualized LMs’
representation space, we show that it is possible to
close the performance gap from static embeddings
on short texts.

Our unsupervised and lightweight method is ex-
pected to be applicable for stylistic analysis in
other languages and for other stylistic notions, such
as concreteness, sentiment, and political stance,
which we plan to address in future work. Further-
more, we plan to experiment with anisotropy cor-
rection methods on a larger corpus, and to adapt
the method for style prediction on longer text (e.g.,
whole documents). The stylistic measurements
obtained using this method can be useful in the cre-
ation of lexical style lexicons as well as in down-
stream applications, for authorship attribution and
style transfer.

Limitations

We acknowledge the following limitations of our
work: (a) The scope of our experiments is limited
to the English language currently. Our method is
only evaluated on the level of words, phrases, and
sentences, but not at the document level. (b) The
effect of anisotropy reduction strategies is shown to
be rather mixed. Further investigation is required
to determine under what conditions these strategies
can prove beneficial in the specific context of stylis-
tic feature extraction. (¢) Our work addresses only
lexical-level stylistic features and not more global
aspects of writing style, such as the diversity of
word choice and the utilization of unique syntactic
structures. Whether this method can be extended
to capture the comprehensive nuances of writing
style is an interesting direction for future work.

Ethical Considerations

In this paper, our method is only tested in intrinsic
evaluation settings where existing publicly avail-
able datasets have been used. It is not integrated
into any downstream application, although this type
of stylistic analysis could be potentially useful in
different settings.
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A Dataset Details

All evaluation datasets we use contain semantically
similar but stylistically different words, phrases, or
sentences.

A.1 Data Description and Source

Complexity

* SimplePPDB (Pavlick and Callison-Burch,
2016): It contains 4.5M pairs of words and
short phrases, where one is simpler and the
other is more complex. It is constructed
based on a subset of the Paraphrase Database
(PPDB) (Ganitkevitch et al., 2013). There are
both automatically generated and manually
annotated pairs.® URL: http://www.se
as.upenn.edu/~nlp/resources/s
imple-ppdb.tgz.

SimpleWikipedia (Kauchak, 2013): It con-
tains 167K pairs of simple/complex sen-
tences generated by aligning Simple English
Wikipedia and English Wikipedia. We are
using Version 2.0 of the dataset (updated
from Wikipedia pages downloaded in May
2011), the “Sentence-aligned” subset. URL:
https://cs.pomona.edu/~dkaucha
k/simplification/data.v2/sente
nce—aligned.v2.tar.gz.

Formality

» StylePPDB (Pavlick and Nenkova, 2015): It
contains 4.9K pairs of casual/formal words or
short phrases from PPDB, both automatically
generated and manually annotated. URL: ht
tps://cs.brown.edu/people/epav
lick/data.html#style-pp-bibte
X.

* GYAFC (Rao and Tetreault, 2018): It contains
atotal of 110K informal/formal sentence pairs,
created using the Yahoo Answers corpus. °.
URL: https://github.com/raosu
dha89/GYAFC-corpus.

Figurativeness
 IMPLI (Stowe et al., 2022): It consists
of 25.8K literal/figurative sentence pairs,

8For all datasets, we only use a subset of all pairs based on
quality filtering, which is described in Appendix A.2.

*https://webscope.sandbox.yahoo.com/c
atalog.php?datatype=1l&did=11
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spanning idioms and metaphors, both semi-
supervised and human-annotated. URL: ht
tps://github.com/UKPLab/acl202
2-impli.

A.2 Preprocessing Method

To reduce noise and construct splits, we preprocess
the datasets as follows:

* SimplePPDB: There are both automatically
and manually labeled subsets. We only take
the manually labeled examples with > 80% of
annotators agreeing with the final label. There
are only training and validation sets in the
original dataset. Since our method requires no
training, we take the original training set as
our validation set, and the original validation
set as our test set.

» SimpleWikipedia: Since our method focuses
on complexity in terms of lexical choice but
not grammatical structure, we filter out pairs
where the two sentences share the exact same
set of tokens, or all tokens in a sentence ap-
pear in the other sentence. As there are no
official splits, we randomly split the filtered
dataset into train/validation/test sets of ratio
8:1:1 (since the dataset is huge).

* StylePPDB: The filtering method is the same
as that used for SimplePPDB. There are no
official splits either, so we randomly split the
filtered dataset into a validation set and a test
set of the same size (since the dataset is small).

* GYAFC: We take the Entertainment & Music
subset, using pairs from the files formal and
informal.ref0. Since the official splits
only have training and test sets, we take only
the test set and re-split it into a new validation
set and test set of the same size.

e IMPLI: We take the manual_ e subsets (man-
ually created, entailing) for both idioms and
metaphors, combine them and re-split the ex-
amples into a validation set and test set of the
same size.

Finally, we randomly re-assign the label of every
example for class balance.

A.3 Statistics and Examples

Table 6 shows the dataset statistics and example
inputs and outputs after our preprocessing. Table 5
shows the POS distribution statistics.
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Figure 5: Distribution of token POS in evaluation
datasets.

B Implementation Details

B.1 Tokenization

Given a piece of text, we tokenize it with the SpaCy
tokenzier'? into words. Then, using the method de-
scribed in 3, we obtain a score for the feature of
interest for each word token (if using static embed-
dings) or subword tokens (if using contextualized
embeddings with WordPiece tokenization). In the
latter case, we additionally obtain an aggregated
feature score for each word from the scores of its
subword tokens using a pooling strategy described
in Section 4. Finally, we obtain an overall feature
score for the entire piece of text from the scores of
all its words using the same pooling strategy.

B.2 Representations

We use the following static embeddings: for
GloVe, we use GloVe.6B.300d!!, consisting
of 400K word vectors trained on Wikipedia
2014 and Gigaword 5; and for fastText, we
use wiki-news-300d- lM—subwordlz, con-
sisting of 1 million word vectors trained with sub-
word infomation on Wikipedia 2017, UMBC web-
base corpus and statmt.org news dataset. Out-of-
Vocabulary (OOV) tokens are represented with the
all-zero vector.

For  contexutalized LMs, we  use
the following pretrained model check-
points from HuggingFace Transformers'?:

bert-base-uncased (110M parameters),

Ohttps://spacy.io/api/tokenizer

"https://nlp.stanford.edu/projects/gl
ove/

Phttps://fasttext.cc/docs/en/english-v
ectors.html

13https://github.com/huggingface/trans
formers
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Feature Dataset # Val # Test Example
. Text O: toys
(SS‘}:‘(‘)IES‘PPDB 814 1,108 Text 1: playthings
Answer: 1 (more complex)
" Text 0: Endemic types or species are especially likely
Complexity to develop on biologically isolated areas such as islands
SimpleWikipedia 9.978 9.978 because of their geographical isolation.
(long) ’ ’ Text 1: Endemic types are most likely to develop on islands
because they are isolated.
Answer: 0 (more complex)
Text O: are allowed to
StylePPDB 367 367 Text 1: can
(short) i
Formality =~ - - - — - -~ - - Answer: 0 (more formal) _ __ __ ________________.
GYAFC Text 0: [ am 1mpjat1ently waiting to ask my husband.
(long) 541 541 Text 1: Can’t wait to ask my husband!!
Answer: 0 (more formal)
MPLI Text 0: You must adhere to the rules.
Figurativeness (long) 243 243 Text 1: You must obey the rules.

Answer: 0 (more figurative)

Table 6: Datasets used for evaluation. “# Val” and “# Test” stand for the number of examples in the validation set

and the test set respectively. Differences between pairs

bert-large-uncased (336M parameters),
bert-base-multilingual-uncased
(110M parameters), roberta-base (125M
parameters), roberta—-large (335M parame-
ters), xlm—-roberta-base ( 125M parameters),
x1lm-roberta-large ( 335M parameters).

B.3 Experiments

We perform grid search on hyperparameters includ-
ing the LM and the layer (0-12 for base models,
and 0-24 for large models) using the validation set
and report the performance of the optimal configu-
ration on the test set. The optimal hyperparameters
can be found in Appendix C.1.

All evaluation experiments are run on a single
NVIDIA GeForce RTX 2080 Ti GPU node. Each
experiment takes approximately 2-20 minutes de-
pending on the size of the dataset.

C Extended Results

In this section, we present additional results that
cannot fit into Section 3 due to space limit.

C.1 Performance of Different LMs

Table 7 and Table 8 show the detailed performance
of specific LMs under the single-layer and the layer
aggregation settings, respectively. From the results,
we find that there is no consistent winner among all
LMs. In terms of layers, on StylePPDB (formality
short), the initial layers (0, 1, 2) are dominantly the
best-performing ones across all settings. On the
other datasets, there is no clear pattern in terms of
which layers perform the best.

are underlined.

C.2 Performance Across Layers Under
Single-layer Setting

Regarding the performance change across layers,
in addition to the plots shown in Section 5.1 under
the layer aggregation setting, here we present the
results under the single-layer setting in Figure 6.
Compared to layer aggregation, the results here
are noticeably more chaotic, exhibiting no clear
general trends.

C.3 Performance by Text Length Under
Single-layer Setting

Similarly, we also present the performance change

by text length under the single-layer setting in Fig-

ure 7, complementing the results under the layer

aggregation setting in Section 5.2. The trends are

mostly similar between the two settings.

C.4 Effect of Anisotropy Reduction

Table 9 shows the effect of using the 3 different
anisotropy reduction strategies, across all LM and
layer configurations. All-but-the-top only works
for figurativeness; rank-based only works for for-
mality (long); and standardization works slightly
more generally, for complexity (short), formality
(short), and formality (long). Nevertheless, overall
there is no strategy that works universally under
every condition.
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Pooling Model Complexity Formality Figurativeness
short long short long long

majority 55.1 50.6 51.2 51.8 514
frequency 83.2 51.0 61.0 41.4 49.7
fasttext.wiki 73.1 58.4 61.6 45.1 52.7
glove.6B.300d 84.8 60.0 76.8 82.8 54.3
bert-base-uncased 82.0(10) 72.2(6) | 68.7(1) 63.2(7) | 66.5(10)

Mean bert-large-uncased 823 (14) 73.0(5) |68.1(1) 67.703) |729014)
bert-base-multilingual-uncased | 83.8 (1) 76.5(4) | 65.1(0) 72.1(5) 61.54)
roberta-base 852 @) 755(12) | 63.5(0) 76.7(12) | 64.1 (3)
roberta-large 86.2(4) 7534 | 643(1) 824(12) | 6394)
xlm-roberta-base 748 (4) 69.6(6) | 589(0) 56.4(6) | 66.3(6)
xIm-roberta-large 85.8(11) 73.7(6) | 62.4(0) 67.7(3) | 60.6(23)
frequency 80.7 46.4 57.2 42.5 479
fasttext.wiki 82.0 54.3 74.9 47.7 56.0
glove.6B.300d 89.4 58.0 76.0 63.4 55.8
bert-base-uncased 83.7(10) 69.1(12) | 70.8 (1) 70.8(8) | 64.6(11)

Max bert-large-uncased 83.0(6) 67.6(24) | 689(1) 64.1(1) | 64.8(11)
bert-base-multilingual-uncased | 85.6 (1) 65.7(3) | 71.7(0) 73.6 (1) 60.8 (8)
roberta-base 859(4) 69.4(12) | 64.6(0) 70.1(11) | 62.8(5)
roberta-large 87.7(4) 689 (24) | 65.1(0) 72.1(21) | 63.2(6)
xIm-roberta-base 773 (1)  643(11) | 61.6(0) 70.2(5) | 55.1(11)
xIm-roberta-large 87.0(11) 67.1(6) | 63.8(0) 61.4(24) | 55.8(3)

Table 7: Accuracy of different models under the single-layer setting. The optimal layer number for each contextual-
ized LM is in brackets. The highest performance within each pooling method is in boldface.

Pooling  Model Complexity Formality Figurativeness
short long short long long

majority 55.1 50.6 51.2 51.8 51.4
frequency 83.2 51.0 61.0 41.4 49.7
fasttext.wiki 73.1 58.4 61.6 45.1 52.7
glove.6B.300d 84.8 60.0 76.8 82.8 54.3
bert-base-uncased 79.0 (12) 73.1(10) | 67.3(2) 58.0(9) 61.5(11)

Mean bert-large-uncased 80.1 (16) 74.8(24) | 67.6 (1) 64.7 (6) 67.2 (19)
bert-base-multilingual-uncased | 84.4 (10) 76.0 (11) | 65.1 (0) 71.5(5) 61.9 (2)
roberta-base 78.4 (11) 75.2(12) | 63.5(0) 69.9(12) | 63.0(12)
roberta-large 83.3(19) 753 (11) | 65.4(2) 86.7 (23) | 60.2 (14)
xlm-roberta-base 76.2(3) 69.5(4) | 58.9(0) 50.3(10) | 59.7(9)
xlm-roberta-large 79.6 (13) 74.1(13) | 64.6 (1) 58.6(4) | 56.2(0)
frequency 80.7 46.4 57.2 42.5 47.9
fasttext.wiki 82.0 54.3 74.9 47.7 56.0
glove.6B.300d 89.4 58.0 76.0 63.4 55.8
bert-base-uncased 81.3(12) 66.3(2) | 70.8(2) 62.3(0) | 58.9(12)

Max bert-large-uncased 81.8(16) 669 (6) | 68.4(0) 654(3) | 63.9(14)
bert-base-multilingual-uncased | 86.0 (7) 653 (12) | 71.7(0) 69.5(2) | 59.1(12)
roberta-base 80.8 (11) 66.6 (1) | 64.6(0) 56.6(0) | 60.0(10)
roberta-large 86.2(19) 67.6 (4) | 66.2(2) 71.7(24) | 62.4 (23)
xlm-roberta-base 784 (2) 59.9(12) | 61.6(0) 68.2(5) | 523(7)
xlm-roberta-large 82.4(13) 653 (11) | 654 (1) 529(4) | 53.2(10)

Table 8: Accuracy of different models under the layer aggregation setting. The optimal layer number for each
contextualized LM is in brackets. The highest performance within each pooling method is in boldface.
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Pooling  Stats Complexity | Formality | Figurativeness Pooling  Stats Complexity | Formality | Figurativeness
short long | short long long short long | short long long
Mean 2beats 1 (%) | 252 213 | 449 40.2 74.0 Mean 2beats 1 (%) | 27.6 63 | 465 268 75.6
acc gain 59 50| -02 -82 43 acc gain 46 81| -02 -147 5.6
Max 2beats 1 (%) | 189 283 | 48.0 44.1 59.1 Max 2beats 1 (%) | 16.5 150 | 472 38.6 65.4
acc gain -74 22| 00 -03 1.7 acc gain -6.8 -53 | -0.1 -4.0 3.1
Average 2beats 1 (%) | 22.0 24.8 | 465 42.1 66.5 Average 2beats 1 (%) | 22.0 10.6 | 469 327 70.5
acc gain -6.7 36| -0.1 -42 3.0 acc gain -5.7 -6.7| -0.1 94 43
(a) All-but-the-top (single-layer) (b) All-but-the-top (layer aggregation)
Pooling  Stats Complexity | Formality | Figurativeness Pooling  Stats Complexity | Formality | Figurativeness
short long | short long long short long | short long long
2beats 1 (%) | 669 18.1 | 79.5 69.3 50.4 2beats 1 (%) | 86.6 150 | 93.7 60.6 72.4
Mean . Mean .
acc gain 39 36| 55 9.3 -0.7 acc gain 68 32| 72 25 2.5
Max 2beats 1 (%) | 504 173 | 80.3 67.7 38.6 Max 2beats 1 (%) | 69.3 9.4 | 843 63.8 40.9
acc gain 1.6 48| 51 121 -2.1 acc gain 40 61| 57 176 -0.8
Average 2beats 1 (%) | 58.7 17.7 | 799 68.5 44.5 Average 2beats 1 (%) | 78.0 122 | 89.0 62.2 56.7
acc gain 27 42| 53 107 -1.4 acc gain 54 -47] 65 50 0.8
(c) Standardization (single-layer) (d) Standardization (layer aggregation)
Pooling  Stats Complexity | Formality | Figurativeness Pooling  Stats Complexity | Formality | Figurativeness
short long | short long long short long | short long long
2beats 1 (%) | 48.8 29.1 | 46.5 46.5 48.8 2beats 1 (%) | 543 323 | 33.1 36.2 54.3
Mean . Mean .
acc gain 0.1 -1.1| -04 1.0 -0.3 acc gain 02 -1.8| -09 0.5 -0.2
Max 2beats 1 (%) | 47.2 38.6 | 46.5 63.8 52.0 Max 2beats 1 (%) | 543 48.0 | 433 71.7 62.2
acc gain -03 -08| -03 33 0.4 acc gain -04 03| -05 32 0.8
Average 2beats 1 (%) | 48.0 339 | 465 55.1 50.4 Average 2beats 1 (%) | 543 402 | 382 539 58.3
acc gain -0.1 -1.0| -04 2.1 0.1 acc gain -03 -08 | -07 19 0.3

(e) Rank-based (single-layer)

(f) Rank-based (layer aggregation)

Table 9: Effect of three different anisotropy reduction strategies: all-but-the-top, standardization, and rank-based (3
rows). Each strategy is evaluated under single-layer and layer aggregation settings (2 columns). In each table, “2
beats 1 (%)” refers to the percentage of cases where the performance with the anisotropy reduction strategy is at
least as high as the performance without it, under the same configuration (LM & layer). “Acc gain” stands for the
average accuracy gain of applying the anisotropy reduction strategy across all configurations. Positive accuracy
gains are highlighted in green, negative ones in pink.
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