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Abstract

With the advent of large language models
(LLMs), the trend in NLP has been to train
LLMs on vast amounts of data to solve diverse
language understanding and generation tasks.
The list of LLM successes is long and varied.
Nevertheless, several recent papers provide em-
pirical evidence that LLMs fail to capture im-
portant aspects of linguistic meaning. Focusing
on universal quantification, we provide a theo-
retical foundation for these empirical findings
by proving that LLMs cannot learn certain fun-
damental semantic properties including seman-
tic entailment and consistency as they are de-
fined in formal semantics. More generally, we
show that LLMs are unable to learn concepts
beyond the first level of the Borel Hierarchy,
which imposes severe limits on the ability of
LMs, both large and small, to capture many
aspects of linguistic meaning. This means that
LLMs will continue to operate without formal
guarantees on tasks that require entailments and
deep linguistic understanding.

1 Introduction

The success of large language models (LLMs) has
led researchers in NLP to harness LLMs trained on
vast amounts of data to solve a variety of language
understanding and generation tasks, and some have
claimed that LLMs can solve any task that can be
specified via prompting (Brown et al., 2020). While
the list of LLM successes is long, there have been
several recent papers that provide empirical evi-
dence that LLMs at least sometimes fail to capture
important aspects of linguistic meaning (Kuhnle
and Copestake, 2019; Sinha et al., 2020; Yuksek-
gonul et al., 2022; Chaturvedi et al., 2022; Kalouli
et al., 2022). Those who have dabbled in “BERTol-
ogy” with respect to linguistic meaning often have
the feeling that fixing one LLM deficiency just
leads to the discovery of new ones.

This paper provides a theoretical explanation
of certain of these observed failings of LLMs. In

particular, we prove that LLMs cannot learn the
notions of semantic entailment or consistency as
defined in formal semantics (Dowty et al., 1981)
because they are incapable of mastering universal
quantification. Our work builds on Siegelmann
and Sontag (1992); Siegelmann (2012); Weiss et al.
(2018), concerning the expressive power of neu-
ral networks, but we focus on the learnability of
semantic concepts and use novel tools.

Our argument has widespread implications: not
only does a general capacity to recognize seman-
tic entailment and consistency underlie everyday
conversational interactions, but the meanings of a
great many common linguistic expressions depend
on universal quantification. This set includes—but
is certainly not limited to—a long list of quanti-
fiers (every, some, many, most,... every other, ...),
temporal adverbs (always, never, eventually) that
are essential to planning (Lamport, 1980), modal
operators (possibly, necessarily,...), and certain dis-
course connectives and adverbs (therefore, if / then,
except, because, ...).

We begin in Section 2 by contextualizing our
claims in terms of expectations about the linguistic
capacities and applications of LLMs. In Section 3,
we introduce the framework of continuation seman-
tics, which will allow us to adapt certain notions
central to truth-conditional semantics to the case of
LLMs. Section 4 lays out the core of our theoretical
argument, focusing first on what is needed to learn
universal quantification and then generalizing our
argument to a wide range of linguistic expressions.
Our theoretical argument suggests that we should
expect certain empirical failures from LLMs, and in
Section 5, we provide evidence that our predictions
are borne out. Section 6 concludes.

2 Context

Our results are particularly relevant to downstream
tasks that require an agent to not only create fluent,
creative and contextually relevant speech but also
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to act precisely based on the meaning of linguistic
expressions and reliably recognize semantic incon-
sistency. For a robot that has been instructed (via
conversation) to tighten every screw of a door, to
never walk on an airplane wing, or to stop drilling
immediately if certain conditions hold, acting ap-
propriately requires being able to infer what do to
based on the linguistic meaning of the words every,
never, stop, immediately and if —and in these cases,
getting things mostly right won’t do, especially if
lives or substantial economic loss are at risk.

An important corollary of our argument is that
while it might be tempting to separate reasoning
and linguistic competence (Mahowald et al., 2023),
the former is in fact inextricably tied to our ability
to draw inferences based on linguistic content—not
just on, say, mathematical or real-world facts. This
in turn suggests that approaches which attempt to
patch up knowledge deficiencies for LLMs by giv-
ing them access to external models (Mialon et al.,
2023) will fall short in developing reliable models
of linguistic understanding because LLMs fail to
grasp the notions that underlie the very way that
sentences (and actions) are woven together in con-
versation.

Empirical studies like Chaturvedi et al. (2022)
show that LLM failures to respect semantic en-
tailment in question answering tasks follow from
fundamental features of LLM training; thus while
extensive training and large data sets may improve
LLM results, performance will inevitably remain
unstable and we should continue to expect hallu-
cinations and reasoning errors in NLP tasks like
question-answering and natural language inference.

3 Language models and formal semantics
with continuations

3.1 LLMs and strings

We consider LLMs trained on transformer architec-
tures over very large corpora using classic language
modeling tasks, namely masked language modeling
or next sentence prediction. The former involves
masking certain words in a given corpus and train-
ing the model to guess the missing words, while
in the latter, a context (a sentence typically) is pro-
vided to the model, which is trained to predict the
sentence that follows. This unsupervised training
allows language models to build rich internal rep-
resentations that have been shown through probing
to contain at least implicitly a large amount of lin-
guistic information (Devlin et al., 2019; Liu et al.,

2019; Tenney et al., 2018).
Formally, LLMs learn a function f : C ×X →

[0, 1] that assigns a probability to a word (or string
or discourse move) x ∈ X given a context (or finite
string) C. More abstractly, let V be a countable set
called the vocabulary. For i > 0, let V i denote the
set of all length i strings in the vocabulary V and
V ≤i denote the set of all strings V whose length
is at most i. V ∗ denotes the set of all finite strings
and V ω the set of countably infinite strings in V .
We can then rewrite f as f : V ≤n → µ, where µ
is a probability measure (which is often called its
prediction) over V n+m for m ≥ 1. Typically, the
prediction function is used on strings of length m
where m is smaller than n.

By exploiting f , an LLM can extend µ to a
distribution on the set of strings V ∗. The most
straightforward way is to follow autoregressive
models that calculate the probability of strings
via conditionalization. For a new sentence s′ =
(w1, w2, ..., wm+1), and an input string s of length
n provided as context, we have:

µn+m+1(s′|s) = µn+1(w1|s)×µn+2(w2 |s, w1)×
(1)

...× µn+m(wn |s, wm−1, ..., w1)

For any s′ ∈ V ∗, µ(s′) represents the confidence
with which an LLM predicts s′, after training on
strings in V ≤n.

3.2 Linguistic meaning
In what follows, we are in interested strings that
have a well formed meaning and are evaluable as
true or false. Linguists use truth conditional se-
mantics to define the meanings of strings or well
formed sentences in terms of the conditions under
which they are true. Thanks to the work of Tarski
(1944, 1956), we can formalize the notion of truth
conditions using the set-theoretic notion of a model
that defines denotations or truth conditions for sen-
tences recursively from denotations for sentential
constituents (Dowty et al., 1981).

The notion of a model not only serves to define
truth conditions; it also captures entailments. We
define the notion of semantic consequence using
the notion of a model or structure A as follows
(Chang and Keisler, 1973):
Definition 1. ϕ is a semantic consequence of Γ (in
symbols, Γ |= ϕ) if and only if in every structure A
in which Γ is satisfied (A |= Γ), A also makes true
or satisfies ϕ (A |= ϕ). That is: ∀A, A |= Γ ⇒
A |= ϕ
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The notion of semantic consequence integrates
entailment with truth conditional meaning; two
strings have exactly the same entailments just in
case they are true in the same models. Accordingly
we can capture the truth conditional meaning of a
string in terms of the strings that it entails. Socrates
is a man, for example, entails Socrates is human,
Socrates is mortal, Socrates is an adult but also that
someone is a man, human, mortal and so on. What
it means for Socrates to be a man (and, indirectly,
the meaning of man) can be captured by the full set
of these entailments.

Our idea is to apply truth conditional semantics
to LLMs by representing models themselves as
strings. Semanticists have used strings and con-
tinuation semantics (Reynolds, 1974) —in which
the meaning of a string s is defined in terms of
its possible continuations, the set of longer strings
S that contain s—to investigate the meaning and
strategic consequences of conversational moves
(Asher et al., 2017), temporal expressions (Fer-
nando, 2004), generalized quantifiers (Graf, 2019),
and the “dynamic” formal semantics of (Kamp and
Reyle, 1993; Asher, 1993)(De Groote, 2006; Asher
and Pogodalla, 2011). In our case, we will use
strings to define models As. We will use this trick
to reformulate semantic consequence: where ∥ϕ∥
is the set of strings describing models that satisfy a
truth evaluable string ϕ:Γ |= ϕ iff ∥Γ∥ ⊆ ∥ϕ∥.

LLMs naturally find their place in such a frame-
work (Fernando, 2022): given their training regime,
the meaning of any natural language expression for
an LLM is a function from input contexts to sets
of larger strings or continuations. LLMs provide a
probability distribution over possible continuations
and can predict possible continuations of a given
text or discourse.

4 Learning limits for semantic concepts

Semantic consequence defines linguistic entail-
ments and importantly provides the fundamental
connection between meaning and inference that en-
sures linguistic understanding (Montague, 1974).
Crucial to |= is the use of universal quantification
over all possible structures—an infinite space of
possible circumstances of evaluation or set of pos-
sibilities. A true grasp of semantic consequence
thus requires an understanding of universal quan-
tification at least over countably infinite domains.
In Section 4.1, we show that an LLM’s training
regime makes it fundamentally unable to learn the

concept of universal quantification. In Section 4.2,
we generalize our argument to show that LLMs are
incapable of learning a wide variety of everyday
semantic concepts.

4.1 Learning the full meaning of every

To see if the set of strings that define the concept
every is learnable for an LLM, consider (1).

(1) Every object is blue.

We will use strings of atomic formulas and their
negations to define models (or more precisely their
atomic diagrams) that we will use to test whether an
LLM M can learn the concept of universal quantifi-
cation through inductive reasoning from a series of
individual trials over finite subsequences of strings
representing countably infinite domains. In partic-
ular, we will ask whether it is possible to train an
LLM M to judge, for a string s of arbitrary length
n, whether s is consistent with (1), or equivalently,
given that s defines a model As, whether given As,
(1) is true. If M can reliably judge in which models
As (1) is true, we can conclude it has learned the
meaning of every.

To this end, consider a language L containing
negation, the predicate is blue and a countably in-
finite number of constants ai enumerating objects
of a countably infinite domain. L formulas are of
the form ai is blue and ai is not blue. We use the
formulas of L as “words” to define the set of finite
strings, V ∗

L and the set of countably infinite strings
V ω
L . Each such string corresponds to a finite or

countably infinite model in which (1) is true or not.
In the course of training, M will be presented

with finite sequences that define structures of in-
creasing size. For each n and set of models of
size n, M will form a set of hypotheses Hn, where
for h ∈ Hn, h : V n

L → {0, 1}. Hn corresponds
to the hypothesis space of the problem; each hn

says whether a presented sequence of length n is
consistent with (1). As each hn ∈ Hn is a charac-
teristic function of a subset of V n

L , we can identify
hypotheses with sets of strings. So for instance,
hn∀ is the set of strings in V n

L that are consistent
with (1) and that define models in which (1) is true.
We will additionally assume that hn∀ picks out a
suitable set for each V n, and similarly for each hnk .

However simply learning hn∀ for some n will not
be sufficient for M to learn the meaning of every.
Universal quantification is a concept that applies to
arbitrarily large domains. So the question, Can M
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inductively learn the meaning of every? becomes
Can M inductively learn hypothesis hω∀ ∈ Hω?

To answer this question, we first have to spec-
ify what we mean by inductive learning. Recall
that an LLM M has learned from unsupervised
training a function f : V ≤n → µ(V ≤n+m) with
µ(V ≤n+m) a probability distribution over comple-
tions of length m of contexts of length n. An LLM
can use this distribution to compute probability
values for arbitrarily long strings or continuations
using Equation 1.

In the case at hand, M needs to use this distribu-
tion over L strings to compute the probability that a
string s is in h∀ or the probability of s given h∀. To
learn inductively M must use its training data D≤n

to update its prior for the distribution µn using a
rationally justifiable form of inductive inference;
e.g., for h ∈ Hn, µn(s|h) = µn(h|s)×µn(s)

µn(h) .
Additionally, we consider two constraints on dis-

tributions to define learning in terms of an induc-
tively inferred change in the distribution from the
priors. The first constraint, Max Ent, says that the
distribution µ prior to training should assign all
hypotheses a weight based on maximum entropy or
a least informative distribution. This is usual with
auto-regressive models and a common assumption
in other models.

The second constraint is that distributions for
inductive learning should be non-degenerate. We
have assumed that our LLM M has been trained
over sequences of length n. Through Equation
1, M can extend the distribution it has learned
for V n to one over V n+m for any string of fi-
nite length n + m. Recall that we are looking
at strings of L that define structures; the structures
defined by strings of length n + m are indepen-
dent of those defined in V n and none is intuitively
more likely than another. So the prior distribu-
tion over V n+m should consider as equally likely
all continuations s.a ∈ V n+m, where s ∈ V n,
a ∈ V m and . is concatenation. There are also
correspondingly more hypotheses in Hn+m than
in Hn, since there are V |m| more strings in V n+m

than in V n. Thus µn+m(s.a|hk) < µn(s.a|hk) for
s.a ∈ V n+m, s ∈ V n for each hk. Non-degenerate
distributions will reflect this and should make the
model converge to the least general hypothesis sup-
ported by the evidence (Muggleton et al., 1992;
Plotkin, 1972).

Definition 2. M ’s distributions over sets of hy-
potheses Hn, µn(Hn), after training over V n are

non-degenerate if ∀h ∀δ (0 < δ ≤ 1),∃m > 0
such that ∀a ∈ V m ∀s ∈ V n : µn(s.a|h) =
max{0, µn(s|h)− δ}, where s.a ∈ V n+m.

Proposition 1. Models that calculate distributions
over strings using Equation 1 have non-degenerate
distributions.

As continuations get longer the probability of the
continuation will decrease monotonically.2

Because quantifiers like every and some are elim-
inable in terms of Boolean functions when we con-
sider finite structures definable with strings in V ∗,
we must consider strings in V ω to define countably
infinite models that capture the full truth conditions
of every. To extend a distribution over V n for finite
n to a distribution over V ω, we lift the probability
of a string to the set of its continuations. In V ω, the
set of strings A characterizes the set A.V ω, where
A.V ω is the set of all strings formed by concatenat-
ing a string from A with a string from V ω. Using
this correspondence, the probabilities of sets of fi-
nite strings in V n can lifted to probabilities of sets
of the form V n.V ω. The laws of probability extend
the distribution to complements, intersections and
unions of such sets.

We now propose a simple but general notion of
inductive learning.

Definition 3. Suppose µ0 is M ’s Max Ent prior
distribution and let h ∈ Hβ for some countable β.
M effectively learns h iff after some finite amount
of training using inductive inference, there is an α,
such that: for any s ∈ V β , µβ(s|h) > α > µ0(s|h)
iff s ∈ h.

Proposition 2. If M can effectively learn hn∀ from
sequences of V n

L for arbitrarily large n ∈ ω, then
M can effectively learn hω∀

Assume that M cannot effectively learn hω∀ but it
can effectively learn hn∀ for arbitrarily large n ∈ ω.
Then it must admit some string s ∈ V ω

L , such that
s ̸∈ hω∀ . But then at some finite stage i, si must
have ¬blue(ai). By hypothesis M has learned hi∀.
So it has ruled out si and a fortiori s. 2

We now negatively answer our question, Can
M inductively learn hypothesis hω∀?, under either
of two conditions: (i) M has non-degenerate dis-
tributions; (ii) M obeys Max Ent and inductive
inference.

Proposition 3. Suppose M ’s distributions are non-
degenerate. Then hω∀ is not effectively learnable by
M over Hω.
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Suppose M trained on V ≤n has effectively
learned hn∀ . So ∀s ∈ hn∀ , µn(s|h∀) > α where
α is as in Definition 3. Since M ’s distributions are
non-degenerate, ∃m, such that for all s ∈ V m,∃δ :
0 < δ ≤ 1 where µm(s|h∀) − δ < α and a
continuation of s, s.a, such that s.a ∈ hm+n

∀ but
µm+n(s.a|h∀) = µm(s|h∀)− δ < α. 2

By Propositions 1 and 3, a basic auto-regressive
model cannot learn h∀. We can generalize Proposi-
tion 3 to other :

Proposition 4. Suppose M ’s priors only obey Max
Ent and M uses inductive inference. Then hω∀ is
not effectively learnable by M over Hω.

Suppose M ’s training data D≤n ⊆ V ≤n and M
has learned hn∀ . To learn hn+m

∀ , M must project
its distribution of Hn onto Hn+m. But the dis-
tributions in Hn and Hn+m are independent; for
one thing the cardinality of Hn, |Hn|, is such that
|Hn| < |Hn+m| = |Hn| × 2m. Our assump-
tions about inductive inference on D≤n make it
no more likely that every will be associated with
h∀ than it is with any of the 2m h ∈ Hn+m, where
strings in h contain the same n prefix as an s ∈ hn∀
but h ∩ hn+m

∀ = ∅. In Hn+m these hypotheses
h can be distinguished from h∀. Max Ent pri-
ors over Hn+m imply that for any s ∈ V n+m,
µn+m(s|h∀) = 1

2mµn(s|h∀). 2
Corollary 1. M cannot effectively learn hn∀ from
sequences in V n

L for arbitrarily large n ∈ N. There
is some n such that hn∀ is not effectively learnable.

While LLMs can represent any Borel function
to an arbitrary degree of precision (Hornik et al.,
1989), Propositions 3 and 4 shows they cannot al-
ways learn such functions, given either the con-
straints of inductive epistemology or the way LLMs
generate probabilities for strings. In particular,
given our assumptions, no LLM can effectively
learn hω∀ . In addition, each LLM is bounded by
some number n in the size of sequences for which
it can learn hn∀ . LLMs do not have the capacity to
learn the meaning of ‘every’ even over all finite
domains.1

Even supposing that an LLM can effectively
learn hn∀ for some n, this does not amount to under-
standing every. hn∀ can be effectively represented
with quantifier free conjunctions of formulae, and

1Unlike Hume’s problem of induction (Popper, 1963) and
(Wolpert et al., 1995), we exploit particularities of LLMs and
the structure of a classification problem. The finite bound on
learning of hypotheses goes beyond standard Humean conclu-
sions

these do not correctly approximate reasoning with
a sentence like (2) that applies to arbitrarily large
domains. Identifying ∀ with a finite conjunction of
length n will make ∀xFx consistent with ¬∀xFx
in larger structures. In ω structures, for example,
¬∀xFx is consistent with every finite subset of the
Π0

1 string blue(0), blue(1), blue(2), . . ., in hω∀ ,
making it inevitable that LLMs will reason incor-
rectly with every in large enough structures.

The situation worsens with sampling: suppose
that when we present our model M a long string,
M only samples some of the elements in the string;
the threat of inconsistency in such a situation can
become high and we have no guarantees that such
inconsistencies will not arise.2 But this reason-
ing is not independent of the meaning of every; as
the semantics and rules of first order logic show,
this reasoning is an integral part of the meaning
of every. As a result, LLMs unable to grasp se-
mantic consequence defined in terms of universal
quantification; and we thus cannot provide them
guarantees that they follow semantic entailments
when asked to do semantic tasks. This predicts
phenomena like LLM hallucinations and observed
elementary reasoning errors.

4.2 Generalizing our answer to Q2

Using tools from statistical learning and the Borel
Hierarchy, we now generalize Propositions 3 and 4
to other concepts beyond every.

Statistical learning examines the application of
a learned function over a test domain and the ex-
pected loss over novel applications. The ability to
bring the error over test to that over the training
set is typically taken to indicate an ability to gen-
eralize (Neyshabur et al., 2017). Villa et al. (2013)
define learnability in statistical learning theory via
the notion of uniform consistency. Let µ be a dis-
tribution over H and µn the update of µ after n
training samples zi = (xi, yi). Let Azn be an algo-
rithm for picking out a hypothesis from H based
on n training samples. inf H is the hypothesis in
H with the lowest possible error (Shalev-Shwartz
et al., 2010; Kawaguchi et al., 2017).

Definition 4. An algorithm A on a hypothesis
space H is uniformly consistent if and only if
∀ϵ > 0 limn→∞supµ

µn({zn : Eµ({Azn − inf HEµ > ϵ}) = 0

2Approximation and approximation error can also affect
learnability of mathematical functions (Colbrook et al., 2022).
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In our case, the best hypothesis, inf H, for in-
stance h∀, will yield 0 error. Our question is
whether there is an algorithm that converges to
that hypothesis given a certain H and certain as-
sumptions.

Definition 5. A class of hypotheses H is unifor-
mally learnable just in case there exists a uniformly
consistent algorithm for H.

This enables us to link learnability with a number
of other features:

Theorem 1. (Anthony et al., 1999) Let Y = {0, 1}.
Then the following conditions are equivalent: (i)
H is uniformly learnable; (ii) Empirical risk mini-
mization on H is uniformly consistent; (iii) H is a
uGC-class; (iv) the VC-dimension of H is finite.

The Borel Hierarchy We now turn to generalize
the hypotheses we are investigating. V ω has a nat-
ural topology, the Cantor topology, which allows
us to characterize linguistic concepts precisely. To
define the topology, we first define the basic open
sets to be sets of the form A.V ω, denoted as O(A),
where A ⊆ V ∗ is a set of finite strings. Importantly,
O(A) sets are both open and closed or clopen, be-
cause if A ⊂ V ∗ is a countable set, then the com-
plement of A.V ω, (V ∗ \A).V ω, is also open. And
thus, A.V ω is also closed. The ∆0

1 class is at the
intersection of the Σ0

1 and Π0
1 classes and consists

of the clopen sets. Σ0
1 sets include countable unions

of ∆0
1 sets, while Π0

1 are complements of Σ0
1 sets

and so include countable intersections of ∆0
1 sets.

These sets form the basis of the Borel hierar-
chy of sets that includes the ∆0

1, Σ0
1, and Π0

1 sets,
and more generally includes Σ0

α+1 as the countable
union of all Π0

α and ∆0
α sets, and Π0

α+1 as the com-
plement of Σ0

α+1 sets, with ∆0
α = Σ0

α ∩ Π0
α. The

hierarchy is strict and does not collapse (Kechris,
1995). We will use this hierarchy to characterize
linguistic concepts. Below is a picture of some
simple Borel sets and their ⊆ relations.

Σ0
1 Σ0

2 Σ0
3

Π0
1 Π0

2 Π0
3

∆0
1 ∆0

2 ∆0
3

As an example, hω∀ ⊆ V ω
L of the previous section

is a Π0
1 Borel set; i.e., hω∀ =

⋂
i∈ω Bi where the Bi

are ∆0
1.

We are interested in the learnability of Borel
sets B with respect to a hypothesis space. The
hypothesis space Hn for V ≤n and algorithem An

that an LLM can consider is typically fixed by the

maximal length strings it has been trained on. But
we will be looking at how an LLM extends its
training generalizing to longer and longer strings.
More generally, we consider a countable collection
of hypotheses—in the case of every and VL, the set
consists of h∀, hthefirst 2n etc. We will assume a
countable hypothesis space Hω for the Borel sets in
V ω, with |V | > 2 we want to learn in what follows.

Definition 6. An LLM M can effectively learn a
Borel set S ⊂ V ω out of a countable set of hypothe-
ses H iff M has a uniformly consistent algorithm
such that hS = infH, as in Definition 4, and where
hS : V ω → {0, 1} defines S.

Clearly if h is infH, and A is uniformly con-
sistent, then Definition 3 is satisfied; i.e., there is
some α > ϵ such that µ(s|h) > α iff s ∈ h.

Theorem 2. An LLM with either (a) non degener-
ate distribution or (b) Max Ent priors and trained
on V <n for some finite n to learn h ⊂ V ω via
inductive inference (i) can effectively learn a ∆0

1

set O(S) ⊂ V ω
L , where S is a finite subset of V ≤n,

given HO(V <n), a hypothesis space restricted to
∆0

1 sets; but (ii) it cannot effectively learn any Π0
1

Borel set B ⊂ V ω
L .

We first show (i). Let H = {O(A) : A ⊆ V <n}.
Any h ∈ H is determined by a finite set of prefixes
P in V <n. There are only finitely many such sets in
V ≤n, and so M has an algorithm A that eliminates
at each finite stage of training some ∆0

1 O(P ) sets.
This enables it to converge uniformly toward 0
expected error for the set of finite prefixes that
determines O(S) and so eventually M will have
effectively learned O(S).

Now for (ii). We first consider the case (ii.a)
where our learned model has non-degenerate distri-
butions. Consider an arbitrary Π0

1 complete set B.
So B =

⋂
n∈ω O(Bn), with O(Bn+1) ⊂ O(Bn),

where the Bi ⊂ V ∗. To compute B, M needs a
uniformly consistent algorithm A over our count-
able hypothesis space H that converges on hB , the
hypothesis defining B. Now suppose M has been
trained on strings in V <n; its algorithms A are thus
restricted to H<n.

Suppose M trained on V ≤n has effectively
learned hnBn

. Let s ∈ hnBn
. Since M ’s distributions

are non-degenerate, ∀α ≥ 0, ∃m, δ : 0 < δ ≤ 1
where µm(s|hB) − δ < α and a continuation of
s, s.a, such that s.a ∈ hm+n

Bn
but µm

M (s.a|hB) =
µm
M (s|hB)− δ < α. So there is no convergence at

any finite stage n of A towards hB . Non uniform
learnability of H then follows.

241



(ii.b) Let’s now assume that M only has Max
Ent priors and learns by inductive inference. Uni-
form convergence of any algorithm obeying these
conditions is not guaranteed as a similar argument
as in Proposition 3 applies. 2

Corollary 2. The hypothesis space HB is not uni-
formly learnable. Hence the the VC-dimensions of
HB are not finite, and empirical risk minimization
on HB are not uniformly consistent.

Corollary 3. M cannot effectively learn Σ0
1 com-

plete Borel sets.

Assume M can effectively learn a Σ0
1 complete

set. Then it can effectively learn a Π0
1 set that is its

complement, which is impossible by Theorem 2.2

Proposition 5. An LLM M cannot effectively
learn Borel sets B of higher complexity than ∆0

1.

Proposition 2 and Corollary 2 show that M cannot
effectively learn Π0

1 or Σ0
1 sets. But any Π0

n or
Σ0
n complete Borel set B for n > 1 is at least a

countable intersection or countable union of such
sets. So B is not effectively learnable.2

Asher et al. (2017); Asher and Paul (2018) exam-
ine concepts of discourse consistency and textual
and conversational coherence, which true, human-
like conversational capacity requires. Using con-
tinuations in a game-theoretic setting, they show
those concepts determine more complex Π0

2 sets in
the Borel Hierarchy; and intuitive measures of con-
versational success—like the fact that one player
has more successful unrefuted attacks on an op-
ponent’s position than vice versa—determine Π0

3

sets. Given Proposition 5, LLMs cannot learn these
concepts, which are needed for full conversational
mastery.

Proposition 6. For any LLM M , there is a max-
imally large and fixed number n such that Hn is
uniformly learnable for M but Hn+k is not uni-
formly learnable, for k > 0.

Suppose that for M Hn is uniformly learnable for
all n. Then, M can compute the countable intersec-
tion of sets defined by the best hypotheses in Hn

for each n. So M can effectively learn a Π0
1 set,

which contradicts Theorem 2.2

Corollary 4. M cannot effectively learn ∆0
1 sets

of the form O(A) if the length of A is longer than
the maximal number n such that Hn is uniformly
learnable for M .

4.3 The importance of order

Order is important for the most elementary rea-
soning about linguistic content in finite domains.
Let us add another predicate A to L to form the
language L+. Now consider the strings in V ω

L+ .
Strings consistent with (2) may include formu-
lae like A(ai) or ¬A(ai), paired with a choice of
blue(ai) or ¬blue(ai). Even to find effectively ini-
tial segments of strings in hω∀L+

, M must learn
some sentence structure or word order. The nega-
tion sign has to be paired with the predicate blue; if
it’s appended to A (e.g., large, or some other inde-
pendent term), this should count as a string in hn∀ .
If s is a finite string, M does not effectively capture
word order if it does not distinguish between s and
permutations of elements in s.

Proposition 7. If M does not effectively capture
word order, it cannot effectively learn basic sets of
the form O(A) for A ⊂ V ∗.

Let s ∈ A be a string containing A(ai)∧¬blue(ai)
but A has no string containing ¬A(ai) ∧ blue(ai).
If M does not capture word order, M cannot dis-
tinguish between s and s’s permutation containing
¬A(ai) ∧ blue(ai). 2

Corollary 5. If M does not effectively capture
word order, it will not reason soundly in proposi-
tional logic.

The example in Proposition 7 shows that M will
not be able to reason about logical structure if it
does not effectively capture word order. 2

Yuksekgonul et al. (2022); Sinha et al. (2020)
provide evidence that small to moderate sized
LLMs do not reliably capture word order. Our
empirical examples show even GPT3.5 and Chat-
GPT have difficulties with sentential word order,
and, worryingly, with the order of arguments in a
logical operator; the example in Appendix B sug-
gests that even ChatGPT can’t be trusted to always
do elementary inferences involving conditionals
correctly. Thus, LLMs with their initial training do
not necessarily find basic ∆0

1 sets of the form a.V ω

where a is a single string but only sets A.V ω where
A is a set of prefixes that are permutations on a.
This is surprising and poses extreme difficulties
for valid reasoning with operators that have order
dependent arguments.
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5 Empirical investigations of LLMs with
every

While the theoretical argument laid out in Section
4 does not hinge on empirical statistics of LLM
failures, it certainly suggests that we should expect
such failures. In this section, we describe some of
the tests we have performed using continuations to
query LLMs directly about their mastery of univer-
sal quantification.

Let us return to our simple example from above,
repeated here as (2):

(2) Everything is blue.

We used finite sequences of formulas as a context,
e.g., a1 is blue, a2 is red , a3 is red ,..., ai is blue
to determine a model. We then asked an LLM M
whether (2) in this model, allowing us to gauge its
behavior with respect to finite domains.

BERT-large and RoBERTa-large already failed
to reliably distinguish very small models (contain-
ing 2 and 5 objects respectively) in which (2) is
true from those in which it is not. To test these
models, we fine-tuned BERT-large and RoBERTa-
large on the CoQA dataset (Reddy et al., 2019). For
finetuning, the model had 4 output heads for yes,
no, unknown, and span type questions. Since the
CoQA dataset provides a rationale for each ques-
tion, the models were jointly trained on question
answering and rationale tagging tasks to enhance
their performance. We report scores on the fine-
tuned models on CoQA for 1 epoch as we did not
observe significant improvement with an increased
number of epochs.

For BERT-large, we provided strings like (3) and
then asked Is everything blue?

(3) My car is blue. My house is blue

We generated a total of 5 examples in which (2)
was true and 5 examples in which (2) is false. All
the examples had only 2 objects. The inconsistent
examples were constructed by varying the position
of the object which was inconsistent with the asked
question and by trying out different combination of
colours and objects.

The consistent examples were of the form:
1. The car is blue. The house is blue.
2. The car is purple. The house is purple.
3. The car is yellow. The house is yellow.
3. The shirt is violet. The table is violet.
4. The cup is black. The plate is black.

Object Count Pass Fraction

2 1/1
3 2/3
4 1/4
5 0/5
6 0/6
7 0/7
8 0/8
9 0/9

10 0/10

Table 1: Pass fraction on inconsistent examples for
RoBERTa-large

Inconsistent examples were of the form:
1. The car is blue. The house is red.
2. The car is green. The house is purple.
3. The car is yellow. The house is brown.
2. The shirt is violet. The table is brown.
3. The cup is black. The plate is white.

BERT-large was able to correctly identify the
consistent examples but failed for all the incon-
sistent examples. As the model failed for all the
inconsistent examples with 2 objects, we did not
experiment with models containing more than 2
objects.

For RoBERTa-large, we generated a total of 9
consistent examples and 53 inconsistent examples.
We constructed sequences ranging from 2 to 10
objects. For each number, the inconsistent exam-
ples were constructed by varying the position of
the object in the string (context) which is respon-
sible for the inconsistency. The model was able to
correctly identify all the consistent examples. For
models of a given size (i.e., number of objects), we
defined the pass fraction as the ratio of the exam-
ples in which the model was able to report models
inconsistent with (2) correctly to the total number
of inconsistent examples. Table 1 reports the pass
fraction on inconsistent examples.

While BERT’s and RoBERTa’s behavior was
stable on the strings tested, GPT3.5 davinci and
ChatGPT, while more robust, are unstable from
one day to the next, even when temperature is set
to 0 (on GPT3.5). This made it difficult to pin down
the models’ abilities, though some generalizations
emerged. Typically (though not always), these
models can recognize which objects in a string
have a certain property, but they cannot necessarily
exploit this information to answer questions about
the string as a whole (see the “hats” example in
Appendix A). In addition both GPT3.5 and Chat-
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GPT will sometimes (frequently in our most recent
tests) over-generalize and say that all items in a
list are, say, blue if it is specified for all items but
one that they are blue and it is not specified one
way or the other for the remaining item (see the
fifteen hearts example from ChatGPT in Appendix
A). Thus, even these sophisticated models still fail
on more complicated questions and longer strings.

Our empirical observations on LLMs like BERT
and RoBERTa and probing of ChatGPT strongly
support our argument that LLMs are unable to mas-
ter quantification, complementing observed LLM
difficulties with negation (Naik et al., 2018; Kass-
ner and Schütze, 2019; Hossain et al., 2020; Hos-
seini et al., 2021) and to some extent quantifiers
(Kalouli et al., 2022).

6 Conclusions

We have shown that LLMs’ demonstrably inade-
quate grasp of the meanings of words like every
and other linguistic constructions has a theoretical
foundation and explanation: for certain expressions
S, S’s content should be defined via consistent sets
of strings in V ω, and LLMs cannot effectively learn
certain sets in V ω. More generally, LLMs cannot
effectively learn full meanings of first order quanti-
fiers or any Borel sets beyond the basic open sets,
which means that they fail to grasp the meaning of a
long list of mundane, frequently used expressions.

Many of these expressions are syncategorematic
terms and express what we might call precise con-
cepts. Such concepts are needed for understand-
ing ordinary entailment across all expressions; in
addition, correctly reasoning with these concepts
and grasping their entailments is essential to un-
derstanding them. Reasoning and entailment are
intimately tied with meanings. For us and most
formal semanticists (Montague, 1974), grasping
meaning and correctly reasoning with linguistically
expressed concepts go hand in hand; if you cannot
exploit the meanings of words in correct reasoning,
you do not really know what they mean. The incor-
rect reasoning of LLMs exemplifies their failure to
grasp semantic entailments and meaning.

Our arguments go beyond those of Bender and
Koller (2020), who argue that stochastic models
cannot capture linguistic meaning because they
consider only form, not denotation. While we agree
that denotation plays a very important role in mean-
ing for many expressions, the meaning of most
expressions, and especially that of syncategoreg-

matic ones, requires us to capture their semantic
entailments. We have shown that we can capture
these entailments within the semantic framework
of LLMs using continuation semantics. But we
have also shown that LLMs nevertheless fail in this
task.

LLMs can learn certain types of ∆0
1 sets and

finite intersections and unions of learnable ∆0
1

sets. For many open class words—including many
nouns, adjectives and verbs—whose characteristic
denotations can be determined given a finite sam-
ple, this probably suffices to capture their meaning
or at least a very good approximation of it. In ad-
dition, many NLP tasks may not involve logical
inference but an independent form of string op-
timization; in text summarization or translation,
where given a context s, M tries to find an optimal
continuation s′. If the length of s.s′ falls within the
constraints of Corollary 4, then we can expect an
LLM to succeed at such a task.

Proposition 6 and Corollary 4 generalize Corol-
lary 1 and they all point to a general limit on learn-
ability for LLMs. They establish that language
models have strict bounds even on the ∆0

1 sets
they can effectively learn. So we cannot count on
LLMs having full linguistic competence even on fi-
nite domains. Different models may have different
limits; smaller models generally with lower limits.
This motivates a comparative study of the limits
of learnability for different LLMs, complementing
Colbrook et al. (2022).

Because we do not make assumptions about
memory but only about inductive processes and
learning, our results hold for arbitrarily large LLMs
and for any task that relies on an LLM’s capacity
of string prediction, even if strings are not directly
predicted.

Our research implies that full language mastery
needs a different approach from one in which one
seeks to build ever larger LLMs with language
masking or autoregressive training. Following
Raissi et al. (2017), we believe we need to inject
knowledge about linguistic structure and content
into our models to further constrain learning and in
particular hypothesis sets and learning architectures
as suggested in Steinert-Threlkeld and Szymanik
(2019).
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Limitations

Our paper offers an in-depth look at the limits of
statistical learnability for LLMs in terms of Borel
sets. Our results however rely on certain, rather
mild hypotheses about learning. We do not know
how our claims fare when different assumptions
about learning are made.

Another limitation is that we have not looked at
potential ways of restricting learning hypotheses
about the meanings of linguistic expressions. Di-
rectly relevant are the constraints on generalized
quantifiers of Barwise and Cooper (1981). Nor
have we said much about compositionality and
learning, although they are well known to inter-
act. Ideally, we should assign a meaning to every
which consists in a reduced hypothesis space, but
that has to combine with the meanings of, say, the
other words in (2).

A third limitation concerns the extent to which
an LLM can leverage what it has been trained to
do in learning semantic concepts on other tasks. In
many experiments we see that an LLM can appear
to learn X but then cannot exploit X in task Y. We
leave this issue for future research, but we believe
it may be key to understanding debates about LLM
performance and the role of forgetting in LLM
learning (Kirkpatrick et al., 2017).

Ethics Statement

We show that LLM reliability in gauging the ac-
curacy of universal quantifiers is limited. Given
how quantification is linked to concepts like seman-
tic consequence, it means that we cannot assume
LLMs to have anything like full semantic compe-
tence. This suggests that we cannot fully trust them
with tasks where accuracy on reasoning is required.
Thus, our work has certain ethical implications and
provides a cautionary tale for those working on
LLMs as general AI models.
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A GPT 3.5 and ChatGPT on every

Because our access to GPT 3.5 and ChatGPT is lim-
ited and the responses that we receive seem to vary
depending on the day that we query the models, we
qualify the results in these appendices as anecdotal.
Nevertheless, we emphasize that for each type of

example that we provide, we made numerous trials
in order to make sure that the results were repeated
and so seemed to follow from features of the model,
not just random quirks.

In the queries below, GPT3.5 on 18.01.2023,
with temperature set to 0, correctly classifies both
blue hats as being blue when queried directly about
the color of the beret, but still fails to correctly an-
swer Were all of the hats blue? (Results sometimes
varied with the form of the prompt; e.g., using com-
mas rather than and can impact GPT’s answers).
Input Text: One guy was wearing a blue beret and
another guy was wearing a pink bonnet and a third
guy was wearing a blue baseball cap.

Q: Were all of the hats blue?
GPT: No, only one of the hats was blue.
Q: Which hat was blue? GPT: The blue baseball
cap.
Q: Is a beret a hat? GPT: Yes, a beret is a type of
hat.
Q: What color is the beret? GPT: The beret is blue.

Here is an input and query to ChatGPT on
20.01.2023, showing that it ignores underspecifica-
tion
Input text: I have a shirt with a picture of ten blue
bears, five blue snails, three blue guitars, fifteen
hearts, 15 blue fluffy rabbits and 25 blue stars. Is
everything on my shirt blue?

ChatGPT: Yes, everything on your shirt is blue.

B ChatGPT and GPT3.5 on word order
and argument order

The examples below illustrate how both GPT3.5
and ChatGPT fail to recognize instructions about
word order. When asked to write sentences that end
with a particular word, for example, the models
manage to produce sentences in which the target
word appears, but in most cases, it is not in the
correct position.

Instruction: Write five sentences that end with
the word “house”.

ChatGPT:
1. I built a house with my own two hands.
2. The storm destroyed the old house.
3. We found a beautiful house to rent for the
summer.
4. The house was haunted, so we left in the middle
of the night.
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5. I always dreamed of living in a big white house.

GPT 3.5:
1. I can’t wait to get home and relax in my own
house.
2. The old house had been abandoned for years.
3. The house was filled with the smell of freshly
baked cookies.
4. The house was surrounded by a tall white picket
fence.
5. The house was the perfect place to spend a lazy
summer day.

For GPT3.5 we set temperature to 0. These ob-
servations suggest both GPT 3.5 and ChatGPT fail
to respect the last word constraint.

Finally, we offer this example that shows that
ChatGPT can confuse the order of arguments in a
logical operator, thus leading to incorrect reason-
ing.

Prompt: If p then q. q, therefore p.

ChatGPT:
This is a valid logical argument. It is known as
modus ponens and it is a valid rule of inference
in propositional logic. The statement “If p then
q” is known as the conditional statement and “q,
therefore p” is the conclusion that can be drawn
from the conditional statement.
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