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Abstract

Multimodal embeddings aim to enrich the se-
mantic information in neural representations of
language compared to text-only models. While
different embeddings exhibit different applica-
bility and performance on downstream tasks,
little is known about the systematic representa-
tion differences attributed to the visual modal-
ity. Our paper compares word embeddings
from three vision-and-language models (CLIP,
OpenCLIP and Multilingual CLIP, Radford
et al. 2021; Ilharco et al. 2021; Carlsson et al.
2022) and three text-only models, with static
(FastText, Bojanowski et al., 2017) as well as
contextual representations (multilingual BERT
Devlin et al. 2018; XLM-RoBERTa, Conneau
et al. 2019). This is the first large-scale study of
the effect of visual grounding on language rep-
resentations, including 46 semantic parameters.
We identify meaning properties and relations
that characterize words whose embeddings are
most affected by the inclusion of visual modal-
ity in the training data; that is, points where
visual grounding turns out most important. We
find that the effect of visual modality correlates
most with denotational semantic properties re-
lated to concreteness, but is also detected for
several specific semantic classes, as well as
for valence, a sentiment-related connotational
property of linguistic expressions.

1 Introduction

Linguistic representations developed by recent
large pre-trained language models (LMs) (Devlin
et al., 2018; Liu et al., 2019; Radford et al., 2019
a.0.) proved to be very useful across a variety of
practical applications. This success has given a
new life to the debate around extractability and
quality of semantic information in representations
trained solely on textual input. According to the
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widely supported argument, unless the textual data
is grounded in a separate space (say, visual), the lin-
guistic representations are bound to be semantically
deficient (see Bender and Koller, 2020 a.o.).

We aim to shed new empirical light on the dis-
cussion of grounding in computational models by
comparing language-only text representations to
visually informed text representations. Recent
advances produced empirically successful large
models pre-trained on a combination of textual
and visual data (Li et al., 2019; Tan and Bansal,
2019, 2020; Radford et al., 2021). While these
multimodal systems have already given rise to a
plethora of applications for language-and-vision
(L&V) downstream tasks, there is still little work
that directly compares textual representations of
language-only models to those of multimodal ones
(however, see Davis et al., 2019; Liiddecke et al.,
2019; Pezzelle et al., 2021). In contrast to previous
related work that focuses on model evaluation with
respect to specific benchmarks, we look at the im-
pact of visual grounding from a somewhat different,
non-evaluation-based perspective. We do not aim
to measure the representation quality with respect
to some gold standard, but compare language-only
and L&V models to each other intrinsically. Our
goal is to identify the areas in which the contrasts
between the two kinds of models tend to lie, inde-
pendent of the models’ fitness for specific tasks.

To do so, we focus on a set of 13k word pairs and
compare cosine distances within these pairs in the
embedding spaces of language-only vs. L&V mod-
els. Fixing the word pairs and comparing the mod-
els allows us to measure how the change in model
modality stretches the embedding space, with the
word pairs as indirect reference points.

The pairs are characterized along 46 different
semantic parameters. This information makes it
possible to identify the meaning aspects for which
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the change in model modality matters the most.
Our contributions are:

1. a methodology for measuring the influence of
grounding on semantic representations;

a dataset characterizing a large number of
word pairs along various semantic parame-
ters and embedding distances in the models
that we study.

Our results are the following:

e The semantic parameter that makes the highest
contribution into explaining the impact of modal-
ity on word representation is concreteness. This
aligns with previous results that visual modality
improves representations of concrete nouns but not
abstract ones (Pezzelle et al., 2021).

e Representations of particular semantic groups of
nouns are affected the most.

e Semantic relations between nouns only have
small interaction with modality across the models
we tested, with variation from model to model.

e Connotational meanings from the VAD (valence,
arousal, dominance) repertoire (Mohammad, 2018)
— specifically, valence — play a role in representa-
tional shifts relating to modality. This is a some-
what surprising result since visual grounding is
expected to relate to the denotational aspects of rep-
resentations. This result is in line with recent dis-
cussion in semantics about the inter-relatedness of
denotational and connotational meanings (Ruyten-
beek et al., 2017; Terkourafi et al., 2020; Van Tiel
and Pankratz, 2021; Beltrama, 2021; Gotzner and
Mazzarella, 2021).

We now discuss our data, analysis and results.

2 Data'

The dataset consists of word pairs. To collect them,
we start with 1000 most frequent words in FastText
(Bojanowski et al., 2017). For each of them, we
take 100 closest words, by cosine distance over
FastText embeddings. This gives 1M pairs to work
with. We filter this list of pairs in several ways.
First, we only keep those pairs where both words
are nouns, according to both NLTK? and SpaCy?

'Our code and data are available on GitHub: https:
//github.com/altsoph/modality_shifts

https://github.com/nltk/nltk

‘https://github.com/explosion/
spacy-models
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POS labels. Second, we filter out pairs where one
of the words is a substring of the other or where
the two words have the same lemma. This helps
against some FastText artifacts.

One of the goals of our filtering strategy was
to balance representation quality of the words (the
frequency filter) and the chance for the pair to stand
in a WordNet relation (the similarity filter). This
gives us a set of pairs like the following:

( page, article )
( people, politicians )
( city, hometown )

Each of the resulting pairs was characterized
along a set of properties of interest, collected over
a variety of available sources of human-annotated
semantic information. The properties we look at
come in two big blocks: 1) the ones that charac-
terize individual words (assigned to each word in
the pair); 2) the ones that characterize a semantic
relation between the words in the pair.

Properties for individual words included:

e Concreteness, a continuous score on the
abstractness-concreteness scale, the Ghent con-
creteness norms (Brysbaert et al., 2014);

e 26 WordNet supersenses of nouns (ACT, AN-
IMAL, FEELING, FOOD etc.), implemented as
boolean labels (Miller, 1995);

e 3 NRC VAD continuous scores for valence,
arousal and dominance (Mohammad, 2018).

Relational semantic properties included:

o 6 WordNet semantic relations (Miller, 1995):
ANTONYMS, SYNONYMS, SAME_HYPONYMS,
SAME_HYPERNYMS, HYPONYMS, HYPERNYMS.

e 10 ConceptNet semantic relations (Speer et al.,
2017): ANTONYM, SYNONYM, ATLOCATION,
DERIVEDFROM, DISTINCTFROM, FORMOF, ISA,
PARTOF, RELATEDTO, SIMILARTO.

The relations were implemented as boolean labels.

This is the most comprehensive list of semantic
parameters for which human annotations exist on a
large scale. It covers both denotational and connota-
tional aspects of meaning of both individual words
and relation within pairs. Connotational meanings
are represented with three sentiment-related mean-
ing aspects only, as these are the only ones repre-
sented in a large human-annotated dataset (Moham-
mad, 2018).

Additionally, word count based on Wikipedia
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(accessed via Textacy) is included for each word
in all pairs as a non-semantic baseline parameter.

We leave only those word pairs for which all
the above mentioned parameters are defined. This
gives us 13k word pairs in total, each of the pairs
gets characterized along 30 individual semantic
parameters (*2, for the first and the second noun in
the pair) and 16 relational parameters; plus, word
count for each of the words in the pair.

We collect the distances between the words in
each pair for their embeddings from the models
of interest. As text-only models, we use fastText
(Bojanowski et al., 2017) and two contextualized
embedding models: multilingual BERT (mBERT,
Devlin et al., 2018) and XLM-RoBERTa (XLMR,
Conneau et al., 2019). For each contextualized
model, we extract three kinds of word type embed-
dings known to show systematic differences (Vuli¢
et al., 2020); average of all token embeddings, in-
cluding separator tokens, from the final encoding
layer of a word presented in isolation (iso); the av-
erage encoding over the bottom 6 layers across a
sample of 10 usage contexts (avg-bottom), amd the
average encoding from the final layer across a sam-
ple of 10 usage contexts (avg-last). As multimodal
models, we use CLIP, OpenCLIP and Multilingual
CLIP (Radford et al., 2021; Ilharco et al., 2021;
Carlsson et al., 2022). For each multimodal model,
we extract two different types of word type embed-
dings, one by encoding the word in isolation and
one by averaging over sentence embeddings of 10
usage examples.

The goal is to find a common ground of different
models depending on their modality. In this way
we hope to be able to distinguish between model-
specific idiosyncrasies and general properties of
text-based representations.

3 Analysis

We run a series of regression analyses with seman-
tic features and relations as predictors, along with
word frequency as baseline.

We analyze the shift in distances within word
pairs between two embedding models. To measure
it, we rank all word pairs in our dataset by the ratio
between the cosine distance values of the pair in
the two embedding models. Using ratios and ranks
rather than absolute differences serves as a nor-
malization strategy because the vector spaces have
significantly different structures (see Appendix A).
The resulting rank of the pair is then used as the
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dependent variable in a regression analysis.

The baseline regression model includes as pre-
dictors word frequencies in the Wikipedia corpus
and concreteness scores from the Ghent concrete-
ness norms dataset (Brysbaert et al., 2014). To
estimate the contribution of different groups of se-
mantic features, we add them to the regression as
additional predictors. This is done separately for

1. taxonomic features of the two words formal-
ized as their WordNet supersenses (Miller,
1995);

sentiment/connotation-related features of the
two words extracted from NRC VAD (Mo-
hammad, 2018);

. relation within the word pair according to
Princeton WordNet (Miller, 1995);

relation within the word pair according to Con-
ceptNet (Speer et al., 2017).

All numeric parameters (concreteness scores,
word frequencies, and VAD values) were normal-
ized by converting numeric values into ranks.

To calculate regression, we used a standard im-
plementation of ordinary least squares regression
from the statsmodels python package. We compute
adjusted R-squared values to avoid a bias from the
different numbers of parameters. Each fitted regres-
sion showed high significance (p < 0.0001).

4 Results

The results of regression analysis for several mod-
els are illustrated in Table 1. Our main observations
are:

e Baselines. Concreteness plays a major role in
explaining modality shifts, in line with results of
previous studies (Pezzelle et al., 2021).

e Combined WordNet supersenses. We find a
significant effect for many pairs of text vs. multi-
modal models, although different subsets of taxo-
nomic features prove significant in different pairs
of models.

e WordNet and ConceptNet relations tend to be
significant when aggregated, although no individ-
ual relation has a systematic effect across model
pairs.

e VAD features produce varied effects, with va-
lence showing the most consistent modality differ-
ence. VAD features explain only a small percentage
of variance in all models.



CLIP-iso vs. XLMR-iso mBERT-iso BERT-avg-last fastText
Baselines

concreteness 9.5 11.68 2.27 8.71
frequency 5.43 7.81 1.91 0.45
concreteness+frequency 16.73 17.16 3.65 9.54
+taxonomic 21 (+4.27)  20.35(4+3.19) 543 (+1.78) 19.50 (4+9.96)
+VAD 17.36 (+0.63) 17.49 (+0.33)  4.62 (+0.97) 10.78 (+1.24)
+WordNet relations 18.47 (+1.74)  17.36 (+0.2) 10.05 (+6.4) 10.34 (+0.8)
+ConceptNet relations 19.8 (+3.07) 17.47 (+0.31) 8.84 (+5.19) 10.26 (+0.72)

Table 1: Illustration of our method: Embedding space in CLIP-iso vs. four of the text-only models. Table reports
percentage of variance (adjusted R?) in cosine distance ratio explained by different groups of semantic factors. We
take the number in parentheses as an estimate of the effect of the factor (e.g. the effect of all taxonomic features
from WordNet combined) on the difference between two embedding spaces (e.g. fastText vs. CLIP).
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Figure 1: Comparing semantic features’ contributions to contrasts between text models vs. other text models, on the
one hand, and text models vs. L&V models, on the other hand. Explanatory contributions of concreteness, VAD
valence and Wordnet supersense ‘Is Possession’ are sensitive to model modality, unlike supersense ‘Is Attribute’.
(Here and in Appendix B, whiskers in the boxplots are set to 0.5 IQR.)

Figure 1 illustrates the effect of specific features:
concreteness, valence and possession WordNet su-
persense, vs. the attribute supersense that has no
consistent effect on modality shifts. For more plots,
see Appendix B.

5 Conclusion and discussion

The goal of our paper was to investigate what se-
mantic factors contribute to the difference in rep-
resentational spaces of language-only models vs.
multimodal models.

Our regression analysis confirmed previous find-
ings that concreteness plays a major role in this
difference (Pezzelle et al., 2021). This is natural
since imageability, the measurable manifestation of
concreteness, is directly related to whether useful
information about a concept can be inferred form
visual data.

However, other factors beyond abstractness con-
tribute to the modality-based space contrasts as
well. The most important factor here is taxonom-
ical, as measured by the effect of WordNet lexi-
cographer files. Wordnet supersenses consistently
affect semantic similarities in text-only models vs.

14

L&V models: in particular, we found this for arti-
facts, quantities, possessions and communication
lexical classes.

Lastly, sentiment-related lexical properties, most
clearly valence, also affect the semantic similarity
in language-only vs. multimodal spaces. Recently,
several studies in semantics and pragmatics have
indicated interactions of connotational content with
denotational meanings (Ruytenbeek et al., 2017;
Terkourafi et al., 2020; Van Tiel and Pankratz, 2021;
Beltrama, 2021; Gotzner and Mazzarella, 2021).
Our results can be interpreted as pointing in that
direction too. Still, the effect of sentiment is overall
much smaller than the core denotational properties
of the words in the lexical pair, as illustrated by
the comparison of the combined VAD to combined
taxonomic features in Table 1.

We contribute to the understanding of different
embedding spaces by demonstrating systematic dif-
ferences between text-only vs. L&V models. Many
questions are however left for future research. For
example, do the distinct properties of multimodal
embeddings make them better suited for specific
tasks, as Pezzelle et al. (2021) argued for the relat-



edness judgments of concrete nouns?

In the light of Kruszewski’s finding (Kruszewski
and Baroni, 2015) that taxonomic information inter-
acts strongly with referential compatibility between
concepts, our findings on the role of taxonomic
status on vector space structure suggests that the
choice of multimodal vs. textual representations
can be crucial for inference, especially for the diffi-
cult case of the neutral vs. contradiction distinction.

Finally, we note that the semantic factors we con-
sidered only explain a small part of the discrepancy
between textual and L&V models. The rest must
be attributed to other factors, such as random dif-
ferences in the textual data used for model training
as well as semantic phenomena outside the scope
of our study.

We hope that our study inspires further explo-
ration of systematic differences between embed-
ding models, both for visual grounding and beyond.
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A Properties of embedding spaces
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