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Abstract
Model explanations that shed light on the
model’s predictions are becoming a desired ad-
ditional output of NLP models, alongside their
predictions. Challenges in creating these ex-
planations include making them trustworthy
and faithful to the model’s predictions. In this
work, we propose a novel framework for guid-
ing model explanations by supervising them ex-
plicitly. To this end, our method, LEXPLAIN,
uses task-related lexicons to directly supervise
model explanations. This approach consistently
improves the plausibility of model’s explana-
tions without sacrificing performance on the
task, as we demonstrate on sentiment analysis
and toxicity detection. Our analyses show that
our method also demotes spurious correlations
(i.e., with respect to African American English
dialect) on toxicity detection, improving fair-
ness.

1 Introduction

Extensive recent work has sought to advance NLP
models so that they offer explanations for their
predictions (Rajani et al., 2019; Lundberg and Lee,
2017; Camburu et al., 2018). Here we focus on
methods that extract features from the input text to
explain a classifier’s prediction, known variously
as “feature attribution” or “rationales” (Lundberg
and Lee, 2017; Li et al., 2016).

Beyond high accuracy on unseen data, classifiers
that offer explanations are expected to provide ex-
planations that are faithful to the workings of the
model and also intuitive to human users, goals that
might be contradicting. We begin with an approach
designed for faithfulness (SELFEXPLAIN, §2 and
Rajagopal et al., 2021a) and introduce supervision
that guides its explanations toward lexical clues
already established to be associated with the classi-
fication task. Ancillary goals are to improve model
accuracy through the construction of explanations,
and to remove reliance on spurious features that
can bias a classifier’s output in unwanted ways.

Our method, LEXPLAIN (§3), encourages the
model to be “confused” in the absence of words
from a task-specific lexicon, i.e., to assign a uni-
form probability distribution across labels, and pro-
motes model explanations that contain task-specific
lexemes. We apply LEXPLAIN to sentiment analy-
sis and toxicity detection tasks, and our controlled
experiments (§5, §6) comparing LEXPLAIN to
SELFEXPLAIN (which does not use supervision
for explanations) show that:

(a) LEXPLAIN does not show an accuracy drop
relative to the baseline. (b) LEXPLAIN not only
promotes lexicon entries as explanations, but also
generalizes to additional terms that are related to
them but excluded from the lexicon. (c) LEX-
PLAIN’s explanations are usually more sufficient
than the baseline’s explanations (i.e., the model
makes the same prediction on the explanation as on
the full input). (d) In toxicity detection, spurious
correlations between the toxicity label and African
American English (Sap et al., 2019) are reduced in
the predictions of LEXPLAIN, relative to the base-
line. We view this result as a positive side effect of
guiding the model to use task-relevant lexemes. (e)
Most importantly, LEXPLAIN’s explanations are
preferred by human judges 3–4× more often than
the baseline’s explanations.

We believe these results are encouraging, as they
suggest that type-level (lexicon) supervision is a
viable alternative to methods that require costly an-
notation of explanations (Zaidan and Eisner, 2008;
Huang et al., 2021).1

2 Background: SELFEXPLAIN

Our goal is to improve model explanations in su-
pervised text classification tasks. By supervising
explanations, we incorporate inductive biases into
models, making them robust to spurious artifacts.
Our base model is SELFEXPLAIN (Rajagopal et al.,

1Code available at https://github.com/orevaahia/
supex
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2021a), a framework that explains a text classifier’s
predictions with phrase attribution. We describe
SELFEXPLAIN (omitting the global interpretable
layer, as we focus on local explanations) and in Sec-
tion 3 present our proposed method, LEXPLAIN.

Starting with a neural classifier, let us be the
masked LM’s (Yang et al., 2019) final layer repre-
sentation of the “[CLS]” token for one instance. us

is passed through ReLU, affine, and softmax layers
to yield a probability distribution over outputs; the
loss is the negative log probability, summed over
training instances i:

ℓ = softmax(affine(ReLU(us))) (1)

Ltask = −∑
i log ℓ[y

∗
i ] (2)

y∗i is the correct label for instance i. Parameters of
the affine layer are suppressed here for simplicity.

A set of phrases is extracted from the data with
a phrase-structure parser (Kitaev and Klein, 2018).
Let uj be the average of the MLM representations
of tokens in phrase j. The output distribution with-
out phrase j is modeled by transforming the dif-
ference (Shrikumar et al., 2017; Montavon et al.,
2017) between us and uj .

sj = softmax(affine(ReLU(us)− ReLU(uj)))
(3)

Vector sj is a probability distribution over labels,
with phrase j absent: the closer sj is to ℓ (Eq. 1),
the less important phrase j is. A secondary log loss
LLIL is formed from the probability assigned to
the correct label without phrase j, taking a learned
weighted sum over all of instance i’s phrases, and
interpolating with the original log loss (Eq. 2) with
a hyperparameter α1 to weight the secondary loss:

loss = Ltask + α1LLIL (4)

The relevance of each phrase j can be defined as
the change in probability of the correct label when
j is included vs. excluded:

rj = [ℓ]y∗i − [sj ]y∗i (5)

where higher rj signify more relevant phrases to the
prediction, and as such serve as better explanations.

3 Supervising Explanations

On inspecting explanations retrieved from SELF-
EXPLAIN, in many cases they do not align intu-
itively with the predictions. Table 1 illustrates the

problem: the explanation of SELFEXPLAIN sen-
tence (1) is the phrase on this planet which is not
a good explanation for the predicted toxic label,
unlike the biggest idiot, which can better explain
the model’s prediction, having the toxic word idiot.

Our modeling innovation is to supervise the ex-
planations encoded in the LIL, rather than letting
them emerge from the secondary loss function
(LLIL in Equation 4). We incorporate a task lexi-
con as a source of supervision during training via
a third loss component to encourage the model to
prefer phrases that contain words in our lexicon as
explanations. Table 1 lists examples in the datasets,
showing the advantage of our method with more in-
tuitive explanations that better reflect the predicted
label.

Our proposed method, named LEXPLAIN, as-
sumes that good explanations within the input
are crucial for predictions, thus we encourage the
model to be “confused” in the absence of lexicon
entries, which we expect to be good explanations.

Formally, we minimize the KL divergence be-
tween the predicted label distribution sj , which
stands for the distribution in the absence of phrase
j (as described in Section 2) and the uniform distri-
bution sunif , for every phrase j:

LLEXPLAIN = DKL(sj , sunif ) (6)

This objective is used for only lexicon phrases.
LEXPLAIN interpolates the third loss, weighted
by hyperparameter α2, with the other two:

loss = Ltask + α1LLIL + α2LLEXPLAIN (7)

4 Experimental Setup

Datasets We experiment on three datasets and
evaluate explanations based on alignment with
model predictions and plausibility with humans.
We focus on sentiment analysis and toxicity detec-
tion, as judging explanations is easy, intuitive and
high-quality lexicons are available. Toxicity detec-
tion also allows us to analyze the efficacy of our
method in demoting spurious racial correlations, as
detailed in §6.

For sentiment analysis, we use the SST-2 dataset
(Socher et al., 2013), where the task is to predict
the sentiment of movie reviews. For toxicity de-
tection we use DWMW17 (Davidson et al., 2017)
and FDCL18 (Founta et al., 2018); both Twitter
datasets annotated for toxicity and dialect: African
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Input SELFEXPLAIN LEXPLAIN

she is the biggest idiot on the planet. on this planet the biggest idiot
Haha , says the little bitch who let someone take his phone . a real man
would n’t have let that happen . a little bitch would.

someone take his
phone

a little bitch would

All you hoes wanna be like me so bad. bad you hoe s
I ’m so ugly & april fools bitch you thought. you thought so ugly
He draw ( for “ big bad love ” ) is a solid performance by arliss howard. big bad love a solid performance
A lackluster , unessential sequel to the classic disney adaptation of j.m.
barrie ’s peter pan

the classic dis ney
adaptation

the classic disney adaptation

Table 1: Explanations from SELFEXPLAIN and LEXPLAIN for DWMW17, FDCL18 and SST2 (2 examples each).
Predicted labels are toxic for DWMW17 and FDCL18. First and second SST2 examples are positive and negative,
respectively. Explanations of LEXPLAIN align better with the model prediction and contain more task-related terms.

American English (AAE) and White American En-
glish. The AAE annotations are obtained from a de-
mographically aligned ensemble model that learns
a posterior distribution of topics corresponding to
African American tweets (Blodgett et al., 2016).
Our task lexicons and full experiment details are
described in appendix section A.

Training We use SELFEXPLAIN as our baseline.
When training both the baseline and LEXPLAIN,
we keep the same hyperparameters and weights
from the pretraining of the XLNet encoder and
finetune the model for 5 epochs. In LEXPLAIN

we do not use the GIL, since initial experiments
showed no difference between adding and remov-
ing the GIL.

For LEXPLAIN, we perform hyperparameter
tuning for α1 ∈ {0.01, 0.05, 0.1} and α2 ∈
{0.8, 1.5.2.0} on the development set. We report
results on the best configuration on the test sets.

We extract phrases from sentences, by parsing
each sentence with a constituency parser (Kitaev
and Klein, 2018) and extracting all non-terminals
with a token length of up to 5 words in the parse
tree.

5 Evaluating Explanations

The goal of LEXPLAIN is to train models to pro-
duce plausible explanations that align with their
predictions. We start with an intrinsic evaluation,
verifying that LEXPLAIN indeed promotes lexicon
entries as explanations. We then analyze the suffi-
ciency of the explanations and conduct human eval-
uation to show that explanations from LEXPLAIN

are more plausible and preferred by humans.

Intrinsic evaluation: are lexicon entries ranked
higher as explanations of the model? The LIL
outputs explanations as a rank of all input phrases.
Following lexicon supervision, we expect to see
that phrases ranked higher contain more lexicon

entries, indicating that supervision was effective.
To quantify this, we compute in Table 2 the mean
reciprocal rank (MRR) of the lexicon entries within
the ranked phrases of LEXPLAIN vs. the baseline.

Across all datasets, LEXPLAIN ranks lexicon en-
tries higher than the baseline on average, showing
the effectiveness of our supervision in providing
explanations included in the task lexicon. We note
that high-rank phrases should be the focus, thus
in Appendix 2 we plot the raw counts of lexicon
entries that appear in each rank, across sentences
in each dataset. Clearly, LEXPLAIN puts more lex-
icon entries higher in the rank, this is especially no-
ticeable in the highest ranked explanations (rank 1).

Dataset Model MRR(Full lexicon) MRR(50% lexicon)

FDCL18
Baseline 0.29 0.31

LEXPLAIN 0.33 0.35

DWMW17
Baseline 0.32 0.20

LEXPLAIN 0.35 0.24

SST2
Baseline 0.23 0.18

LEXPLAIN 0.25 0.22

Table 2: Mean reciprocal rank (MRR) of lexicon phrases
across the full ranking of explanations on the test set.

Do explanations sufficiently reflect model pre-
dictions? Sufficiency measures how indicative
explanations alone are of the model’s predicted la-
bel (Jacovi et al., 2018; Yu et al., 2019). Sufficient
explanations are expected to reflect the prediction
of the predicted label on their own. To measure
that, we use the FRESH pipeline (Jain et al., 2020):
we train a BERT-based classifier to perform the
task with only the explanations as input, and with
the originally predicted labels as output. Higher
accuracy on this task indicates that the explanations
are more reflective of the model predictions. We
train the sufficiency models with the top ranking
explanations of each sentence as input.

Following Jain et al. (2020), we measure this
with a BERT classifier trained with top ranked
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phrases as input and predicted label as output.
Higher accuracy indicates more sufficient explana-
tions. Table 3 shows that LEXPLAIN explanations
have higher predictive performance and are more
sufficient on average compared to the baseline.

Dataset Model Top 1 Top 2

SST-2
Baseline 64.99 68.90

LEXPLAIN 68.00 70.00

FDCL18
Baseline 82.25 87.37

LEXPLAIN 83.79 87.79

DWMW17
Baseline 88.16 89.00

LEXPLAIN 85.12 91.10

Table 3: Test set accuracy of sufficiency models trained
on the top-1 and top-2 explanation as input.

Do humans prefer LEXPLAIN explanations?
To evaluate how plausible our model’s explana-
tions are (Singh et al., 2019; Jin et al., 2020) we
ask annotators to select their preferred explanations,
comparing explanations from both the baseline and
LEXPLAIN. We provide 3 annotators with 50 sam-
ples from the test set of each of our three datasets
(9 annotators in total). All annotators are computer
science graduate students and were already famil-
iar with the tasks. Annotators were given a pair of
explanations about the same input (one from the
baseline, one from LEXPLAIN), in random order,
and asked to select the one they prefer. They could
also judge “both unsatisfactory” or “both satisfac-
tory.” The exact phrasing of the instructions can be
found in Section B in the Appendix.

We analyse the human evaluations and take the
max-vote preference of all three annotations per
task. In Figure 1, we present the results of the
human judgments. The differences between LEX-
PLAIN and the baseline are striking with LEX-
PLAIN being preferred about 3-4× more often than
the baseline.
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Figure 1: Results of human evaluation of explanation
preference. LEXPLAIN is preferred by annotators 3-4×
more often than the baseline.

6 Downstream Performance Analysis

To test our hypothesis that supervising explanations
not only leads to plausible explanations, but robust
models overfitting less to spurious confounds, we
evaluate downstream classification performance.

Sentiment Analysis We obtain an accuracy of
93.92% and 93.35% for LEXPLAIN and SELF-
EXPLAIN respectively. This slight improvement
shows that the added supervision for explanations
maintains the utility of the model.

Toxicity Detection We report the results on toxi-
city detection in Table 4. The accuracy results of
LEXPLAIN are competitive with the baseline, also
showing that additionally supervising explanations
does not hurt the results of the classification task.

Dataset Dialect Model Accuracy FPR FNR

FDCL18
All dialects

Baseline 93.94 3.94 10.05
LEXPLAIN 94.10 4.24 9.03

AAE
Baseline 93.60 12.43 4.21

LEXPLAIN 93.60 13.87 3.36

DWMW17
All dialects

Baseline 96.06 10.98 2.48
LEXPLAIN 96.30 5.99 3.24

AAE
Baseline 98.00 21.69 1.10

LEXPLAIN 97.95 12.05 1.59

Table 4: Toxicity accuracy, FPR, FNR on the test sets.

Demoting Spurious Correlations with Race
Neural classifiers have been shown to rely on spu-
rious artifacts in the training data (Kumar et al.,
2019; Gururangan et al., 2018; McCoy et al., 2019),
sometimes causing unfair predictions, when they
relate to attributes like gender or race (Sap et al.,
2019; Xia et al., 2020). We ask if guiding models
to influential input phrases using lexicon reduces
reliance on these artifacts and promote fairness.

Our toxicity data have dialect labels: African
American English (AAE) and White American En-
glish. We inspect if our model demotes racial corre-
lations. When a model relies on correlations harm-
fully, we expect higher false negatives rate (FNR),
as more non-toxic instances are falsely labelled
toxic because of reliance on dialectal features. In
Table 4 we report the FPR (false positive rate) and
FNR on DWMW17 and FDCL18. We get a much
lower FPR on the full DWMW17, and more signif-
icant reduction on AAE samples. On the FDCL18
data, we see a slightly higher FPR than the baseline.

Lexicon Generalization We inspect the general-
ization abilities of LEXPLAIN: does it generalize
and promote task related terms in explanations but
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not present in the lexicon? We randomly select
50% of lexicon words and use them only to super-
vise while training. We compute MRR with respect
to the other half not used for supervision on the
same test set. If the phrases are ranked higher on
average, even without being seen during training, it
indicates that LEXPLAIN generalizes over lexicon
phrases.

Table 2 shows the MRR of lexicon entries (not
used as supervision). We show that our method gen-
eralizes consistently across all tasks: even lexicon
entries absent during supervision are ranked higher
with LEXPLAIN when compared to the baseline.

7 Related Work

Different works have approached interpreting mod-
els trained for various downstream tasks using
post hoc (Simonyan et al., 2014; Jin et al., 2020;
Smilkov et al., 2017) and intrinsic (Rajagopal et al.,
2021b; Alvarez Melis and Jaakkola, 2018) meth-
ods. In this work we focus on intrinsic methods
that highlight rationales (Denil et al., 2014; Rajani
et al., 2019; Luo et al., 2021) – where parts of the
input influential for prediction are extracted.

Some works leveraged interpretability methods
to improve model performance (Han and Tsvetkov,
2021; Hase and Bansal, 2022). Wei et al. (2022)
teach models to do commonsense tasks by pro-
viding step-by-step instructions. For classification
tasks, Madaan et al. (2021) use free-form explana-
tion generation and Hayati et al. (2022); Zaidan and
Eisner (2008); Huang et al. (2021) use human ra-
tionales as model feedback. These methods require
expensive annotation to elicit good explanations.
We instead aim to supervise rationales using task
lexicons, and show it yields improved explanations.

8 Conclusion

We propose LEXPLAIN, a method to improve
model explanations by directly supervising them
using task lexicons as the source of supervision.
We show that our method is indeed able to pro-
mote dictionary entries as explanations, resulting
in explanations that align well with the model’s pre-
dicted label without sacrificing accuracy, and that
the explanations are more plausible according to
human evaluation. We also show that LEXPLAIN

is able to generalize well to features that are not
present in the supervising lexicon. Finally, we show
that by promoting task related lexicon entries, we
are able to demote spurious correlations with AAE

annotations on toxicity datasets.

211



Limitations and Future Work

One limitation of LEXPLAIN stems from the re-
liance on task lexicons. First, a reliable task lexicon
is required in order to adequately supervise expla-
nations, and this might be non-trivial to create for
an arbitrary task. We do show, however, that LEX-
PLAIN is able to generalize beyond lexicon entries,
which suggests that even partial lexicon for the task
at hand can provide a significant improvement in
explanations. Second, the chosen lexicon might
include certain biases itself, that might in turn be
incorporated in the model and its explanations.

Another limitation, shared with the majority of
existing interpretability methods, is that the faith-
fulness of interpretations is not guaranteed. In other
words, there is no theoretical guarantee that the re-
trieved explanations reflect the actual mechanisms
of the model in making predictions. We partially
mitigate this by choosing SELFEXPLAIN as our
base model. It is more faithful by design: it is
trained to enforce the alignment between model
outputs in the task classification and the LIL.

Finally, LEXPLAIN requires fine-tuning the
model for the task and incorporating the LIL on top
of a pretrained language model, and we established
its success only with one model (XLNet). Future
work should explore adaptations of other language
models, and extensions to language generation, to
facilitate model interpretability in new settings.

Ethics Statement

Our work aims at developing interpretable models
that do not overfit to artifacts in the training data.
However, there is no guarantee that we fully mit-
igate model reliance on all spurious correlations.
Further, by incorporating new lexicons that might
contain annotation biases (Sap et al., 2022), there is
an additional risk to incorporate and amplify social
biases. We mitigate these risks through manual
analyses and fairness evaluations presented in §6.

We conduct fairness evaluations on the com-
monly used toxicity datasets (Davidson et al., 2017;
Founta et al., 2018) annotated for AAE (Blodgett
et al., 2016). These AAE annotations for the tox-
icity datasets are a useful but imperfect proxy for
information about race. For example, these datasets
are not annotated by in-group members and anno-
tators had insufficient social context (Sap et al.,
2019). Future work should focus on a more careful
dataset curation that would enable a more reliable
fairness evaluation.
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A Experimental Details

Training We use SELFEXPLAIN as our baseline.
When training both the baseline and LEXPLAIN,
we keep the same hyperparameters and weights
from the pretraining of the XLNet encoder and
finetune the model for 5 epochs. In LEXPLAIN

we do not use the GIL, since initial experiments
showed no difference between adding and remov-
ing the GIL.

For LEXPLAIN, we perform hyperparameter
tuning for α1 ∈ {0.01, 0.05, 0.1} and α2 ∈
{0.8, 1.5.2.0} on the development set. We report
results on the best configuration on the test sets.

Toxicity Dataset DWMW17 is a Twitter dataset
with 25,000 tweets that have been annotated for
hate speech, offensive, or none alongside dialect la-
bels: African American English (AAE) and White
American English. We merge the hatespeech and
offensive examples and regard all of them as toxic.
FDCL18 is also a Twitter dataset with 100,000
tweets annotated for hate, abuse, spam, and none.
We select all instances, except for the ones labeled
as spam. Again, we merge the hate and abuse exam-
ples and regard all of them as toxic. For all datasets
we use the provided splits to train/dev./test.2

Task Lexicons Our sentiment lexicon of 2,470
words is derived by combining two existing lex-
icons: Hutto and Gilbert (2014) and Hu and Liu
(2004). For toxicity detection, we use the lexicon
from Wiegand et al. (2018), from which we extract
350 toxic words that appear in our datasets. We
were only able to obtain a toxic lexicon. Our at-
tempts to create a lexicon of non-toxic words by
extracting the most salient words present in the
non-toxic instances did not yield improved expla-
nations. We opt to only supervise toxic instances
in the training data.

B Human Evaluation

We ask annotators to select preferred explanations
between the baseline and LEXPLAIN. They are
presented with the model input, the original label
and the predicted label and also All annotators are
familiar with the tasks and are computer science
graduate students.

Instructions given to human evaluators The
task here is sentiment analysis. The labels are 0

2Train/dev./test: FDCL18: 54120/10145/11825,
DWMW17: 17849/3001/3501, SST2: 66976/872/1821.

for negative instances and 1 for positive instances.
Please enter X or Y in the last column for the al-
gorithm that provides the best explanation for the
predicted label. If the explanations are the same for
both algorithms, please enter XY. If the explana-
tions for both algorithms are not satisfactory, please
enter NXY. If explanations are not same, but both
are satisfactory, please enter SXY.
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Figure 2: Number of lexicon entries in each rank across
all sentences in each test set in the order of [FDCL18,
DWMW17 and SST2].
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