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Abstract

For Pretrained Language Models (PLMs), their
susceptibility to noise has recently been linked
to subword segmentation. However, it is un-
clear which aspects of segmentation affect their
understanding. This study assesses the robust-
ness of PLMs against various disrupted segmen-
tation caused by noise. An evaluation frame-
work for subword segmentation, named Con-
trastive Lexical Semantic (CoLeS) probe, is
proposed. It provides a systematic categoriza-
tion of segmentation corruption under noise and
evaluation protocols by generating contrastive
datasets with canonical-noisy word pairs. Ex-
perimental results indicate that PLMs are un-
able to accurately compute word meanings if
the noise introduces completely different sub-
words, small subword fragments, or a large
number of additional subwords, particularly
when they are inserted within other subwords.

1 Introduction

The capability to understand the meaning of noisy
words through character arrangements is a crucial
aspect of human cognitive abilities (Rawlinson,
2007). This capability is highly sought after in
practical applications such as machine translation
and sentiment analysis (Belinkov and Bisk, 2018).
However, despite their success in in-distribution
test data with standardized word forms, Pretrained
Language Models (PLMs), which serve as the back-
bone models, tend to perform poorly on rare or
noisy words (Kumar et al., 2020; Baron, 2015).
These noisy words may be caused by accidental ty-
pos (Belinkov and Bisk, 2018) or spelling variants
on social media (Ritter et al., 2010).

Prior studies show that most subword-based
PLMs perform poorly under noise largely due to
subword segmentation (Zhuang and Zuccon, 2022),
while character-based PLMs show more robustness
(El Boukkouri et al., 2020). Examining the impact
of subword segmentation factors on PLMs is also
crucial for defending against the adversarial attacks
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that leverage the sensitivity of subword segmenta-
tion to noise (Liu et al., 2022). Howeyver, rare work
has investigated how the subword segmentation
from noisy words affects the word meaning.

To help address this question, we design and de-
velop a contrastive framework (CoLes) to assess
the robustness of PLMs in the face of various forms
of segmentation corruption. As subword segmen-
tation can be influenced by noise in various ways,
such as adding extra subwords or losing original
subwords, we systematically categorize the ways
into four main categories and two additional sub-
categories based on three subword sets, as exem-
plified in Table 1. Two types of noise models are
proposed to effectively generate all the types of
corruption except missing corruption, and a con-
trastive dataset consisting of noisy and standard
word pairs is created. This framework enables us
to evaluate the significance of preserved subwords
and the impact of subwords added by noise.

The experimental results provide the following
insights: 1) complete corruption: the PLMs strug-
gle to infer meaning accurately if no subwords from
the original segmentation are retained. The worst
performance is observed when the meaning of orig-
inal words is stored in the embedding; 2) partial
corruption: preserving larger subword chunks can
aid the understanding of PLMs, whereas retaining
smaller subword pieces tend to be ineffective; and
3) additive corruption: even with all original sub-
words, however, the addition of subwords can harm
the meaning of words, particularly when they are
placed within other subwords. The more additive
subwords, the greater the deviation in word seman-
tics. All the results are consistent on the three
PLMs with different vocabularies and segmenta-
tion algorithms.

2 Contrastive Lexical-Semantic Probe

The CoLeS probe framework has segmentation
corruption and noise models that produce noisy
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Corruption Types ‘ Examples

| Segmentation Sets

| | Missing | Overlap | Additive
Complete (intact) | tasty — taaasty tasty ta, aa, sty
Complete stun — stunn s, tun stu, nn
Partial effectiveness — efeectiveness effect iveness efe, ect
Additive (infix) insubstantial — insuubstantial ins, ub, stan, tial u
Additive (affix) hilarious — hilariousss hil, ario, us S, S
Missing insubstantial — insstantial ub ins, stan, tial

Table 1: Examples of different types of segmentation corruption. Complete/partial: completely/partially disrupting
the original segmentation; additive: creating unnecessary subwords; missing: ignoring a token. A distinct form of
complete corruption, referred to as “intact corruption”, arises when a clean word is tokenized into a single subword
that does not appear in the segmentation of its noisy counterpart. In the given example of intact corruption, the term

“tasty” serves as an intact token.

words leading to different types of segmentation
corruption. These noisy words, along with their
corresponding canonical forms, are organized in a
contrastive lexical dataset Deoptrastive |- An evalua-
tion protocol is designed to examine the effect of
various corruption types.

2.1 Segmentation Corruption under Noise

A PLM consists of a tokenizer Seg(-), which seg-
ments a given word w into a sequence of subwords,
i.e., Seg(w) = (w1, ..., Wk ), and a PLM encoder
Enc(-), which takes Seg(w) and outputs a word
representation. Formally, the segmentation of a
canonical word Seg(w) can be represented as a set
S, while the segmentation of a noisy word Seg(w)
can be represented as set S = {1y, ..., W }. We
can then utilize set operations to define the over-
lap set (consisting of retained subwords), the miss-
ing set, and the additive set (comprising additional
tokens that are not present in S) as O = SN'S,
M=S—0Qand A =S — O, respectively.

The set data structure cannot count duplicated to-
kens, which frequently occur in additive corruption
scenarios, such as the additive (affix) corruption
example presented in Table 1. Hence, we utilize
a multiset implementation of S and S since such
a data structure also stores the frequencies of ele-
ments, helping us assess the impact of duplicated
tokens. Since the multiset implementation only in-
cludes unique elements without considering their
order of appearance, we further differentiate the
two types of additive corruption by iteratively com-
paring elements from two queue implementations
of Seg(w) and Seg(w).

In this study, we distinguish a unique category of

Sentiment lexicon used is from https://www.

cs.uic.edu/~1liub/FBS/sentiment-analysis.
html#lexicon.

corruption referred to as “intact corruption” from
complete corruption, as the canonical words in
this category (with whole-word vectors) remain
unchanged. In total, there are six different types of
corruption, as outlined in Table 1.

Identification of corruption types. During the
evaluation, we need to filter each word pair ac-
cording to its corruption type. First, we segment
each word pair in Deoperasiive by @ model-specific
tokenizer Seg(-) into subwords (S,S). We then
identify the corruption type according to the fol-
lowing conditions: 1) Complete corruption: S and
S are disjoint, i.e., @ = (). If the length of the miss-
ing set M is 1, this noise leads to intact corruption;
2) Partial corruption: the corruption only occurs to
one of the subwords (i.e., the one in M), and the
other subwords (i.e., those in Q) are not affected.
The prerequisite is that there exist more than one
subwords in the original segmentation set S. We
can find such word pairs satisfy M, O, A # (); 3)
The conditions for additive corruption and missing
corruption are S € S (or M = () and Ses (or
A = (), respectively. 2

2.2 Creation of Contrastive Dataset

Most prior noisy datasets added noise to sentences,
not individual words (Belinkov and Bisk, 2018; Ku-
mar et al., 2020; Warstadt et al., 2019; Hagiwara
and Mita, 2020). Besides, as contrastive datasets
containing both the original and noisy form of a
word are not readily available, we create our own
lexical dataset which includes both forms. Exam-
ples of the generated dataset can be found in Table
2.

ZSee https://github.com/xinzhel/word_
corruption/blob/main/word_corruption.py
for concrete implementation.
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Canonical Words | Keyboard | Swap Letter-reduplication

bad NA NA badddddddd, baaaadddd, bbbbaaaaddddd

crazy craxy carzy Crazzyyyyyyyyy, Crazzzzzy

amazing amazijg amzaing | amazing, amazinnng, amazinggg, amaaazzziiingggg

Table 2: Examples of contrastive datasets with canonical-noisy word pairs. Three types of noise models are applied:
Swap-typos, Keyboard typos and letter reduplication. NA: we discard generated noisy words since typos on these
words generate noisy words that are even unrecognizable to humans.

Noise models. Two sources of noise models are
used to generate the lexical dataset. Findings given
in Appendix E indicate that both types of noise
models have comparable effects on model perfor-
mance.

1) Naturally and frequently occurring typos.
Users often type neighboring keys due to mobile
penetration across the globe and fat finger problem
(Kumar et al., 2020), while typing quickly may
result in swapping two letters Belinkov and Bisk
(2018). We refer to them as Keyboard and Swap
typos, respectively. Our implementation of these
typos is based on Wang et al. (2021). Specifically,
for Keyboard, we only use letters in the English
alphabet within one keyboard distance as the sub-
stitute symbols. Further, we avoid unrecognizable
word forms (e.g., “bad—bqd” or “top — tpp”’) by
selecting words with more than four characters.

According to the psycholinguistic study (Davis,
2003), to make noisy words recognizable for hu-
mans, we only apply noise to the middle characters
and keep characters at the beginning and the end.
Besides such a constraint, Swap typo also requires
at least two distinct characters in the middle for
swapping. However, words like “aggressive” can
still be transformed into the same word by swap-
ping “ss”, so we transform them until we get a
distinct word. Finally, we set a one-edit constraint
for typos.

2) Non-standard orthography. We gather
words with letter reduplication from 1.6 million
tweets (Go et al., 2009). To create the canoni-
cal and noisy word pairs, we match specific noisy
word forms (e.g. words with repeated letters for
emphasis) to their corresponding canonical forms
(a sequence of definite characters). We use sim-
ple regular expression patterns to search for words
with repeated letters 3. Examples in Table 3 show
how effective these types of noise are in triggering
different types of segmentation corruption.

3For example, pattern “\bb+a+d+" for “bad” matches “bad-
ddddddd”.

Data-generating process. We create a con-
trastive dataset, Deontrastive, DY applying the noise
models to the lexical dataset D¢anonical, Which con-
tains words in their canonical form. The noise
models are applied to each word in D¢aponicar to
create two misspelled words. Additionally, a ran-
dom number of noisy words is extracted from the
collection of 1.6 million tweets. As for the lexi-
cal dataset, Dcanonical, We choose adjectives from
a sentiment lexicon that, by definition, provides
positive or negative sentiment labels for use with
downstream classifiers.

Evaluation. To assess the extent to which the
meanings of noisy words diverge from the standard
word forms, we calculate the cosine similarity be-
tween Enc(S) and Enc(S). For words that consist
of multiple subwords, we aggregate their vectors
into a single representation by averaging the token
embeddings obtained from the PLMs. It is impor-
tant to note that the output embedding spaces of
PLMs exhibit varying levels of anisotropy (Etha-
yarajh, 2019; Yan et al., 2021; Gao et al., 2019).
Thus, the similarity scores cannot be directly com-
pared across different models. It is necessary to
set a baseline by computing the similarity between
Enc(S) and a random embedding (we use the em-
bedding of token “the”, i.e., Enc(the)).

Additionally, we fine-tune downstream classi-
fiers denoted as y = Cls(z), where y represents
an arbitrary semantic dimension and z corresponds
to the encoded representation obtained from the
PLMs Enc(Seg(-)). We focus on sentiment clas-
sification as individuals frequently use sentiment
words creatively on social media to express their
emotions. To conduct our experiments, the senti-
ment of each word and its noisy variations is de-
rived from the sentiment lexicon.

To gauge the semantic deviation caused by noise,
we measure the accuracy of the noisy counterparts
of words that are accurately classified in their orig-
inal form.
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Tokenizers Intact Complete Partial

BERT 0.36 0.14 0.49

RoBERTa 0.46 0.12 0.42

ALBERT 0.38 0.13 0.49
(a) Typos.

Intact Complete Partial Additive
affix  infix
0.70 0.02 0.06 0.22 0
0.61 0 0.06 030 0.01
0.61 0.02 0.06 029 0.02

(b) Letter Reduplication.

Table 3: Frequency of each segmentation corruption.

3 Experimental Results

Experiments are performed on three widely
used PLMs: BERTgasg, RoBERTagssg and
ALBERTgAsg (See Appendix A for details).
BERT (Devlin et al., 2019) accepts inputs from
a Wordpiece tokenizer (Schuster and Nakajima,
2012), while RoOBERTa (Liu et al., 2019), another
popular frequent-based segmentation scheme, uses
BPE (Sennrich et al., 2016). For comparison, we
include ALBERT (Lan et al., 2020) with a proba-
bilistic tokenizer called Sentencepiece (Kudo and
Richardson, 2018).

Subwords retention is important for maintain-
ing the correct semantics. Table 4 shows the
severity of semantic deviation for each type of cor-
ruption. Generally, the more subwords the segmen-
tation retains, the better the semantics are main-
tained (additive corruption > partial corruption >
complete and intact corruption). Under additive
corruption, the PLMs can always maintain more
semantics from noisy words than random words
(the baseline), while only RoBERTa has similarity
score higher than the baseline under partial cor-
ruption. All the PLMs cannot infer word meaning
from complete corruption.

What subwords, if retained, would enhance the
comprehension of PLMs? We find that partial cor-
ruption can preserve word meaning if it retains a
significant portion of the words, such as “upset”
for “upsetting” or “phenomena” for “phenomenal”
(See Appendix B). This is backed up by the find-
ing that PLMs have the capability of learning mor-
phological information, where stems contain more
semantic meaning in a word compared to smaller
components such as inflectional morphemes (Hof-
mann et al., 2021).

Are words more impacted by noise under com-
plete corruption if their meaning is stored in
the embeddings? According to Hofmann et al.
(2021), if a word is represented as a single vector,
PLMs can access its meaning directly from the em-

bedding (referred to as the “storage route”) instead
of deducing it from the combination of subwords
(known as the “computation route”). We presume
that PLMs struggle to maintain the original mean-
ing of these words when exposed to noise. We
classify this type of corruption as “intact corrup-
tion”, which is a particular variation to complete
corruption. To validate our assumption, we evalu-
ate the performance of PLMs on words under intact
corruption. Results show that words with intact
corruption consistently perform worse than those
with complete corruption, despite both having com-
pletely distinct subwords. Although intact corrup-
tion consistently yields the lowest similarity score,
the PLMs may still be able to better infer some
semantic dimensions, such as sentiment, under in-
tact corruption compared to complete corruption.
(Appendix C).

Presence of additive subwords can damage the
meaning of words, particularly when they are
inserted in the middle of other subwords. In
some cases, words under additive corruption (keep-
ing all subwords) can perform worse than those
under partial corruption (keeping only some sub-
words), as seen in the letter reduplication experi-
ment (Appendix C). The finding suggests that the
retention of subwords is not the only factor impact-
ing the performance of PLMs. To uncover other
factors affecting the word meaning, we analyzed 10
worst and best instances for each corruption type
based on similarity scores (Appendix B). All the
poorly performing cases have incorrect predictions,
further highlighting the damaging impact on se-
mantic meaning. The results show that the number
of additive tokens (i.e., the cardinality of A) is a dis-
tinct feature between good and bad instances. All
the good cases have only 1 additive token, while
the bad cases have at least 2 additive tokens (3.8 for
partial corruption and 8.7 for additive corruption
on average).

Thus, our hypothesis is that as the number of
additive subwords increases, PLMs will have dif-
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Models Intact Complete Partial Additive Baseline Intact Complete Partial Additive

BERT 0.29 0.41 0.58 0.69 0.69 0.56 0.65 0.8 0.91

RoBERTa  0.54 0.66 0.76 0.85 0.72 0.66 0.60 0.75 0.95

ALBERT 0.41 0.47 0.62 0.74 0.68 0.61 0.63 0.76 0.93
(a) Similarity. (b) Accuracy.

Table 4: Performance of PLMs under various types of corruption. Similarity scores of pretrained representations and
accuracy of downstream classifiers are evaluated. The best result per row is highlighted in gray, and the second-best
is in light gray. As a baseline, we compare the similarity scores between canonical and random words (“the” used).
The unaffected accuracy is 1 since the canonical forms selected for evaluation are always correctly predicted.

Models Infix  Suffix Infix  Suffix
BERT 0.59 0.70 0.74 0.91
RoBERTa  0.85 0.95 0.95 1
ALBERT  0.66 0.74 0.82 0.94

(a) Similarity. (b) Accuracy.

Table 5: Comparison of two types of additive corruption.

ficulty determining the correct meaning of words.
We test the hypothesis by examining the perfor-
mance of PLMs on both additive and intact corrup-
tion, where the missing and overlap sets remain
constant. For additive corruption, we limit our ex-
periments to only one unique additive subword and
vary its frequency. We find 23 words with at least
3 noisy versions, each creating an additive set with
the same element but different multiplicities. Take
“amazing” as an example: one of its noisy instances
(“amazingggggge”) has the multiplicity of 3 ac-
cording to its additive set A = {“gg”, “gg”, “gg”}
while “gg” only appears twice in another instance
(“‘amazinggggg”). We sort every collection of noisy
words in either of two ways, depending on the simi-
larity scores or the multiplicities of additive tokens.
In 17 out of 23 collections, these two sorting crite-
ria produce identical results. This discovery also
holds true for intact corruption, where the subwords
within an additive set are typically diverse. Figure
1 illustrates a strong negative correlation between
the number of additive tokens and the average simi-
larity of noisy words for all the three models under
intact corruption, where the sizes of missing sets
and overlap sets are fixed to 1 and 0.

Besides, as shown in Table 5, additive subwords
placed within subwords cause more harm than
those that act as suffixes.

4 Conclusion

We proposed the CoLeS framework which can eval-
uate how corrupt segmentation under noise affects
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Figure 1: Correlation between the number of additive
subwords and the cosine similarity of noisy words with
their canonical forms. The range of quantity of additive
subwords is subject to change depending on the tok-
enizer used.

PLMs’ understanding. The experimental results
show that three challenges can impair the PLMs’
understanding of noisy words: insertion of additive
subwords (especially within existing subwords),
loss of original subwords, and incapacity of com-
puting the word meanings through the aggregation
of smaller subword units.

Reproducibility. Data and source code for noisy
data generation, corruption types identification and
PLMs’ performance evaluation are released on
Github *.

Limitations

The omission of missing corruption from the evalu-
ation process is justified due to its infrequent occur-
rence in real-world scenarios (refer to Appendix D
for elaboration). Nevertheless, further investigation
into rare instances of missing corruption may be
warranted for research purposes. Our evaluation
of language models was limited to auto-encoders
based on the BERT architecture. Future studies
are anticipated to expand the scope of PLMs under

*https://github.com/xinzhel /word_
corruption
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A Fine-tuning Pretrained Language Models

All the PLMs use BERT-based architecture, i.e., the encoding part of the transformer (Vaswani et al., 2017).
BERTgAsg (110M parameters) and ROBERTagasg (125M parameters) are pretrained on BookCorpus
and Wikipedia as masked language models. Only the pretraining of ALBERTgAgg (11M parameters)
includes extra news and web data (Wolf et al., 2020). They are then fine-tuned for sentiment classification
on the SST-2 dataset. All the models are publicly available on the Huggingface Hub website https:
//huggingface.co/textattack. Some configurations are shown as below. The BERT and
RoBERTa models are fine-tuned using a learning rate of 2e~° with no scheduling employed. The batch
size is set to 32, and the training process spans 3 epochs, maintaining a gradient norm of 1. ALBERT is
fined-tuned with a learning rate of 3¢, a batch size of 32, and a total of 5 training epochs.

B Good and Bad Cases

Figure 2 shows the good and bad cases of partial and additive corruption under letter reduplication.

Partial Additive

clean_word noisy_word overlap_set missing_set additive_set clean_word noisy_word overlap_set additive_set
Bad enrich enricch {'en: 1} {'rich": 1} {'ric: 1,'ch": 1} good ggoodd {'good" 1} {g"1,'d:1}

nifty niffty {'ni": 1} {'ft': 1,'y": 1} {'ff: 1, "ty 1} decent decenttttt {'decent": 1} {'tt": 2}

genial geniaaaaaaaal {'gen:1}  {tal:1} {lia" 1,'aa" 3, 'al': 1} warmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm {'mm": 19,

redeem redeeem {'red": 1} {'eem": 1} {'ee":1,'em": 1} warm mmmmmmmmm {warm':1} 'm" 1}

relish rellish {re': 1} {lish': 1} {llis': 1, 'h': 1} hot hottttttttttttttttttttttttttttttttttttt {'hot": 1}  {'tt": 18}

loot loooooooooooottttttt  {'lo': 1} {'ot': 1} {'00":5, 'ott": 1, 'tt': 2, 't': 1} super superrrrrr {'super: 1} {'rr':2,'r: 1}

loot loooooooooooo0t {'lo": 1} {'ot': 1} {'00": 5, 'oot": 1} super superrrrrrrr {'super': 1} {'rr':3,'r": 1}

loot looooooooooot {'lo": 1} {'ot'1 1} {'00": 4, 'oot": 1} super SUPeTTTTITTrrTT {'super': 1} {'rr':5}

chic chicceeee {'chi": 1} {1} {'cc': 3} hot hottttettttt {'hot:1}  {tt4,'t" 1}

stun sttun {'n": 1} {'stu': 1} {'st": 1, 'tu": 1} {'ee': 16, 'e":

free fr {free:1} 1}
free fr {free':1} {'ee" 16}

GOOd clean_word noisy_word  overlap_set missing_set additive_set clean_word noisy_word overlap_set additive_set
_— uneventful  uneventfull  {'uneven": 1, 'tf: 1} {'ul: 1} {'ull": 1} abysmal abysmall {'ab": 1,'ys" 1, 'mal= 1} {1}

snobish snobbish {'s'* 1, 'nob": 1} {'ish": 1} {'bis": 1, 'h': 1} ungrateful ungratefull {'un": 1, 'grate': 1, 'ful': 1} {I': 1}

disown dissown {'di": 1, 'wn": 1} {'so": 1} {'sso': 1} vengeful vengefull {'ve':1,'nge": 1, 'ful 1} {I" 1}

phenomenal phenomenall {'phenomena': 1} {11} {'II': 1} sceptical scepticall {'sc": 1, 'ept" 1, "ical: 1} {1}

stupendous stupendouss {'stu': 1, 'pen': 1, 'dou': 1} {'s": 1} {'ss": 1} gloomy gloomyy {'gloom": 1, 'y": 1} {y" 1}

sucky suckky {'suck': 1} {'y:1} {'ky": 1} awkwardness awkwardnesss {'awkward": 1, 'ness": 1}  {'s": 1}

crappy crapppy {'crap: 1} {'py": 1} {'ppy": 1} shameful shamefull {'shame': 1, 'ful': 1} {1}

upseting upsetting {'upset': 1} {ing": 1} {'ting": 1} awesomeness awesomenesss {'awesome': 1, 'ness": 1}  {'s": 1}

dismal dismall {'di": 1, 'sma": 1} {11} {1} caustic causticc {'cat 1, 'ust": 1, "ic": 1} {'c" 1}

nicer niceer {'nice": 1} {r: 1} {'er": 1} craziness crazinesss {'cr':1,'azi": 1, 'ness": 1}  {'s": 1}

Figure 2: Good and bad cases of partial and additive corruption under letter reduplication.

C PLM Robustness to Segmentation Corruption under Different Types of Noise

Table 6 displays the robustness of PLMs to segmentation corruption under various forms of noise. The
results are largely consistent with those seen in Table 4. However, we notice that for letter reduplication,
PLMs may perform worse with additive corruption than with partial corruption. Additionally, the accuracy
of intact corruption can be better than that of complete corruption, despite they consistently having the
lowest similarity score.

D Noisy words for Missing Corruption

As per the findings of Heath et al. (Heath, 2018), English word recognition by humans is predominantly
influenced by consonants. Consequently, our investigation aims to identify abbreviations that disregard
vowels and certain consonants when examining tweets. To be precise, an abbreviation is considered
acceptable if its first letter and arbitrary consonants appear in a sequence that adheres to canonical words.
For instance, the pattern of regular expression for term “sorry” can be “\bsr?r?y?” in such cases. However,
we find that even humans have difficulties in recognizing all these abbreviations. While the inclusion
of all consonants may enhance human recognition, we contend that assessing this form of corruption is
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Models Intact Complete Partial Additive Intact Complete Partial Additive

BERT 0.24 0.34 0.62 0.69 0.54 0.47 0.92 0.91

RoBERTa  0.54 0.73 0.8 0.85 0.54 0.73 0.87 0.95

ALBERT 0.42 0.53 0.77 0.74 0.63 0.79 0.91 0.93
(a) Similarity. (b) Accuracy.

Letter Reduplication

Models Intact Complete Partial Additive Intact Complete Partial Additive

BERT 0.34 0.41 0.58 / 0.59 0.66 0.79 /
RoBERTa  0.55 0.65 0.75 / 0.6 0.57 0.74 /
ALBERT 0.4 0.47 0.61 / 0.59 0.61 0.75 /
(c) Similarity. (d) Accuracy.
Typos

Table 6: Performance of PLMs under different types of corruption. Similarity scores of pretrained representations
and accuracy of downstream classifiers are measured. The best result per row is highlighted in gray, the second-best
is in light gray. There is no result for additive corruption under typos because intra-word noise (modifying characters
except for the first and last characters) (i.e., typos) never results in additive corruption. Baseline similarity scores
are calculated between canonical words and the word “the”.

superfluous. This assertion stems from our demonstration in Table 7 that such aggressive search criteria
are improbable to produce missing corruption.

Models Intra

BERT 0.50%
RoBERTa 0.52%
ALBERT 0.43%

Table 7: Proportion of abbreviations causing missing corruption.

Provided below is a comprehensive inventory of the canonical words and their corresponding noisy
counterparts responsible for inducing missing corruption. It is worth noting that these noisy words are
completely imperceptible to human cognition.

* 24 word pairs under ROBERTa: enthral-enth, upgradable-upgr, abysmal-abys, chintzy-chzy, emphatic-
emph, enslave-ensl, extraneous-extr, implacable-impl, implausible-impl, implicate-impl, imprudent-
impr, inflame-infl, instable-inst, intransigent-intr, irksomeness-irks, obscenity-obsc, obtrusive-obtr,
ungrateful-ungr, unscrupulous-unsc, unsteadily-unst, unsteadiness-unst, unsteady-unst, unsteady-
unsty, untruthful-untr;

* 23 word pairs under BERT: enthral-enth, exemplar-expl, exemplar-empl, idyllic-idyl, stylish-styl,
abysmal-abys, brutish-brsh, crummy-crmy, enslave-ensl, hysteric-hyst, impenitent-impt, incognizant-
inct, inconstant-inct, inexplainable-inpl, infamy-inmy, inflame-infl, irksomeness-irks, obscenity-obsc,
obtrusive-obtr, unscrupulous-unsc, unspeakable-unsp, untrue-untr, untruthful-untr;

* 2 word pairs under ALBERT: enthral-enth, exemplar-exmp.

E Performance of PLMs under Different Noise

We compare the effect of two noise models “Naturally and frequently occurring typos” and “Non-standard
orthography” with both the lexicon dataset and two sentential datasets. For a fair comparison, we constrain
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the length of letter-reduplication to 1. The accuracy of the noisy data and their standard deviation
are reported in Table 8 and Table 9, respectively. It can be seen that the types of noise models in our
experiments have no much distinction on model performance, except for the Swap.

Data Noise Type BERT RoBERTa ALBERT
Accuracy
Clean 0.93 0.85 0.92
Keyboard 0.66 0.66 0.67
SST-2 Swap 0.71 0.72 0.72
Letter-repetition 0.63 0.7 0.65
Clean 0.95 0.8 0.92
Keyboard 0.88 0.62 0.86
AG-News Swap 0.89 0.62 0.86
Letter-repetition 0.88 0.61 0.86
Similarity
Keyboard 0.39 1 0.47
Setiment Lexicon Swap 0.45 1 0.5
Letter-repetition 0.36 1 0.49
Keyboard 0.5 0.52 0.61
Swap 0.61 0.56 0.66
SST-2 Letter-repetition 0.46 0.55 0.58
Keyboard 0.85 0.47 0.72
Swap 0.87 0.5 0.75
AG-News Letter-repetition  0.85 0.48 0.74

Table 8: Performance of PLMs under Different Noise

Data BERT RoBERTa ALBERT
Similarity

Lexicon 0.037 0 0.016
SST-2 0.061 0.016 0.035
AG-News 0.009 0.013 0.013
Accuracy

SST-2 0.035 0.022 0.033
AG-News 0.004 0.004 0.004

Table 9: Standard deviations of PLMs’ performance under different types of noise.
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