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Introduction

SIGTYP 2023 is the fifth edition of the workshop for typology-related research and its integration into
multilingual Natural Language Processing (NLP). The workshop is co-located with the 17th Conference
of the European Chapter of the Association for Computational Linguistics (EACL 2023), which takes
place in Dubrovnik, Croatia. This year our workshop features a shared task on cognate and derivative
detection for low-resourced languages.
Encouraged by the 2019 – 2022 workshops, the aim of the fifth edition of SIGTYP workshop is to act as
a platform and a forum for the exchange of information between typology-related research, multilingual
NLP, and other research areas that can lead to the development of truly multilingual NLP methods. The
workshop is specifically aimed at raising awareness of linguistic typology and its potential in supporting
and widening the global reach of multilingual NLP, as well as at introducing computational approaches
to linguistic typology. It fosters research and discussion on open problems, not only within the active
community working on cross- and multilingual NLP but also inviting input from leading researchers in
linguistic typology.
The workshop provides focused discussions on a range of topics, including the following:
1. Integration of typological features in language transfer and joint multilingual learning. In addition to
established techniques such as “selective sharing”, are there alternative ways to encode heterogeneous
external knowledge in machine learning algorithms?
2. Development of unified taxonomy and resources.Building universal databases and models to facilitate
understanding and processing of diverse languages.
3. Automatic inference of typological features. The pros and cons of existing techniques (e.g. heuri-
stics derived from morphosyntactic annotation, propagation from features of other languages, supervised
Bayesian and neural models) and discussion on emerging ones.
4. Typology and interpretability. The use of typological knowledge for interpretation of hidden repre-
sentations of multilingual neural models, multilingual data generation and selection, and typological
annotation of texts.
5. Improvement and completion of typological databases. Combining linguistic knowledge and automa-
tic data-driven methods towards the joint goal of improving the knowledge on cross-linguistic variation
and universals.
6. Linguistic diversity and universals. Challenges of cross-lingual annotation. Which linguistic pheno-
mena or categories should be considered (near-)universal? How should they be annotated?
7. Bringing technology to document and revitalize endangered languages. Improving model perfor-
mance and documentation of under-resourced and endangered languages using typological databases,
multilingual models and data from high-resource languages.
The final program of SIGTYP contains 2 keynote talks, 3 shared task papers, 12 archival papers, and 5
extended abstracts. This workshop would not have been possible without the contribution of its program
committee, to whom we would like to express our gratitude. We should also thank Ella Rabinovich and
Natalia Levshina for kindly accepting our invitation as invited speakers. The workshop is sponsored
by Google. Please find more details on the SIGTYP 2023 website: https://sigtyp.github.io/ws2023-
sigtyp.html
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18:05 - 18:10 Best Paper Awards, Closing

xi



Proceedings of the 5th Workshop on Research in Computational Linguistic Typology and Multilingual NLP (SIGTYP 2023), pages 1–11
May 6, 2023 ©2023 Association for Computational Linguistics

You Can Have Your Data and Balance It Too:
Towards Balanced and Efficient Multilingual Models

Tomasz Limisiewicz♠∗† Dan Malkin♢∗ Gabriel Stanovsky♢
♢ School of Computer Science, The Hebrew University of Jerusalem
♠ Faculty of Mathematics and Physics, Charles University in Prague

{dan.malkinhueb,gabriel.stanovsky}@mail.huji.ac.il
limisiewicz@ufal.mff.cuni.cz

Abstract

Multilingual models have been widely used
for cross-lingual transfer to low-resource
languages. However, the performance on
these languages is hindered by their under-
representation in the pretraining data. To al-
leviate this problem, we propose a novel mul-
tilingual training technique based on teacher-
student knowledge distillation. In this set-
ting, we utilize monolingual teacher models
optimized for their language. We use those
teachers along with balanced (sub-sampled)
data to distill the teachers’ knowledge into a
single multilingual student. Our method out-
performs standard training methods in low-
resource languages and retains performance on
high-resource languages. 1

1 Introduction

While multilingual language models have been
gaining popularity, largely thanks to their cross-
lingual transfer ability, their performance has been
shown to be skewed toward languages with abun-
dant data (Joshi et al., 2020; Wu and Dredze, 2020).
Introducing language models that better incorpo-
rate diverse and low-resource languages can in-
crease accessibility to NLP technologies in these
languages and help improve cross-lingual trans-
fer (Malkin et al., 2022).

In this work, we address two research questions.
First, we ask if we can we improve performance
on low-resource languages without hurting it on
high-resource ones? Second, does a better trade-off
between high- and low-resource languages improve
cross-lingual transfer?

To answer these two questions, we distill mul-
tiple monolingual teacher models optimized for
various languages into a single multilingual student

∗ Equal contribution. The order was decided by a coin
toss.

† Work done while visiting the Hebrew University.
1We will make all of our code and resources publicly avail-

able.

Figure 1: We train a student for multilingual language
modeling using a collection of teachers optimized for
each of the target languages and multilingual data sub-
sampled to the data size of the lowest resource language.
Our approach achieves a better trade-off in performance
between high- and low-resource languages.

model, using a small balanced multilingual dataset
(Figure 1). Our experiments show that this al-
lows taking advantage of data in high-resource lan-
guages while avoiding under-fitting low-resource
languages.

2 Background: Soft Vs. Hard Labels

We compare two alternatives for the masked LM
loss functions: the original loss used for masked
language modeling, i.e., hard labeling and soft la-
beling as defined in Sanh et al. (2019):
(1) hard labeling, which takes into account a sin-
gle gold masked token in a sentence, ygold, and
evaluates the model’s prediction for this word, i.e.,
standard cross-entropy loss:

LHARD = − log(P (ygold)) (1)

1



(2) soft labeling, which allows for multiple valid
candidates using the output distribution of an oracle
(or a strong LM) M̂l as a soft label:

LSOFT = −
∑

y∈V
PM̂l

(y) log
P (y)

PM̂l
(y)

(2)

Where y denotes tokens in the model’s vocabu-
lary V . Please note that LSOFT is also equivalent
to a KL-divergence between oracle and predicted
distributions.

In the following sections, we will explain how
soft labeling allows us to distill multiple teachers
into a single multilingual student while account-
ing for balanced performance in high- and low-
resource languages.

3 Teacher-Student Distillation for
Multilingual Language Models

We train a multilingual student using the masked-
language modeling objective and a collection of
monolingual teachers optimized for each student’s
language. All models share one multilingual vocab-
ulary. Sharing vocabulary was necessary to apply
our soft labeling loss, which requires that the stu-
dent’s and teacher’s probability space (in the case
of language models: vocabularies) are the same.2

To avoid under-fitting low-resource languages,
we naively balance the students’ training data by
truncating data in all target languages to the data
size of the lowest resource language. To make the
most out of high-resource languages, we rely on
soft labeling. For a mask in a given language, we
use the high-resource language-specific teacher’s
distribution over the mask and use it as the oracle
M̂l in Equation 2 as a soft label. Our intuition
is that this allows the student to gain the broader
teachers’ knowledge in its language and thus com-
pensate for the sub-sampled data size. Figure 1
provides a visual scheme for this approach.

Formally, given a set of languages
L = {l1, l2, ..., lK}, their corresponding
teachers Tl1 , Tl2 , ..., TlK , and their data
D = {D1, D2, ..., DK} we teach the stu-
dent model using the K teachers (which are trained
for each of the languages). For student training, we
truncate the data size of all languages in D to the
smallest dataset size (min(|D1|, |D2|, ..., |DK |)).

2Please refer to Section 8, “Teacher model availability”
for discussion about vocabulary sharing across monolingual
models.

Size [characters] Shared Script Diverse Script

100M English Russian
100M German German
50M Spanish Korean

30M Hungarian Greek
20M Vietnamese Hindi
10M Turkish Telugu
10M Basque Urdu

Table 1: Pre-training datasets for each language (in mil-
lions of characters) sampled from Wikipedia for high-
resource (top) and low-resource (bottom) languages.
Some of the selected low-resource languages are ac-
tually widely spoken. They were chosen because of
relatively smaller Wikipedia sizes (as shown in Ap-
pendix B).

Data selection and processing. We collect pre-
training data from Wikipedia,3 aiming to capture
a diverse set of high and low-resource languages,
as summarized in Table 1. We subsample the cor-
pora by randomly choosing sentences from each
language’s full corpus. We designate high-resource
languages as ones with 50 or 100 million characters
in their corpus after sampling, while low-resource
languages’ corpora consist of 10, 20, and 30 mil-
lion characters.

Throughout our experiments, we compare 7 lan-
guages that share the Latin script versus 7 lan-
guages with varying scripts, as the script was found
to be an essential factor for multilingual perfor-
mance (K et al., 2020; Muller et al., 2021; Malkin
et al., 2022). We include German in both sets (as
one of 7 languages), to compare its performance in
both settings.

Models’ Architecture and Hyper-parameters.
Each of our models comprises of 6 hidden layers
and 4 attention heads, an MLM task head. The
embedding dimension is 512 and sentences were
truncated to 128 tokens. In total, our models con-
sist of 51193168 parameters. We train a single
uncased wordpiece tokenizer (Wu et al., 2016) on
the 100mb splits of 15 languages.4 Before tok-
enization, we strip accents for all languages except
Korean.

We train all models for 10 epochs, with a batch
size of 8. We used linear decay of the learning rate

3Obtained and cleaned using wikiextractor (Attardi, 2015).
We chose Wikipedia as it consists of roughly similar ency-
clopedic domains across languages and is widely used for
training PLMs (Devlin et al., 2019).

413 languages presented in Table 1 with Hebrew and
Lithuanian that were added for future experiments.
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with the initial value of 5e-5. Exact configurations
and parameters are available in our code.

4 Experiments

We validate our method using two experiments.
First, we ascertain that our method indeed im-
proves performance for low-resource languages
while maintaining performance for high-resource
languages. This is done by comparing the perfor-
mance of our approach in masked language mod-
eling with two multilingual baselines. Second, we
show that our method is competitive for down-
stream tasks and cross-lingual transfer by probing
the pre-trained models for POS and NER tagging.

Multilingual modeling. We evaluate masked lan-
guage modeling performance on monolingual test
sets by measuring mean reciprocal rank (MRR).
Since the performance of multilingual models is
often compared to the performances of monolin-
gual baselines, we report the average performance
difference between a multilingual model and the
monolingual models trained on the same set of re-
spective languages.

Downstream probing. We use the models
trained in the previous experiment and train a
probe,5 keeping the base model parameters frozen,
to predict part-of-speech tagging (POS) and name
entity recognition (NER), as provided respectively
by universal dependencies (Nivre et al., 2020) and
the XTREME benchmark (Hu et al., 2020).6 We
chose those two tasks because they commonly ap-
pear in NLP pipelines (Manning et al., 2014; Hon-
nibal and Montani, 2017). We measure the models’
performance in two cases: when the training and
test datasets are in the same language (denoted IN-
LANG) and when a probe trained for a language l1
is tested on another one l2 (denoted ZERO-SHOT).
As noted by Hu et al. (2020), zero-shot evalua-
tion is a good measure of a model’s cross-lingual
transfer. We use probing because it offers a good
insight into the representation learned by the model
(Belinkov, 2022).

Baselines. We compare the students’ perfor-
mance to multilingual models trained with hard la-
bels, on the same data and languages as the student
and its teachers. One such model was trained on
all the available data in each language to examine

5

6See Section D.2 in the Appendix for more information.
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Figure 2: Our balanced teacher-student approach using
soft labels presents the overall best combination for low
and high-resource languages among multilingual mod-
els. This figure presents average MRR results in masked
language modeling for both low- and high-resource lan-
guages. Results are reported for a Latin-script language
set (Shared) and a set with diverse scripts (Diverse).

the extent of under-fitting low-resource languages,
denoted HL. Additionally, to measure how much
our student gains from its teacher’s knowledge, we
train another model on the corpora constrained to
the size of the least resourceful language using the
standard hard labels, denoted HL balanced.

Experimental Setup Each teacher is a monolin-
gual model trained with hard labels. The teachers
are trained on the entire training corpus available
in their language. In a student model, we distill
the knowledge of multiple monolingual teachers
into a multilingual student using soft labels, as de-
scribed above. The distillation into the student is
performed on groups of shared and diverse script
languages. The data is constrained to 10 million
characters for each language. All our models are
trained using default BERT hyper-parameters de-
tailed in Section 3.

5 Results

We report the experimental results on our test sets,
in three language sets grouped by the amount of
data available in pre-training, i.e., low-resource,
high-resource, and all data. We address our re-
search questions in light of the results:

3



Script Lang. Set HL HL Balanced Ours

Shared
Low-Res. -2.5 0.3 -0.1
High-Res. -5.8 -10 -7.6

All -3.9 -4.0 -3.7

Diverse
Low-Res. -5.1 -3.8 -3.1
High-Res. -5.0 -12 -7.0

All -5.0 -7.2 -4.7

Table 2: Average difference from monolingual base-
lines (higher is better) calculated on MRR scores. Our
teacher-student model achieves better results overall in
both shared and diverse scripts. It is otherwise between
the baselines, except for shared script, where it is better
for low-resource.

Lang. set HL HL balanced Ours
I-L Z-S I-L Z-S I-L Z-S

Sh
ar

ed

Low-Res 35.2 33.4 35.5 34.3 36.6 34.5
High-Res 83.3 33.7 81.2 32.4 84.3 33.8
{de} 87.1 32.3 84.1 32.2 86.8 33.0
All 55.8 33.5 55.1 33.5 57.0 34.2

D
iv

er
se

Low-Res 53.1 35.8 54.6 34.9 55.7 35.9
High-Res 76.8 36.2 73.4 34.7 77.3 36.8
{de} 87.7 36.8 83.3 35.3 87.4 38.1
All 63.3 36.0 62.7 34.8 64.9 36.3

(a) Accuracy of POS probing.

Lang. set HL HL balanced Ours
I-L Z-S I-L Z-S I-L Z-S

Sh
ar

ed

Low-Res 26.5 23.7 27.9 24.3 29.8 23.9
High-Res 34.2 24.9 34.7 24.7 37.6 26.0
{de} 31.4 27.4 32.1 25.7 32.0 23.9
All 29.8 24.2 30.8 24.5 33.1 24.8

D
iv

er
se

Low-Res 25.7 12.8 28.0 13.8 29.9 12.9
High-Res 32.8 14.9 29.9 15.1 37.2 17.1
{de} 32.5 14.8 31.5 15.7 35.3 17.2
All 28.7 13.7 28.8 14.4 33.0 14.7

(b) Macro F1 of NER probing.

Table 3: For each model and language set, we report av-
erage IN-LANG performance (probe trained and tested
on the same language) and average ZERO-SHOT per-
formance (probe trained on one language and tested on
another). Each ZERO-SHOT number is an average result
across all source languages and target languages in the
indicated language set. Each entry is a mean of 5 runs
with different probe initialization. The Results with sig-
nificance intervals for each language can be found in
Appendix (Tables 6, 7).

Our method offers a good trade-off between per-
formance on high- and low-resource languages.
Figure 2 shows the trend of language modeling
scores (MRR) when changing from low- to high-
resource set. Table 2 summarizes performance dif-
ferences from monolingual models for our method
and the two control baseline models.

In low-resource setting, our model outperforms

HL and achieves similar results to HL balanced.
For high-resource languages, our approach closely
trails HL and is better than HL balanced, which
was trained on the same data as our student model.
It indicates that the student model effectively ac-
quires knowledge from the teachers’ distributions.
Our model achieves the best results overall when
calculated over all languages.

Better trade-off between high- and low-resource
languages improves results on downstream.
Table 3 shows that IN-LANG and ZERO-SHOT re-
sults of probing for POS and NER labels. Our
method achieves better or on-par average results in
both tasks and language sets. The only exception
is HL balanced baselines, which scores better in
NER for low-resource languages.

Sharing script is not necessary for good multilin-
gual performance. As seen in Figure 2 and Ta-
ble 2 for low-resource languages, shared script re-
sults are consistently closer to monolingual results
compared to the diverse script setting. Whereas, for
high-resource set, the average difference between
the results of monolingual models and our model or
HL is smaller in the diverse script scenario. For the
language included in both sets (German), MRR is
higher when coupled with distinct script languages.
The performance difference is 0.4 and 0.9 percent
in favor of diverse scripts, for HL and our model.
HL balanced scores 2.8% better in shared script
scenario. This implies that diverse scripts can ben-
efit multilingual modeling when we reveal enough
monolingual data (as in high-resource setting).

In Table 3, we observe that the results for Ger-
man in the shared-script scenario are better for
POS tagging and worse for NER in comparison
to diverse-script. Those findings align with pre-
vious results suggesting that shared vocabulary is
not necessary for cross-lingual transfer and has a
varying effect depending on the task (K et al., 2020;
Malkin et al., 2022).

6 Related Work

Recent work utilized knowledge distillation in train-
ing NLP models. However, to the best of our knowl-
edge, we are the first to do this in low-resource,
balanced data settings. Contrary to the approaches
of Tsai et al. (2019); Sanh et al. (2019), we do not
scale down student models but constraint training
datasets.
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Sun et al. (2020) use one teacher model and
train for machine translation, and Heffernan et al.
(2022) use a single multilingual teacher to train a
sentence embedding model for low-resource lan-
guages. Both rely on parallel corpora for target
low-resource languages. Other works on multilin-
gual language modeling addressed how to improve
low-resource performance, largely using post-hoc
or language-specific solutions. Chau et al. (2020)
change the vocabulary to account for low-resource
languages, while Muller et al. (2021) transliterate
tokens of low-resource languages to the most simi-
lar available high-resource language.

Finally, Pfeiffer et al. (2020) introduce cross-
lingual adapters, compact components that allow
adapting a given model pre-trained for a task in a
different desired language.

7 Conclusions

We train multilingual language models aimed at bal-
ancing the models’ performance for languages with
uneven data sizes. We outperform standard mod-
els for low-resource languages while maintaining
performance on high-resource languages. Notice-
ably, our method gives better results overall than
the naive data sub-sampling. Lastly, our model is a
good representation learner for downstream tasks,
outperforming baselines for two probing tasks.

Taken together, our results suggest a new direc-
tion for multilingual modeling that accounts for
a more even performance across low- and high-
resource languages and improves cross-lingual
transfer.

8 Limitations

Restricted model size and training. Due to lim-
ited computational resources, we performed exper-
iments for models significantly smaller than the
ones developed by the industry. We based our
down-scaling choices on previous ablation stud-
ies on cross-lingual models (K et al., 2020). In line
with their findings, we prioritized model depth (6
hidden layers) over width (4 attention heads). Also,
we examine only BERT based models. This work
serves as a proof of concept for a new multilingual
language modeling, and future work can extend the
study to bigger models with different architectures.

Restricted data. We decided to train our mod-
els on sub-sampled Wikipedia to achieve reason-
able training times. As shown in appendix B.2

the chosen sample follows the resource-richness
trend across languages but does not fully reflect
the imbalance between high- and low-resource lan-
guages. Nevertheless, we think that this issue does
not weaken our point, as even our “unbalanced”
baseline model is trained on less skewed data than
currently deployed multilingual models. Further-
more, we train our models on 7 languages. Our
method needs to be verified on larger data sizes
and broader language sets.

Working with limited training data might still be
valuable in several aspects. First, there’s a grow-
ing interest in efficient, and green AI. Smaller and
more efficient models will reduce training and in-
ference costs while allowing them to run on less
capable hardware and make them accessible to a
wider community. Second, from a linguistic per-
spective, many of the world’s languages lack large
corpora, and hence will benefit from models that
leverage a limited amount of available resources
(Joshi et al., 2020).

Naive balancing method. We truncate our train-
ing to the size of the smallest low-resource lan-
guages, which might be a naive and aggressive
approach leading to a sub-optimal performance on
our available data. However, our simple approach
achieves good results even with naive balancing.
Future work can extend it with complex data bal-
ancing approaches, such as weighing training data
using a learned data scorer (as done in Wang et al.
(2020)).

Teacher model availability. Our teacher-student
training method assumes the existence of pre-
trained monolingual teachers for each considered
language, which is considerably less sustainable
than training only one multilingual model. Never-
theless, we believe that it is possible to re-use pub-
licly available models as teachers for high-resource
languages, while for low-resource languages, com-
petitive results can be obtained with smaller models
requiring less computation (Hoffmann et al., 2022).
Because our distillation method works on predicted
distribution and not latent representations, to com-
bine knowledge of teachers from multiple source
languages, we will need to align their vocabularies,
which was shown to be feasible by Artetxe et al.
(2020); Rust et al. (2021). We leave this engineer-
ing task for future work.

Metrics for probing tasks. To evaluate probing
for NER we used macro-F1 measured per token
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and not per entity as in usual NER evaluation. We
observed that the probes underperformed in cor-
rectly classifying all tokens in a single entity. It led
to overall low results in regular F1 that would not
allow meaningful comparison between analyzed
models. Importantly, macro-F1 equally weights
the performance in predicting each class. Thus, it
is appropriate to evaluate NER task, where most
tokens are annotated as not belonging to any entity.
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and Iryna Gurevych. 2021. How good is your tok-
enizer? on the monolingual performance of multilin-
gual language models. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 3118–3135, Online. Association
for Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. In NeurIPS
EMC2 Workshop.

Haipeng Sun, Rui Wang, Kehai Chen, Masao Utiyama,
Eiichiro Sumita, and Tiejun Zhao. 2020. Knowledge
distillation for multilingual unsupervised neural ma-
chine translation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3525–3535, Online. Association for
Computational Linguistics.

Henry Tsai, Jason Riesa, Melvin Johnson, Naveen Ari-
vazhagan, Xin Li, and Amelia Archer. 2019. Small
and practical BERT models for sequence labeling. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3632–
3636, Hong Kong, China. Association for Computa-
tional Linguistics.

Xinyi Wang, Yulia Tsvetkov, and Graham Neubig. 2020.
Balancing training for multilingual neural machine
translation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 8526–8537, Online. Association for Computa-
tional Linguistics.

Shijie Wu and Mark Dredze. 2020. Are all languages
created equal in multilingual BERT? In Proceedings
of the 5th Workshop on Representation Learning for
NLP, pages 120–130, Online. Association for Com-
putational Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. ArXiv preprint, abs/1609.08144.

7

https://www.aclweb.org/anthology/2020.lrec-1.497
https://www.aclweb.org/anthology/2020.lrec-1.497
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2020.acl-main.324
https://doi.org/10.18653/v1/2020.acl-main.324
https://doi.org/10.18653/v1/2020.acl-main.324
https://doi.org/10.18653/v1/D19-1374
https://doi.org/10.18653/v1/D19-1374
https://doi.org/10.18653/v1/2020.acl-main.754
https://doi.org/10.18653/v1/2020.acl-main.754
https://doi.org/10.18653/v1/2020.repl4nlp-1.16
https://doi.org/10.18653/v1/2020.repl4nlp-1.16
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144


Lang.
POS NER

train test train test

de 166849 22458 20000 10000
es 28492 3147 20000 10000
en 21253 5440 20000 10000
eu 5396 1799 10000 10000
hu 910 449 20000 10000
tr 3664 4785 20000 10000
vi 1400 800 20000 10000

ru 67435 11336 20000 10000
ko 27410 4276 20000 10000
el 28152 2809 20000 10000
hi 13304 2684 5000 1000
te 1051 146 1000 1000
ur 4043 535 20000 1000

Table 4: Number of training and testing sentences for
POS and NER tasks in XTREME data collection. The
data were used to train and evaluate probes on top of
analysed models.

A Appendix

In the appendix: we provide details on datasets
used in this work Section B; show how proposed
teacher-student distillation behaves in the mono-
lingual scenario with just one teacher Section C;
present detailed results of our two experimental for
each language Section D; provide details of our
training procedure and hardware usage Section E.

B Datasets Details

B.1 Data Splits

For pre-training (monolingual) teacher and HL
models, we use Wikipedia splits of sizes indicated
in Table 1, for training student and HL balanced
models, we subsample training corpus to 10 mil-
lion characters. We use validation and test sets
containing 10000 Wikipedia sentences each.

For downstream probing, we use train and test
splits from XTREME. The numbers of sentences
in these splits per language are shown in table 4.

B.2 Correspondence of the Sizes of Our
Corpora and Wikipedias

Figure 3 shows the per language correspondence
between our corpora size and the whole Wikipedia.
The latter was used to pre-train MBERT (Devlin
et al., 2019). We observe a good linear fit between
character numbers in our corpora and the logarithm
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Figure 3: A comparison of subsampled corpora
sized and the data available in Wikipedia, which was
MBERT’s training corpus.
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Figure 4: Performance of a language model as the func-
tion of training corpora size. The regular HL training is
compared with the knowledge distillation to a student
on the dataset lower or equal in size than the teacher’s
training set.

of Wikipedia byte size. It suggests that the multilin-
gual imbalance is even more severe in the original
dataset than in our sample.

C Teacher-Student Method in the
Monolingual World

The purpose of this experiment is to visualize how
the model’s performance scales with the size of the
pre-training dataset. Also, we check the behavior
of the teacher-student knowledge distillation with
the change of data size used to train a teacher and
a student in a monolingual setting.

We train a monolingual model on German
Wikipedia data with five sizes (in millions of char-
acters): 10, 20, 30, 50, and 100. Subsequently, we
designate 10, 50, and 100 million character models
as teachers and distill their knowledge into students
on the same size or smaller corpus.7

As presented in figure 4, the teacher performance
7In monolingual knowledge distillation, we used a learning

rate 5 times higher than in the default BERT training script.
This choice led to better results.

8



Shared script Diverse script
HL -2.9 -2.5
HL Balanced -9.2 -12
Ours -6.1 -5.2

Table 5: Difference from monolingual baseline, for Ger-
man. German achieves better results in diverse script,
except for HL Balanced. This suggest that diverse script
might help increase language modeling performance.

Shared Diverse

40

42

44

46

48

50

HL Ours HL Balanced Monolingual

Figure 5: MRR scores for German trained in the set of
languages with shared script and diverse script. We ob-
serve slight improvement for diverse script over shared
script, and significant deterioration for HL Balanced.

can be nearly matched by a student trained on a con-
siderably smaller corpus. For the teacher trained
on the largest split, the student performance rises
steadily with the increase of distillation detest from
10 to 30 million characters and drops after that
point. The performance of the student trained on
100 million characters is noticeably low. It is a sign
of over-fitting, as in our setting, distillation set is
always a subset of the teacher’s training set. Also,
in the case of teachers trained on smaller corpora,
distillation on the dataset of the same size (as the
teacher training set) leads to a drop in performance.
Therefore, we claim that the distillation is benefi-
cial when the teacher’s training set is larger than
the student’s one.

D Per Language Results

D.1 German: Comparing Shared and Diverse
Scripts

Table 5 and Figure 5 present masked language mod-
eling performance for German for three analyzed
multilingual model types. German is the language
included both in the shared and diverse script lan-
guage sets. Therefore the results allow comparing
which setting is more effective in multilingual lan-
guage modeling.

D.2 Results for Every Language
We present per language results in masked lan-
guage modeling performance in Figure 6 and for
probing tasks (POS and NER) in Tables 6 and 7.

E GPUs and training procedures

All of our models (monolingual teachers, students,
and multilingual models trained using hard labels)
are trained on a single GPU core.

We used varying GPUs architectures allocated
for each model upon availability (nvidia gtx 980,
tesla M60, and RTX 2080Ti). Training time var-
ied between 1 to 3 hours for monolingual models
(depending on the data size, language, and GPU
core). Multilingual models’ training took around
18 hours to complete. Early stopping was used for
all models based on results on a balanced dev set.

MLM evaluation was run on the same machines
as training or on CPU. the run time ranged from
2 to 4 hours. Training a probe on top of a frozen
model took from 1 to 20 minutes, depending on
the number of training examples available for a
language. The evaluation time on a downstream
task was less than 2 minutes.
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Script Lang. HL HL balanced Ours
In-Lang Zero-Shot In-Lang Zero-Shot In-Lang Zero-Shot

Shared

de 87.1 ±0.0 32.3 ±0.9 84.1 ±0.0 32.2 ±1.0 86.8 ±0.0 33.0 ±1.1

en 79.5 ±0.1 34.2 ±1.4 77.4 ±0.2 32.1 ±2.1 81.1 ±0.2 34.1 ±1.3

es 83.1 ±0.1 34.6 ±1.7 82.0 ±0.1 32.8 ±1.7 84.8 ±0.1 34.2 ±1.0

eu 56.3 ±1.2 34.1 ±1.2 58.1 ±1.5 35.0 ±2.7 58.2 ±0.7 33.1 ±2.2

hu 18.5 ±3.5 37.4 ±1.0 16.6 ±3.4 37.9 ±1.7 18.5 ±5.2 39.5 ±1.2

tr 40.5 ±2.2 33.3 ±1.5 40.6 ±3.8 34.5 ±2.2 42.1 ±2.6 34.1 ±2.6

vi 25.5 ±2.2 28.7 ±1.1 26.9 ±3.1 29.9 ±1.3 27.7 ±4.5 31.3 ±1.9

Diverse

de 87.7 ±0.0 36.8 ±0.9 83.3 ±0.0 35.3 ±1.1 87.4 ±0.0 38.1 ±0.3

ru 79.0 ±0.0 36.9 ±0.9 74.0 ±0.1 36.9 ±1.2 78.6 ±0.1 38.8 ±1.5

ko 63.7 ±0.2 34.8 ±1.6 62.8 ±0.2 31.9 ±1.8 65.8 ±0.2 33.5 ±1.2

el 66.6 ±0.2 29.9 ±1.1 66.7 ±0.2 27.0 ±1.0 69.0 ±0.3 30.8 ±1.4

hi 70.7 ±0.2 34.9 ±0.8 69.6 ±0.1 34.7 ±1.9 70.8 ±0.4 36.0 ±1.6

te 25.1 ±9.9 42.1 ±1.8 30.0 ±8.4 43.0 ±1.2 28.4 ±6.0 42.6 ±1.3

ur 50.0 ±1.0 36.3 ±0.6 52.2 ±3.4 34.7 ±0.8 54.4 ±2.0 34.1 ±1.4

Table 6: Accuracy of POS probing for each language. Standard deviations and mean results are computed based on
5 runs with different initialization of the probe.

Script Lang. HL HL balanced Ours
In-Lang Zero-Shot In-Lang Zero-Shot In-Lang Zero-Shot

Shared

de 31.4 ±0.6 27.4 ±1.0 32.1 ±0.4 25.7 ±0.4 32.0 ±0.7 26.9 ±1.1

en 33.0 ±0.5 24.9 ±0.7 33.3 ±0.4 24.8 ±0.2 37.8 ±0.7 25.9 ±0.9

es 38.2 ±0.6 22.6 ±0.3 38.8 ±1.3 23.7 ±0.7 42.9 ±1.0 25.4 ±1.7

eu 20.6 ±2.0 27.3 ±0.9 18.5 ±1.3 27.9 ±0.9 20.5 ±0.9 25.9 ±1.0

hu 26.6 ±0.5 24.3 ±0.9 26.8 ±1.0 25.3 ±0.4 30.2 ±0.6 26.1 ±0.9

tr 27.3 ±0.5 24.4 ±1.0 30.8 ±0.5 25.4 ±0.4 29.5 ±0.4 24.2 ±0.4

vi 31.5 ±1.4 18.7 ±0.5 35.5 ±0.5 18.6 ±0.5 39.0 ±1.5 19.2 ±1.3

Diverse

de 32.5 ±0.8 14.8 ±0.6 31.5 ±0.7 15.7 ±0.7 35.3 ±0.4 17.2 ±1.0

ru 33.7 ±0.8 15.8 ±0.7 29.9 ±0.7 14.6 ±0.7 38.0 ±0.2 16.8 ±0.7

ko 32.1 ±0.4 14.2 ±0.4 28.2 ±0.5 15.0 ±0.4 38.3 ±0.8 17.3 ±1.1

el 27.4 ±0.7 16.6 ±0.6 26.5 ±0.9 17.2 ±0.8 31.5 ±0.6 16.6 ±0.6

hi 16.3 ±0.7 12.8 ±0.4 18.1 ±1.0 14.4 ±1.2 15.7 ±1.1 13.2 ±0.7

te 13.3 ±1.1 13.8 ±0.5 14.6 ±2.0 13.7 ±0.4 14.2 ±0.6 13.9 ±0.2

ur 45.6 ±1.1 7.9 ±1.4 52.7 ±1.2 10.0 ±1.2 58.0 ±1.0 8.0 ±0.9

Table 7: Macro-F1 of NER probing for each language. Standard deviations and mean results are computed based on
5 runs with different initialization of the probe.
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Abstract

We evaluate a Multilingual End-to-end BERT
based Dependency Parser which parses an in-
put sentence by directly predicting the relative
head-position for each word within it. Our
model is a Cross-lingual dependency parser
which is trained on a diverse polyglot corpus of
high-resource source languages, and is applied
on a low-resource target language.
To make model more robust to typological vari-
ations between source and target languages,
and to facilitate the cross-lingual transferring,
we utilized the Linguistic typology knowledge,
available in typological databases WALS and
URIEL. We induce such typology knowledge
within our model through an auxiliary task
within Multi-task Learning framework.

1 Introduction

Linguistic typology is the classification of human
languages according to their syntactic, phonolog-
ical and semantic features. There are numerous
available typological databases such as WALS
(Haspelmath, 2009), SSWL (Collins and Kayne,
2009), LAPSyd (Maddieson et al., 2013), ValPal
(Hartmann and Bradley Taylor, 2013), AUTOTYP
(Bickel et al., 2017), APCLS (Michaelis and Mag-
nus Huber, 2013) etc. These databases provide
taxonomies of typological features and their possi-
ble values, as well as the respective feature values
for most of the world’s languages.
Linguistic typology existed as an independent re-
search domain since long (Greenberg, 1963; Com-
rie, 1989; Nichols, 1992) but recently it has been
used along with Cross-lingual/Multi-lingual NLP
(Ponti et al., 2018; Wang and Eisner, 2017; Agić,
2017; Bender, 2016; O’Horan et al., 2016) to ad-
dress the issue of data-sparsity in low-resource lan-
guages.
However all the popular typological databases suf-
fer from a major shortcoming of limited cover-
age. In fact, values of many important typological

features for most languages (specially less docu-
mented ones) are missing in these databases. This
sparked a line of research on automatic acquisi-
tion of such missing typology knowledge. Many
researchers (Malaviya et al., 2017; Bjerva and Au-
genstein, 2018; Bjerva et al., 2019; Bjerva and Au-
genstein, 2017; Östling and Tiedemann, 2016) in-
deed successfully used Multi-lingual NLP and ML
techniques to predict these missing feature values.
Thus Multilingual NLP and Language typology fea-
ture prediction are very closely related tasks which
would complement each other. Based on this in-
tuition, we propose a model that performs both
Multilingual NLP and Linguistic typology feature
prediction tasks simultaneously, in a multi-tasking
setup.
Multi-task Learning (MTL) (Ruder, 2017) is neural
network framework which involves performing of
two or more tasks simultaneously leading to knowl-
edge/parameter sharing. These tasks are closely
related thus complement each other leading to im-
proved performance on all of them. Even in sce-
narios where we primarily care about a single task,
using a closely related task as an auxiliary task for
MTL can be useful (Caruana, 1998; Zhang et al.,
2014; Liu et al., 2015; Girshick, 2015; Arik et al.,
2017).
In this work, we use Linguistic Typology feature
prediction task as auxiliary task for End-to-end
Cross-lingual Dependency Parsing. Hence, we
make following contributions.

1. We evaluated the performance an End-to-end
BERT Based Parser which can parse a sen-
tence by directly predicting relative head-
position tag for each word within input sen-
tence. This is inspired by (Li et al., 2018)
which is an End-to-end Seq2seq Dependency
Parser. We evaluated the performance of this
BERT based End-to-end parser in both mono-
lingual and cross-lingual/multilingual setups
(using mBERT). We will refer to this model
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as Base E2E BERT parser in this paper.

2. We added the auxiliary task of Linguistic ty-
pology prediction to our Base E2E BERT
parser to observe the change in performence
under different settings. We will refer to this
model as Multitasking E2E BERT Parser in
this paper.

2 Related Work

Cross-lingual Model-transfer approaches to De-
pendency Parsing such as (McDonald et al., 2011;
Cohen et al., 2011; Duong et al., 2015; Guo et al.,
2016; Vilares et al., 2015; Falenska and Çetinoğlu,
2017; Mulcaire et al., 2019; Vania et al., 2019;
Shareghi et al., 2019) involve training a model on
high-resource languages and subsequently adapt-
ing it to low-resource languages.
Participants of CoNLL 2017 shared-task (Daniel
et al., 2017) and CoNLL 2018 shared task (Zeman
et al., 2018) also provide numerous approaches to
dependency parsing of low-resource languages.
Some approaches such as (Naseem et al., 2012;
Täckström et al., 2013; Barzilay and Zhang, 2015;
Wang and Eisner, 2016a; Rasooli and Collins,
2017; Ammar, 2016; Wang and Eisner, 2016b)
used typological information to facilitate cross-
lingual transfer. All these approaches directly
feed the linguistic typology features into the model
whereas we induce the linguistic typology knowl-
edge through Multitask learning.
Inducing typology knowledge through MTL
rather than directly feeding it along with word-
embeddings have following advantages.

1. The model can also be applied to low-resource
languages for which many typology feature
values are unknown/missing.

2. The auxiliary task should help to improve the
performance on the main dependency parsing
task as well, since it would make the model
give special emphasis on the syntactic typol-
ogy (specially word-order typology) of lan-
guage being parsed while predicting the de-
pendency relations.

3 Base End-to-end BERT Parser

This section elaborates the details of our End2End
BERT based Dependency Parser which directly
predicts the relative head position tag of each word
within input sentence.

Given a sentence of length T, its dependency parse-
tree can be represented as a sequence of T relative
head-position tags as demonstrated in figure 1a.
Figure 2a depicts the architecture of our baseline
model. The depicted architecture comprises of
three components namely BERT Encoder, Output
Network and Tree-decoder described as section 3.1,
3.2 and 3.3.

3.1 BERT Encoder
It is a BERT based network which takes as input,
the entire sentence as sequence of tokens. The
model outputs d−1 dimensional word-embeddings
for all words within the input sentence. Thus for a
sentence of length T, it would output matrix E ∈
RT∗(d−1).
We use WordPiece tokenizer (Wu et al., 2016) to
tokenize input sentence and extract embeddings.
For each word within input sentence, we use the
BERT output corresponding to the first wordpiece
of it as its embedding, ignoring the rest.

3.1.1 POS tag information
We add pos-tag information in our parser by ap-
pending index of pos-tag of each word, to the en-
codings outputted by BERT encoder as evident in
figure 2b. Thus matrix Ê is derived from E through
equation 1 .

Ê = E; [t1; t2; ....; tT ] (1)

Here ti is POS-tag index of ith word. Ê ∈ RT∗d

3.2 Output Network
Its a simple feed-forward network with softmax ac-
tivation. The network takes-in embedding matrix
from the BERT encoder and outputs the probabil-
ities of all possible relative head position tags at
each word by applying equation 1.

Pr = softmax(Ê ∗W + b) (2)

Here W,b are weights and biases. Pr ∈ RT∗N

where N is the number of valid relative head-
position tags.
For the sentence of length T, set of all possible
relative head position tags ST is given as

ST = [L1, L2, ..., LT , R1, R2, ..., RT−1,

< root >,< EOS >]

Here < root > and < EOS > are tags to be as-
signed to < s > and < /s > tokens at the begin
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Figure 1: Examples of dependency parse tree being represented as relative head-position tag sequence

and end of the input sentence as shown in figure
1a.
For training and evaluations, we always com-
puted probabilities of all relative head-position tags
within the tag-set for a sentence of length Max
i.e. SMax as the dimensions of model parameters
should be fixed. Here Max is the length of largest
sentence from all copra used during experiments.
In this paper we experimented with only Unlabeled
Dependency Parsing however same architecture
can be used for Labeled Dependency Parsing as
well. In such case the output tags would comprise
of relative head positions as well as relationship
labels (eg: L2-nsubj ). Hence, the set of all pos-
sible relative head position tags S would be much
larger. Figure 1b depicts a labelled parse-tree being
represented as sequence of head-position tags.

3.3 Tree-Decoder

This component decodes the most probable correct
label sequence from Probabilities outputted by Out-
put Network. The correct label sequence would
satisfy following constraints.

1. Sequence should start with < root > and end
with < EOS > tags. These tags should not
appear anywhere else.

2. At each index (of word being labelled) the
assigned label should be within the range of
sentence. For eg: Word ’That’ within sen-
tence shown in figure 1a can not have tags
L2, L3, L4, L5, L6 and word ’.’ in the sen-
tence can not have any right tags as these are
outside the range of sentence.

3. Label sequence should not generate any cycles
within dependency tree.

4. One of the words should have the head at <
root > token.

We used dynamic programming with beam-
search to efficiently extract the most probable la-
bel sequence which satisfies the above listed con-
straints, out of all possible label sequences.

3.4 Multitasking End-to-end BERT Parser
Figure 2b demonstrates the architecture of our pro-
posed model. The model is very similar to the Base
E2E BERT Parser described in section 3 with one
extra component namely Linguistic typology pre-
dictor which predicts the typology features of lan-
guage being parsed. Thus model is Multi-tasking
model with hard-parameter sharing (Ruder, 2017).

3.4.1 Linguistic typology predictor
It is a simple deep feed forward neural network
which takes in the embedding generated by BERT
Encoder for token < /s > and outputs probabilities
of values of binary syntactic typology features for
the language being parsed as 1. Such features are
provided by URIEL database (Littell et al., 2017).
Let N̂ be the number of syntactic typology features
provided by URIEL database. The Linguistic typol-
ogy predictor would then predict probability matrix
Prty ∈ RN̂ by applying equation 2.

Prty = sigmoid(e</s> ∗ U + c) (3)

Here e</s> ∈ Rd is embedding from BERT En-

coder for < /s > token. U ∈ Rd∗N̂ and c ∈ RN̂

are weights and biases respectively.

3.5 Training
We trained both BERT Encoder (fine-tuning of pre-
trained BERT model) and Output Network compo-
nents of Base E2E BERT Parser model jointly, by
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Figure 2: a. Base End-to-end BERT parser architecture. b.Multitasking End-to-end BERT parser architecture. Its an
extension of Base End-to-end BERT parser architecture with one extra component namely Typology Predictor.

optimizing the cross-entropy loss (Gómez, 2018)
between true relative head-position tags and proba-
bilities outputted by the Output Network.
On the other hand, Multitasking E2E BERT parser
is trained to perform tasks of Prediction of relative
heap-position tag sequence and Prediction of typol-
ogy features simultaneously through MTL, by op-
timizing the total-loss as the sum of cross-entropy
loss over true head-position tag-sequence and the
binary cross-entropy loss over true typology val-
ues.
Table 4 outlines values of hyper-parameters used
during experimentation. These values are obtained
by minimizing loss on Validation dataset for En-
glish language.

4 Experiments

4.1 Experimental setups

We evaluated the monolingual and multilingual
variants of our proposed models within two dis-
tinct experimental setups namely Monolingual and
Cross-lingual setups. These are described as sec-

tions 4.1.1 and 4.1.2 respectively.1.

4.1.1 Monolingual Setup
In this setup we conducted experiments to evaluate
the performance of fully monolingual variants of
our proposed Base E2E BERT Parses and Multi-
tasking E2E BERT Parser. In these settings we
experimented in two languages namely English
and Chinese. These monolingual variants use pre-
trained monolingual English and Chinese BERT
models provided by [].
For all experiments within this setup, we used the
Deep Biaffine Parser (Dozat and Manning, 2016)
as baseline. Its is a neural graph-based dependency
parser which uses biaffine attention classifiers to
predict the arcs and labels of the required parse-tree
for an input sentence.

4.1.2 Cross-lingual setups
We conducted numerous experiments to evalu-
ate the performance of Multilingual/Cross-lingual
variants of our proposed Base BERT Parses and

1Source code at https://github.com/XXXXX
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Experimental Settings Source Languages Target Languages
Monolingual English, Chinese English, Chinese
Cross-lingual with single
source language

English German, Croatian, Italian,
Hindi, Chinese, Estonian,
Vietnamese

Cross-lingual with multiple
source languages

English, Urdu, French, Ara-
bic, Japanese, Polish, Latvian,
Tamil, Greek, Coptic, Kazakh,
Turkish

German, Croatian, Italian,
Hindi, Chinese, Estonian,
Vietnamese

Table 1: Source and Target Languages used during experiments

Languages Corpus
English en_ewt-ud-train
Urdu ur_udtb-ud-train
French fr_ftb-ud-train
Arabic ar_padt-ud-train
Japanese ja_gsd-ud-train
Polish pl_pdb-ud-train
Latvian la_ittb-ud-train
Tamil ta_ttb-ud-train
Greek el_gdt-ud-train
Coptic cop_scriptorium-ud-

train
Kazak kk_ktb-ud-train
Turkish tr_imst-ud-train

Table 2: Copra for source languages listed in table 1
used during experiments. All copra are part of Universal
Dependencies dataset.

Multitasking E2E BERT Parser models in cross-
lingual settings. These Multilingual variants use
pre-trained Multilingual BERT (mBERT) (Wu and
Dredze, 2019) model which is trained on data from
Wikipedia in 104 languages.
We evaluated the Multilingual variants of our mod-
els under following two Cross-lingual setups.

1. Cross-lingual with single source language
(CL-Single): In this setup, all the parsers are
trained in single source language English, but
tested on a diverse range of target languages

2. Cross-lingual with multiple source languages
(CL-Poly): In this setup, all the parsers are
trained on diverse polygot corpus and tested
on a diverse range of target languages. There
is no overlap between source and target lan-
guage sets.

Furthermore, the experiments within Cross-lingual
with single source language (CL-Single) and Cross-

Languages Corpus Dev Corpus*
German de_hdt-ud-test de_hdt-ud-dev
Croatian hr_set-ud-test hr_set-ud-dev
Italian it_isdt-ud-test it_isdt-ud-dev
Hindi hi_hdtb-ud-

test
hi_hdtb-ud-
dev

Chinese zh_gsd-ud-test zh_gsd-ud-dev
Estonian et_edt-ud-test et_edt-ud-dev
Vietnamese vi_vtb-ud-test vi_vtb-ud-dev

Table 3: Copra for target languages listed in table 1 used
during experiments. All copra are part of Universal
Dependencies dataset. * A small subset of sentences
are sampled from these copra to be added to the source
copra in Few-shot scenarios

lingual with multiple source languages (CL-Poly)
setups are conducted under both Few-shot and Zero-
shot learning scenarios.
Within Zero-shot learning scenario the training cor-
pus does not contain any sentence in the target lan-
guage on which the model is being evaluated. On
the other hand, within Few-shot learning scenario
the training corpus consists of few sentences in the
target language on which the model is being evalu-
ated, along with other source language sentences
(covering over 80% the corpus). In Cross-lingual
setups we used Graph-based mBERT parser by (Wu
and Dredze, 2019) as baseline. It is a multilingual
parser that uses same architecture as (Dozat and
Manning, 2016) except the LSTM encoder which
is replaced by mBERT.

4.2 Languages

Table 1 lists various source and target language
used in each of the experimental settings. In CL-
Poly setup, we trained our models on joint polygot
corpus of all twelve source languages listed in Ta-
ble 2. All these twelve languages belong to distinct
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Hyper-parameter Value
d 768
Dropout prob. 0.01
Bach-size 32
Number of steps per
epoch

Size of training corpus
/ 32

Epochs 50
BERT dimensions cased_L-12_H-768_A-

12

Table 4: Hyper-parameters

linguistic families thus making the corpus typolog-
icaly diverse.
For all experiments, the training corpus size is al-
ways fixed to 30,000 sentences. The joint polygot
corpus to train CL-Poly is created by randomly sam-
pling 2500 sentences from the training coprus for
each of the 12 source languages listed in Table 1,
concatenating them as one treebank and randomly
shuffling the order.
Our Cross-lingual models are tested on seven target
languages, belonging to distinct linguistic families.
Three of these seven languages namely Chinese,
Estonian and Ammheric belong to a linguistic fam-
ily which is distinct from language families of all
the source languages listed in Table 2. Thus perfor-
mance on these languages indicate true robustness
of the evaluated models to typological variations
between source and target languages.

4.3 Treebank and Typology datasets

Tables 2 and 3 list the treebank copra for each of
the languages listed in Table 1, used during ex-
periments. All these copra are downloaded from
Universal Dependencies2 .
For Linguistic typology feature prediction auxil-
iary tasks we used Linguistic typology feature val-
ues provided by URIEL database (Littell et al.,
2017). URIEL database is a collection of bi-
nary features extracted from multiple typological,
phylogenetic, and geographical databases such as
WALS (Haspelmath, 2009), PHOIBLE (Moran and
Richard Wright, 2014), Ethnologue (M. Paul Lewis
and Fennig, 2015) and Glottolog (Harald Ham-
marstrom and Bank, 2015). URIEL database can
be accessed through Pyton PyPi library called
lang2vec3. Library also allows users to access only
a subset of all binary features as well.

2https://universaldependencies.org/
3https://pypi.org/project/lang2vec/

Model en zh
Deep Biaffine Net-
work

93.77 93.77

Base E2E BERT
Parser

93.00 93.77

Multitasking E2E
BERT parser

93.13 93.77

Table 5: Unlabeled Attachment Scores (UAS) achieved
in Monolingual experimental settings.

For the experiments within this paper, we used
only syntactic binary features generated from
WALS database (categorised as Syntax-WALS
within URIEL database).

4.3.1 Missing Typology
As with most typology databases, URIEL also
comprises of several missing values of features
for many languages. These missing values are
indicated as ’–’ in typology vector provided by
URIEL (rather than having values 0 or 1). A ty-
pology feature can also have value as ’–’ for a
well-documented language if that feature has no
dominant value observed within the respective lan-
guage
These missing features pose a problem during
training of Multitasking BERT Parser as there
are no true-values for these to optimize loss with.
We address this issue through masking technique
(Vaswani et al., 2017). We masked the missing
typology features and train only on available ones
for each source language.

4.3.2 Short tree-bank copra
For each experiment under Few-shot learning sce-
nario, we extracted a small set of target language
sentences (on which model is being evaluated), to
be added to the source training corpus before train-
ing.
We extracted this subset by randomly sampling
sentences from the dev corpus of the respective
target-language tree-bank dataset until the token-
size becomes approximately equal to 3000. This is
inspired by (Ammar et al., 2016) who used same
yardstick to evaluate their Multi-lingual Depen-
dency Parser (MALOPA).

5 Results and Inference

Tables 5 outlines Unlabeled Attachment Score
(UAS) achieved by the baseline Deep Biaffine
Parser as well as our Base E2E BERT Parser and
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CL-Single CL-Poly
mBERT Base

E2E
Multi
E2E

Aux
task*

mBERT Base
E2E

Multi
E2E

Aux
task*

zh 43.32 42.98 41.74 0.01 66.81 66.52 65.35 0.28
hr 72.49 72.07 70.91 0.07 75.28 75.01 74.05 0.14
et 71.05 70.69 69.72 0.05 67.2 66.8 65.67 0.26
de 78.07 77.68 76.67 0.04 78.85 78.54 77.33 0.21
hi 44.83 44.42 43.18 0.11 74.68 74.4 73.32 0.22
it 86.63 86.32 85.23 0.04 77.77 77.4 76.3 0.21
vi 40.74 40.34 39.25 0.08 66.89 66.56 65.45 0.24

Table 6: Unlabeled Attachment Scores (UAS) achieved in both Cross-lingual settings under Zero-shot scenario. *F1
values achieved on the auxiliary task of linguistic typology prediction (excluding missing values)

CL-Single CL-Poly
mBERT Base

E2E
Multi
E2E

Aux
task*

mBERT Base
E2E

Multi
E2E

Aux
task*

zh 44.04 43.69 44.29 0.57 67.68 67.37 68.19 0.76
hr 73.38 73.0 73.46 0.6 75.93 75.58 76.28 0.68
et 71.89 71.5 71.96 0.56 67.91 67.55 68.45 0.78
de 78.8 78.47 79.08 0.57 79.74 79.45 80.25 0.71
hi 45.63 45.33 45.91 0.61 75.59 75.16 76.13 0.62
it 87.44 87.12 87.63 0.61 78.51 78.14 78.98 0.66
vi 41.44 41.16 41.62 0.61 67.68 67.41 68.37 0.75

Table 7: Unlabeled Attachment Scores (UAS) achieved in both Cross-lingual settings under Few-shot scenario. *F1
values achieved on the auxiliary task of linguistic typology prediction (excluding missing values)

Multitasking E2E BERT Parser in monolingual set-
tings, on both English and Chinese.
Tables 6 and 7 outline Unlabeled Attachment
Scores (UAS) obtained under the Few-shot and
the Zero-shot learning scenarios respectively. Re-
sults indicate that in both Monolingual and Cross-
lingual settings, our Base E2E BERT parser per-
formed at par with the baseline Deep Biaffine
Parser (Dozat and Manning, 2016) and Graph-
based mBERT parser (Wu and Dredze, 2019) mod-
els respectively, despite being much simpler in de-
sign as its end-to-end.

5.1 Effect of Polygot Training
It is evident from results that in CL-Single setup
under both Few-shot and Zero-shot scenarios, all
the evaluated mBERT based cross-lingual models
(baseline and proposed models) perform better on
target languages which are genealogically or geo-
graphically closer to the source language English.
Thus high performance is observed for the Euro-
pean languages de, et, it and hr, whereas perfor-
mance drop significantly on Asian languages zh,
hi and vi as these are both genealogically and geo-

graphically apart from English.
On the other hand, in CL-Poly setup, these mod-
els show almost uniform performance across all
target languages. However even in Cl-Poly setup,
the models achieved comparatively lower UAS on
languages zh, et and vi than on other target lan-
guages, as these languages belong to a language
family which is distinct from language families of
all source languages listed in table 2 (section 4.2).
Since zh, et and vi are fully unknown languages in
both CL-Single and CL-Poly, the performance on
these languages indicate the cross-lingual transfer
ability of the evaluated mBERT based dependency
parsing models.
It is evident from results outlined in Tables 6 and 7
that both baseline and our proposed End-to-end
parsing models show very strong improvement
in performance on languages zh, et and vi when
trained on mixed polygot corpus as compared to
when trained on single source language copra.
Thus it can be inferred that Cross-lingual transfer-
ing ability of an mBERT based multilingual de-
pendency parser, to a distinct and unseen target
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language increases significantly as a result of poly-
got training, as polygot training allows the model
to generalise better over a diverse set of languages.

5.2 Effect of Auxiliary task

Tables 2, 3 and 4 also outline the F1-scores
achieved by our Multitasking E2E BERT parser
model on the auxiliary task of predicting linguistic-
typology features in Monolingual settings as well
as both Cross-lingual with single source language
and Cross-lingual with multiple source languages
under both Zero-shot and Few-shot scenarios.

5.2.1 Effect in Monolingual setting
Results in Table 1 show that within Monolingual
setup, our Multitasking E2E BERT parser showed
marginal improvement over Base E2E BERT parser
for both English and Chinese. In-fact the monolin-
gual variant of our Multitasking E2E BERT parser
outperformed the baseline Deep Biaffine Parser
(Dozat and Manning, 2016) for both English and
Chinese.
Hence it can be inferred that in Monolingual set-
tings, the auxiliary task of predicting linguistic ty-
pology features does lead to improvement in pars-
ing performance indeed, as it enables the model
the model to emphasize on syntactic typology of
language being parsed (specifically word-order fea-
tures) while predicting the dependency relations
within the sentence.

5.2.2 Effect in Cross-lingual settings
Under the Zero-shot learning scenario, our Multi-
tasking E2E BERT parser under-performed Base
E2E BERT parser in both CL-Single and CL-Poly
settings for all target languages.
On the other hand under Few-shot learning sce-
nario, our Multitasking E2E BERT parser showed
improvement in performance for all target lan-
guages, in both CL-Single and CL-Poly settings.
Within CL-Poly setting under Few-shot learning
scenario, our Multitasking E2E BERT parser shows
an average improvement of 4.6% in UAS across all
target languages over Base E2E BERT parser. This
is much higher than average improvement of 1.93%
shown by ourMultitasking E2E BERT parser over
Base E2E BERT parser within CL-Single settings
under Few-shot learning scenario.
Based on these trends it can be inferred that the
auxiliary task does not help the model to improve
the cross-lingual transfer parsing in an unseen lan-
guage (which are not the part of training corpus).

However the task does enable the model to better
learn to distinctively parse in each of the languages
on which it is trained, even if the training corpus
consists of only few sentence in the language.
Further the improvement is higher in CL-Poly set-
tings than CL-Single settings as the model gener-
alizes better on the auxiliary task due to polygot
training.

6 Conclusion and Future Work

In this paper we evaluated the performance of our
proposed End-to-end BERT Based Dependency
Parser which can parse a sentence by directly pre-
dicting relative head-position tag for each word
within input sentence. Subsequently we added the
auxiliary task of Linguistic typology prediction to
our Base E2E BERT parser to observe the change
in performance under different settings.
Our results show that adding such auxiliary task
leads to improvement in performance of Base E2E
BERT Parser within Cross-lingual settings under
Few-shot learning scenario whereas no improve-
ment is observed within the Zero-shot learning sce-
nario.
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Abstract
Prior research has investigated the impact of
various linguistic features on cross-lingual
transfer performance. In this study, we inves-
tigate the manner in which this effect can be
mapped onto the representation space. While
past studies have focused on the impact on
cross-lingual alignment in multilingual lan-
guage models during fine-tuning, this study
examines the absolute evolution of the respec-
tive language representation spaces produced
by MLLMs. We place a specific emphasis on
the role of linguistic characteristics and investi-
gate their inter-correlation with the impact on
representation spaces and cross-lingual transfer
performance. Additionally, this paper provides
preliminary evidence of how these findings can
be leveraged to enhance transfer to linguisti-
cally distant languages.

1 Introduction

It has been shown that language models implicitly
encode linguistic knowledge (Jawahar et al., 2019;
Otmakhova et al., 2022). In the case of multilin-
gual language models (MLLMs), previous research
has also extensively investigated the influence of
these linguistic features on cross-lingual transfer
performance (Lauscher et al., 2020; Dolicki and
Spanakis, 2021; de Vries et al., 2022). However,
limited attention has been paid to the impact of
these factors on the language representation spaces
of MLLMs.

Despite the fact that state-of-the-art MLLMs
such as mBERT (Devlin et al., 2019) and XLM-R
(Conneau et al., 2020), use a shared vocabulary and
are intended to project text from any language into
a language-agnostic embedding space, empirical
evidence has demonstrated that these models en-
code language-specific information across all lay-
ers (Libovický et al., 2020; Gonen et al., 2020).
This leads to the possibility of identifying dis-
tinct monolingual representation spaces within the

∗Research was conducted at Zortify.

shared multilingual representation space (Chang
et al., 2022).

Past research has focused on the cross-linguality
of MLLMs during fine-tuning, specifically looking
at the alignment of representation spaces of dif-
ferent language pairs (Singh et al., 2019; Muller
et al., 2021). Our focus, instead, is directed towards
the absolute impact on the representation space of
each language individually, rather than the relative
impact on the representation space of a language
compared to another one. Isolating the impact for
each language enables a more in-depth study of
the inner modifications that occur within MLLMs
during fine-tuning. The main objective of our study
is to examine the role of linguistic features in this
context, as previous research has shown their im-
pact on cross-lingual transfer performance. More
specifically, we examine the relationship between
the impact on the representation space of a target
language after fine-tuning on a source language and
five different language distance metrics. We have
observed such relationships across all layers with a
trend of stronger correlations in the deeper layers
of the MLLM and significant differences between
language distance metrics.

Additionally, we observe an inter-correlation
among language distance, impact on the represen-
tation space and transfer performance. Based on
this observation, we propose a hypothesis that may
assist in enhancing cross-lingual transfer to linguis-
tically distant languages and provide preliminary
evidence to suggest that further investigation of our
hypothesis is merited.

2 Related Work

In monolingual settings, Jawahar et al. (2019)
found that, after pre-training, BERT encodes differ-
ent linguistic features in different layers. Merchant
et al. (2020) showed that language models do not
forget these linguistic structures during fine-tuning
on a downstream task. Conversely, Tanti et al.
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(2021) have shown that during fine-tuning in mul-
tilingual settings, mBERT forgets some language-
specific information, resulting in a more cross-
lingual model.

At the representation space level, Singh et al.
(2019) and Muller et al. (2021) studied the im-
pact of fine-tuning on mBERT’s cross-linguality
layer-wise. However, their research was limited
to the evaluation of the impact on cross-lingual
alignment comparing the representation space of
one language to another, rather than assessing the
evolution of a language’s representation space in
isolation.

3 Methodology

3.1 Experimental Setup
In this paper, we focus on the effect of
fine-tuning on the representation space
of the 12-layer multilingual BERT model
(bert-base-multilingual-cased). We restrict
our focus on the Natural Language Inference
(NLI) task and fine-tune on all 15 languages of the
XNLI dataset (Conneau et al., 2018) individually.
We use the test set to evaluate the zero-shot
cross-lingual transfer performance, measured
as accuracy, and to generate embeddings that
define the representation space of each language.
More details on the training process and its
reproducibility are provided in Appendix A.

3.2 Measuring the Impact on the
Representation Space

We focus on measuring the impact on a language’s
representation space in a pre-trained MLLM dur-
ing cross-lingual transfer. We accomplish this
by measuring the similarity of hidden represen-
tations of samples from different target languages
before and after fine-tuning in various source lan-
guages. For this purpose, we use the Centered
Kernel Alignment (CKA) method (Kornblith et al.,
2019)1. When using a linear kernel, the CKA score
of two representation matrices X ∈ RN×m and
Y ∈ RN×m, where N is the number of data points
and m is the representation dimension, is given by

CKA(X,Y ) = 1− ∥XY ⊺∥2F
∥XX⊺∥F ∥Y Y ⊺∥F

where ∥·∥F is the Frobenius norm.

1CKA is invariant to orthogonal transformations and thus
allows to reliably compare isotropic but language-specific
subspaces (Chang et al., 2022).

Notation We define H i
S→T ∈ RN×m as the hid-

den representation2 of N samples from a target
language T at the i-th attention layer of a model
fine-tuned in the source language S, where m is
the hidden layer output dimension. Similarly, we
denote the hidden representation of N samples
from language L at the i-th attention layer of a
pre-trained base model (i.e. before fine-tuning) as
H i

L ∈ RN×m. More specifically, the representa-
tion space of each language will be represented by
the stacked hidden states of its samples.

We define the impact on the representation space
of a target language T at the i-th attention layer
when fine-tuning in a source language S as follows:

Φ(i)(S, T ) = 1− CKA
(
H i

T , H
i
S→T

)

3.3 Measuring Language Distance

In order to quantify the distance between languages
we use three types of typological distances, namely
the syntactic (SYN), geographic (GEO) and in-
ventory (INV) distance, as well as the genetic
(GEN) and phonological (PHON) distance between
source and target language. These distances are
pre-computed and are extracted from the URIEL
Typological Database (Littell et al., 2017) using
lang2vec3. For our study, such language distances
based on aggregated linguistic features offer a more
comprehensive representation of the relevant lan-
guage distance characteristics. More information
on these five metrics is provided in Appendix B.

4 Correlation Analysis

Relationship Between the Impact on the Repre-
sentation Space and Language Distance. Given
the layer-wise differences of mBERT’s cross-
linguality (Libovický et al., 2020; Gonen et al.,
2020), we measure the correlation between the im-
pact on the representation space and the language
distances across all layers. Figure 1 shows almost
no significant correlation between representation
space impact and inventory or phonological dis-
tance. Geographic and syntactic distance mostly
show significant correlation values at the last layers.
Only the genetic distance correlates significantly
across all layers with the impact on the representa-
tion space.

2We refer here to the hidden representation of the [CLS]
token which is commonly used in BERT for classification
tasks.

3https://github.com/antonisa/lang2vec
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SYN GEO INV GEN PHON

1

2

3

4

5

6

7

8

9

10

11

12

AVG

La
ye

r
-0.176* -0.222** 0.016 -0.19** -0.186**

-0.1 -0.104 0.021 -0.197** -0.067

-0.073 0.054 -0.03 -0.14* 0.005

0.051 -0.143* -0.055 -0.282** -0.027

0.159* -0.105 -0.028 -0.251** 0.068

0.074 -0.118 0.014 -0.202** 0.019

-0.001 -0.148* -0.002 -0.222** -0.007

-0.068 -0.093 -0.015 -0.195** -0.035

-0.107 -0.151* 0.001 -0.245** -0.051

-0.184** -0.168* 0.033 -0.279** -0.034

-0.262** -0.175* 0.032 -0.326** -0.066

-0.17* -0.167* 0.032 -0.291** -0.047

-0.091 -0.177* 0.003 -0.307** -0.045

Figure 1: Pearson correlation coefficient between the
impact on a target language’s representation space
when fine-tuning in a source language and different
types of linguistic distances between the source and
target language for each layer. Same source-target
language pair data points were excluded in order to
prevent an overestimation of effects. (∗p < 0.05, and
∗∗p < 0.01, two-tailed).

Relationship Between Language Distance and
Cross-Lingual Transfer Performance. Table 1
shows that all distance metrics correlate with cross-
lingual transfer performance, which is consistent
with the findings of Lauscher et al. (2020). Further-
more, we note that the correlation strengths align
with the previously established relationship be-
tween language distance and representation space
impact, with higher correlation values observed for
syntactic, genetic, and geographic distance than for
inventory and phonological distance. The exact
zero-shot transfer results are provided in Figure 3
in Appendix C.

Pearson Spearman
SYN −0.3193∗∗ −0.4683∗∗

GEO −0.3178∗∗ −0.3198∗∗

INV −0.1706∗ −0.1329∗

GEN −0.3364∗∗ −0.3935∗∗

PHON −0.2075∗∗ −0.2659∗∗

Table 1: Pearson and Spearman correlation coefficients
quantifying the relationship between zero-shot cross-
lingual transfer performance and different language
distance metrics. (∗p < 0.05, and ∗∗p < 0.01, two-
tailed).

Relationship Between the Impact on the Rep-
resentation Space and Cross-Lingual Transfer
Performance. In general, cross-lingual transfer
performance clearly correlates with impact on the
representation space of the target language, but this
correlation tends to be stronger in the deeper layers
of the model (Table 2).

Layer Pearson Spearman
1 0.2779∗ 0.3233∗

2 0.2456∗ 0.2639∗

3 0.5277∗ 0.5926∗

4 0.3585∗ 0.3411∗

5 −0.009 0.0669
6 0.1033 0.1969
7 0.2945∗ 0.3500∗

8 0.3004∗ 0.3517∗

9 0.4209∗ 0.4583∗

10 0.6088∗ 0.6532∗

11 0.7110∗ 0.7525∗

12 0.5731∗ 0.5901∗

All 0.4343∗ 0.5026∗

Table 2: Pearson correlation coefficients between
cross-lingual transfer performance and the impact
on the representation space of the target language.
(∗p < 0.01, two-tailed).

5 Does Selective Layer Freezing Allow to
Improve Transfer to Linguistically
Distant Languages?

In the previous section we observed an inter-
correlation between cross-lingual transfer perfor-
mance, the linguistic distance between the target
and source language, and the impact on the rep-
resentation space. Given this observation, we in-
vestigate the possibility to use this information to
improve transfer to linguistically distant languages.
More specifically, we hypothesize that it may be
possible to regulate cross-lingual transfer perfor-
mance by selectively interfering with the previ-
ously observed correlations at specific layers. A
straightforward strategy would be to selectively
freeze layers, during the fine-tuning process, where
a significant negative correlation between the im-
pact on their representation space and the distance
between source and target languages has been ob-
served. By freezing a layer, we manually set the
correlation between the impact on the representa-
tion space and language distance to zero, which
may simultaneously reduce the significance of the
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Exp. Frozen
Layers SYN GEO INV GEN PHON CLTP

-0.7354 -0.5109 -0.4907 -0.6116 -0.5776 66.70

A {2} -0.7310 -0.5109 -0.4791 -0.6009 -0.5791 66.53

B {5} -0.7438 -0.5053 -0.4897 -0.6148 -0.5896 66.77

C {1,2,6} -0.7325 -0.5000 -0,4846 -0.6065 -0.5666 66.75

Table 3: Pearson correlation coefficients quantifying the relationship between cross-lingual transfer performance
and different language distance metrics after freezing different layers during fine-tuning. The first row contains
baseline values for full-model fine-tuning. The last column provides the average cross-lingual transfer performance
(CLTP), measured as accuracy, across all target languages. English has been the only source language.

correlation between language distance and transfer
performance.

Wu and Dredze (2019) already showed that
freezing early layers of mBERT during fine-tuning
may lead to increased cross-lingual transfer per-
formance. With the same goal in mind, Xu et al.
(2021) employ meta-learning to select layer-wise
learning rates during fine-tuning. In what follows,
we will, however, not focus on pure overall trans-
fer performance. Our approach is to specifically
target transfer performance improvements for tar-
get languages that are linguistically distant from
the source language, rather than trying to achieve
equal transfer performance increases for all target
languages.

5.1 Experimental Setup

For our pilot experiments, we focus on English as
the source language. Additionally, we choose to
carry out our pilot experiments on layers 1, 2, 5,
and 6, as the representation space impact at these
layers exhibits low correlation values with transfer
performance (Table 2) and high correlations with
different language distances (Figure 2 in Appendix
C). This decision is made to mitigate the potential
impact on the overall transfer performance, which
could obscure the primary effect of interest, and
to simultaneously target layers which might be re-
sponsible for the transfer gap to distant languages.
We conduct 3 different experiments aiming to reg-
ulate correlations between specific language dis-
tances and transfer performance. In an attempt to
diversify our experiments, we aim to decrease the
transfer performance gap for both a single language
distance metric (Experiment A) and multiple dis-
tance metrics (Exp. C). Furthermore, in another
experiment we aim at deliberately increasing the
transfer gap (Exp. B).

5.2 Results
Table 3 provides results of all 3 experiments.

Experiment A. The 2nd layer shows a strong
negative correlation (-0.66) between representation
space impact and inventory distance to English.
Freezing the 2nd layer during fine-tuning has led
to a less significant correlation between inventory
distance and transfer performance (+0.0116).

Experiment B. The 5th layer shows a strong
positive correlation (0.499) between representation
space impact and phonological distance to English.
Freezing the 5th layer during fine-tuning has led to
a more significant correlation between phonologi-
cal distance and transfer performance (-0.012).

Experiment C. The 1st layer, 2nd layer and
6th layer show a strong negative correlation be-
tween the impact on the representation space
and the syntactic (-0.618), inventory (-0.66) and
phonological (-0.543) distance to English, respec-
tively. Freezing the 1st, 2nd and 6th layer during
fine-tuning has led to a less significant correlation
of transfer performance with syntactic (+0.0029)
and phonological (+0.011) distance.

6 Conclusion

In previous research, the effect of fine-tuning on a
language representation space was usually studied
in relative terms, for instance by comparing the
cross-lingual alignment between two monolingual
representation spaces before and after fine-tuning.
Our research, however, focused on the absolute im-
pact on the language-specific representation spaces
within the multilingual space and explored the re-
lationship between this impact and language dis-
tance. Our findings suggest that there is an inter-
correlation between language distance, impact on
the representation space, and transfer performance
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which varies across layers. Based on this finding,
we hypothesize that selectively freezing layers dur-
ing fine-tuning, at which specific inter-correlations
are observed, may help to reduce the transfer per-
formance gap to distant languages. Although our
hypothesis is only supported by three pilot experi-
ments, we anticipate that it may stimulate further
research to include an assessment of our hypothe-
sis.

Limitations

It is important to note that the evidence presented in
this paper is not meant to be exhaustive, but rather
to serve as a starting point for future research. Our
findings are based on a set of 15 languages and a
single downstream task and may not generalize to
other languages or settings. Additionally, the pro-
posed hypothesis has been tested through a limited
number of experiments, and more extensive stud-
ies are required to determine its practicality and
effectiveness.

Furthermore, in our study, we limited ourselves
to using traditional correlation coefficients, which
are limited in terms of the relationships they can
capture, and it is possible that there are additional
correlations that could further strengthen our re-
sults and conclusions.

Ethics Statement

This study was designed to minimize its environ-
mental impact by reducing the amount of required
computational resources to run our experiments.
We are aware of the high energy consumption and
carbon footprint associated with large-scale ma-
chine learning experiments and took steps to mini-
mize these impacts.

Additionally, in this study, our objective was to
address the performance gap in languages that are
underrepresented in comparison to high-resource
languages, rather than solely striving for perfor-
mance enhancement.
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A Technical Details

A.1 Data

We perform our experiments on the XNLI (Con-
neau et al., 2018) dataset4. The dataset contains
392.702 train, 2.490 validation and 5.010 test
samples, derived from the English-only MultiNLI
(Williams et al., 2018), which have been translated
to Arabic (ar), Bulgarian (bg), German (de), Greek
(el), Spanish (es), French (fr), Hindi (hi), Russian
(ru), Swahili (sw), Thai (th), Turkish (tr), Urdu (ur),
Vietnamese (vi) and Chinese (zh). The objective
of the dataset is to evaluate a model’s capability of
classifying the relationship between two sentences,
namely a premise and a hypothesis, as entailment,
contradiction, or neutral.

The dataset has been released under a Creative
Commons Attribution Non Commercial 4.0 Inter-
national5 license (CC BY-NC 4.0).

A.2 Model

We use the base cased multilingual BERT (Devlin
et al., 2019) model, which has 12 attention heads
and 12 transformer blocks with a hidden size of
768. The dropout probability is 0.1. The model has
110M parameters and covers 104 languages. Its
vocabulary size is about 120k.

A.3 Training

We fine-tune the models using the HuggingFace
Transformers (Wolf et al., 2020) and PyTorch
(Paszke et al., 2019) frameworks. We use AdamW
(Loshchilov and Hutter, 2019) as an optimizer, with
β1 = 0.9, β2 = 0.999, ϵ = 1e−8. We train for 3
epochs with a batch size of 32 and an initial learn-
ing rate of 2e−5 with linear decay. Full model fine-
tuning on a single language took about 2.5 hours on
a single NVIDIA® V100 GPU. Total GPU hours
for all 18 fine-tuned models (15 and 3 in Sections
4 and 5 respectively was about 45 hours.

In order to minimize computational costs and
reduce our environmental impact, we chose not to
conduct a full hyper-parameter search and instead
used the fixed values reported in Section 3.1.

For reproducibility, our code is provided
here: https://anonymous.4open.science/r/
sigtyp2023_workshop_paper-223F.

4https://github.com/facebookresearch/XNLI
5https://creativecommons.org/licenses/by-nc/4.

0/

B Additional Information on Language
Distance Metrics

We used the following lang2vec distances:

1. Syntactic Distance is the cosine distance be-
tween the syntax feature vectors of languages,
sourced from the World Atlas of Language
Structures.6 (WALS) (Dryer and Haspelmath,
2013), Syntactic Structures of World Lan-
guages7 (SSWL) (Collins and Kayne, 2011)
and Ethnologue8 (Lewis et al., 2015).

2. Geographic Distance refers to the shortest
distance between two languages on the sur-
face of the earth’s sphere, also known as the
orthodromic distance.

3. Inventory Distance is the cosine distance be-
tween the inventory feature vectors of lan-
guages, sourced from the PHOIBLE9 database
(Moran et al., 2019).

4. Genetic Distance is based on the Glottolog10

(Hammarström et al., 2015) tree of language
families and is obtained by computing the dis-
tance between two languages in the tree.

5. Phonological Distance is the cosine distance
between the phonological feature vectors of
languages, sourced from WALS and Ethno-
logue.

The values range from 0 to 1, where 0 indicates
the minimum distance and 1 indicates the maxi-
mum distance.

C Additional Figures

Figure 2 provides Pearson correlation coefficients
between the impact on the target language repre-
sentation space when fine-tuning in English and
different types of linguistic distances between
English and the target language for each layer.
English-English data points were excluded in order
to prevent an overestimation of effects.

Figure 3 contains the cross-lingual zero-shot
transfer results. The numbers illustrated in the
figure represent accuracies.

6https://wals.info
7http://sswl.railsplayground.net/
8https://www.ethnologue.com/
9https://phoible.org/

10https://glottolog.org
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Figure 2: Pearson correlation coefficients between the impact on the representation space and different types of
linguistic distances (with English as the only source language). (∗p < 0.05, and ∗∗p < 0.01, two-tailed).
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Figure 3: Cross-lingual zero-shot transfer results for XNLI
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Abstract
In this paper we test the parsing performances
of a multilingual parser on Old English data
using different sets of languages, alone and
combined with the target language, to train the
models. We compare the results obtained by
the models and we analyze more in deep the
annotation of some peculiar syntactic construc-
tions of the target language, providing plausible
linguistic explanations of the errors made even
by the best performing models.

1 Introduction

The performance of dependency parsing models
for high-resource languages (HRLs) has improved
significantly in recent years due to the availabil-
ity of large annotated corpora and the advance-
ment of deep learning techniques. Among others,
models such as Stanza (Qi et al., 2020) and UD-
Pipe (Straka, 2018) can achieve very high accu-
racy, with F1 scores approaching or even exceed-
ing 0.90 on some treebanks datasets. This is true
for some models for parsing data of (both modern
and ancient) languages that have plenty of anno-
tated resources, upon which is possible to train the
models, while dependency parsing of low-resource
languages (LRLs) is more problematic. The chal-
lenges that dependency parsing for LRLs has to
face can be summarized as follows: a) data scarcity:
LRLs often have limited annotated text corpora,
which makes it difficult to train high-quality mod-
els and b) transfer learning limitations: transfer
learning approaches that rely on models pre-trained
on HRLs may not work well for LRLs due to the
language-specificity of syntactic constructions.

As thoroughly discussed in Section 2.1, for what
concerns dependency parsing, Old English (hence-
forth OE) can be considered a LRL, since the
amount of annotated data available for this his-
torical variety is scarce. Given these premises,
we attempted an automatic parsing of OE, start-
ing from the automatic conversion of the York-

Toronto-Helsinki Parsed Corpus of Old English
Prose1 (henceforth YCOE) into a CoNLLU file, in
which, however, the annotation is restricted to the
sole morphological features retrievable from the
YCOE annotation. Taking this as a starting point,
we manually annotated 292 sentences, following
the standards of Universal Dependencies (de Marn-
effe et al., 2021). Then we tested the results ob-
tained training UUParser v2.4 (de Lhoneux et al.,
2017b; Kiperwasser and Goldberg, 2016) on data
coming from our set of annotated sentences in OE
and a set of treebanks of three related languages,
following Meechan-Maddon and Nivre’s (2019)
methodology, also followed by Karamolegkou and
Stymne (2021) to test the performances of cross-
lingual transfer learning for parsing Latin.

The paper is structured as follows: in Section 2
we introduce Old English providing a brief descrip-
tion of its history, developments, and typological
features. In addition, we provide a brief survey of
the main available resources for this language and
introduce some issues that an automatic parsing of
OE may face. In Section 3 we present our data and
methodology. In Section 4 we overview the results
of the parsing of OE data and discuss them. Finally,
Section 5 concludes the paper and summarizes our
findings.

2 Old English

Old English is a West-Germanic language, classi-
fied with Old Frisian and Old Saxon among the so-
called Ingvaeonic languages. It was the language
spoken in England after Angles, Saxons, Jutes and
Frisians came to Britain and settled in the island
in the 5th century. It is attested from the 7th cen-
tury, except for some older brief runic inscriptions,
whereas its ending point is conventionally estab-
lished in 1066, date of the Norman Conquest of
England (von Mengden, 2017b).

1https://www-users.york.ac.uk/~lang22/YCOE/
YcoeHome.htm
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Typologically, OE shows a nominative-
accusative alignment. Like other Indo-European
languages, OE is a fusional language with inflec-
tional word classes. Nouns are inflected by number
and case, and follow three inflectional classes,
depending on their original Proto-Germanic stem.
After some merging processes, only four of the
eight original Indo-European cases are found
in OE: nominative, accusative, genitive, and
dative. Some traces of the instrumental are present,
but residual. Depending on the class, different
cases can show syncretism. As other Germanic
languages, OE has two main conjugational system:
the so-called strong and weak verbs, the former
building the preterit by means of apophony, i.e. the
vowel alternation found in Present-Day English
(PDE) irregular verbs, the latter with a dental
suffix, just as PDE regular verb, whose past form
is constructed with the -ed suffix. Finite OE
verbs inflect for mood (indicative, subjunctive,
imperative), tense (present and past), number,
and person. Some forms show syncretism, in
particular the plural in all moods and tenses,
and the first and third person singular in the
subjunctive (von Mengden, 2017a). Although
some regularities may be found, word order in OE
is not as rigid as in PDE (Mitchell and Robinson,
2012: 63-65), and it is still debated whether the
basic word order was (S)VO or (S)OV. Like other
ancient and modern Germanic languages, OE also
exhibits V2, i.e. the tendency of the finite verb
to follow the first constituent, regardless of its
type. Concerning the order of other constituents,
nouns are generally preceded by modifiers, e.g.
demonstratives, adjectives, genitive complements.
However the latter can follow the noun if another
preceding modifier is present. In PPs, adpositions
tend to precede a noun, but generally follow a
pronoun; however, the opposite is also attested
(Molencki, 2017). Contrary to PDE, OE allowed
discontinuous constituents, above all in relative
constructions.

2.1 Annotated resources for OE

Differently from other ancient languages, such as
Latin or Ancient Greek,2 and its contemporary
counterpart, scholars have devoted little attention to
the creation of resources to study Old English. The
sole syntactically annotated resources for this lan-

2The latest release of UD (v2.11) includes 5 treebanks for
Latin and 2 for Ancient Greek.

guage are the constituency treebank YCOE and its
poetry counterpart, the York-Helsinki Parsed Cor-
pus of Old English Poetry3 (henceforth YCOEP),
which follow the Penn style. Despite their value in
size, these treebanks are hardly machine- nor user-
friendly, have no interface and can only be inves-
tigated through their tool CorpusSearch2,4 which
require an intensive training in order to write even
simple queries. There have been several attempts to
convert constituency treebanks (particularly, Penn-
style treebanks) into dependency-formats as the
Estonian-EDT (Muischnek et al., 2014) and the
Indonesian CSUI (Alfina et al., 2020), whereas, to
our knowledge, no attempts in the opposite direc-
tion have been made.

2.2 Issues in automatically parsing OE data

An automatic parsing of such a free-ordered lan-
guage can meet several problems. Regarding syn-
tax, some problems may arise, given the freedom
of word order and case syncretism, which may lead
to a confusion, for instance, between subject and
object constituents. Moreover, the use of both pre-
and postpositions may result in erroneous anno-
tation of oblique phrases. Another problematic
issue is the parsing of relative clauses, which can
be marked by a variety of means or even left un-
marked, and often show non-projectivity.

3 Data and methods

3.1 Starting point and initial issues

Our data consist of two prose OE texts, Adrian
and Ritheus and the first homily of Ælfric’s Sup-
plemental Homilies,5 for a total of 292 sentences.6

Both texts are written in the West-Saxon dialect
and have religious content. First, the texts were
coverted from the YCOE-format to a CoNLLU-file
containing the POS and the morphological features
retrievable from the YCOE annotation, i.e. case
for nouns and adjectives, and mood and tense for
verbs (when not ambiguous). Second, we manu-
ally annotated the remaining morphological fea-

3https://www-users.york.ac.uk/~lang18/pcorpus.
html

4https://corpussearch.sourceforge.net/CS.html.
5These are the first two texts in the YCOE treebank. Adrian

and Ritheus is dialogue on several biblical issues (Cross and
Hill, 1982 : 3-4). On the other hand, Ælfric’s homily, Nativi-
tas Domini, is a Christmas homily, with several expansions,
consisting in scriptural elaborations (Pope, 1968 : 191-195).

6Data and scripts can be found at https:
//github.com/unipv-larl/wundorsmitha-geweorc/
tree/main/paper_projects/parsing_oe_modern
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tures, lemmatization and syntactic dependencies,
following Universal Dependencies guidelines. This
choice is due to these reasons: UD is the de facto
standard for the annotation dependency treebanks;
moreover, it allows for comparison, which is useful
for both typological and historical analyses.

Some problematic issues derive from the con-
version of texts itself: the YCOE tags as P both
adpositions and subordinating conjunctions, which
would be tagged, respectively, as ADP and SCONJ in
Universal Dependencies. In the conversion, both
options have been kept, to manually disambiguate
them. Moreover, the verbs beon and wesan ‘to
be’ and weorþan ‘to become’ have their specific
tag in the YCOE annotation, i.e. BE*. Given the
frequency of copular and passive constructions in
which they appear, they have been all converted to
AUX. However, this tagging disregards their occur-
rences as existential verbs, which should be tagged
as VERB. As a general tendency, we chose not to
include subtypes of the syntactic lables, except for
the following cases:

• advcl:relcl, indicating a relative clause;

• the subtypes indicating a passive construction,
i.e. nsubj:pass, aux:pass and obl:agent;

• advmod:neg for the negative particle and ad-
verb ne and na,

• the specific advmod:tmod and advmod:lmod
only when they were single-word adverbs,
tagged in the YCOE as ADV^L and ADV^T;

• obl:tmod and obl:lmod have only been used
when there was a unambiguous, not metaphor-
ical interpretation.

3.2 Support languages

We used UUParser v2.4 (de Lhoneux et al., 2017b),
a transition-based parser which is able to train mul-
tilingual models. Given the small amount of anno-
tated sentences, we chose a multilingual parser, in
order to test whether the inclusion of support lan-
guages in the training phase could have a beneficial
impact on the parsing of OE sentences or not. To do
so, we selected three languages related to OE since
the addition of related languages has shown to be
effective in the tests described in de Lhoneux et al.
(2017a) and Meechan-Maddon and Nivre (2019).

While Meechan-Maddon and Nivre (2019) had
three modern languages (Faroese, Upper Sorbian

and North Saami) as target languages for the ex-
periment, which resulted in an easier choice of
languages to be used as support to train the mod-
els, our choice to focus on OE brings some issues
in selecting the support languages. PDE has been
excluded, due to its diachronic evolution: English
has lost both nominal and verbal inflection, has de-
veloped a rigid SVO order, and its lexicon has been
enriched by many French loanwords. Even though
not part of the same sub-branch, i.e. Ingvaeonic,
other modern Germanic languages present features
that are closer to OE morphosyntax. In particular,
we selected Modern Icelandic, Modern Swedish,
and Modern German. The former two are part of
the North-Germanic branch, whereas the latter is
part of the West-Germanic branch, to which OE,
too, belongs. Icelandic is considered the most ar-
chaic of Germanic languages, since it has retained
many morphological and syntactical characteristics
of Old Norse (Bandle et al., 2005: 1872). Some of
its features compatible with OE are: a) prenominal
definite determiners; b) pre- and post-nominal at-
tributive genitive; c) the so-called “oblique objects”
(i.e. impersonal constructions); d) the presence of
verb-auxiliary constructions. The last feature is lost
in Swedish, which has also undergone a process of
morphological simplification. However Swedish
features, as OE, prenominal possessive determin-
ers, while Icelandic has mainly postnominal posses-
sives (Bandle et al., 2005: 1874). Nonetheless, both
Scandinavian languages show a fixed SVO order,
which contrasts with the free OE word order. The
Scandinavian languages, as well as German, are V2
languages, like OE. Regarding the West-Germanic
branch, German is similar to OE in that it retains,
at least in subordinate clauses, a verb-final order.
Similarly to OE, it has both prepositions and post-
positions. Both German and OE have prenominal
definite determiners and attributive genitive both
pre- and postnominal positions (Haider, 2010). Of
the three support languages, Swedish shows the
major innovations, whereas Icelandic and German
may give better results.

3.3 Experimental setup

We split our sample of manually annotated OE sen-
tences in three sets (see Table 1) and from Univer-
sal Dependencies v2.11 (de Marneffe et al., 2021),
we selected one treebank for each of the support
languages, namely UD Swedish-Talbanken (Nivre
and Megyesi, 2007), UD Icelandic-Modern and
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UD German-GSD (McDonald et al., 2013).

train dev test total
tokens 2673 1308 1334 5315

sentences 149 73 70 292

Table 1: The sets resulted from splitting OE data.

We reduced the treebanks of the support lan-
guages to 60k tokens to avoid the effect on the
results that the size of the treebanks might have,7

and we converted the characters which were not
in the target language as shown in Table 6 in Ap-
pendix A.

Then, for each one of the combinations of the
four languages (the target language and the three
support languages), we performed the training of
the models and, after the training phase, we used
the best model to parse the OE test set. Our work-
flow followed these steps:

1. we used UUParser to train the model (30
epochs)

2. the epoch that had the best LAS on OE dev
data was selected as the best model

3. we parsed the OE test data using the best
model

The training phase did not take into account the
part-of-speech tags, even if the parser is able to
learn embeddings of POS tags if a specific option
is given. We decided not to use that option since
we wanted to test how well the model performed
in a common situation when it comes to work with
OE data, that is not having POS annotated texts.

In Section 4 we show the results achieved by
each model and discuss them.

4 Results and discussion

Table 2 shows the accuracy reached by each model
measured on the parsing of OE test data. At first
glance, we can see that the model trained using
only OE data significantly outperforms each of
the models trained without OE data in the training
set. This applies for both the monolingual and
multilingual models and seems to confirm what
was found by Meechan-Maddon and Nivre (2019).

7This is the main reason why we did not consider the
Gothic PROIEL treebank (Haug and Jøhndal, 2008), even
if its inclusion could have improved the parsing scores. In
this work we decided to restrict the set of languages to be
considered as support data for our models to the modern ones.

Considering the metrics, the best-performing
models were the ones trained with Icelandic and
OE data, which achieved the best Unlabeled At-
tachment Score (UAS) and Labeled Attachment
Score (LAS), together with the one trained with
Icelandic, German and OE data, which achieved
the best Label Accuracy (LA).8

Considering the UAS and the LAS achieved by
the models, it is surprising to notice that the model
that performed best was the one trained upon only
Icelandic and target language data, since the Ice-
landic monolingual model was the one which ob-
tained significantly worse results than the other
monolingual models. For what concerns the LA, it
seems reasonable to see a model trained on German
data performing better that the others considering
that the monolingual model trained upon German
was the one that achieved the best scores among the
monolingual models trained without OE data, even
though such multilingual model was trained also
upon Icelandic data. Finally, all models trained
including the target language data achieved bet-
ter results than their counterparts trained without
having the target language data in the training set,
even though the best performances are achieved
combining Icelandic and German with OE data.
This seems reasonable in light of what discussed in
Section 3.2.

In the following sections we will analyze more
in detail the output of the parsing phase of the
two models which scored the highest metrics
(is+target and de+is+target) and the monolingual
model trained only upon OE data. We will focus on
the deprels advmod and obl for the following rea-
sons: the former showed unexpectedly low results
for the OE model (as shown in Table 3); the lat-
ter allows investigating whether postpositions have
been recognized and correctly annotated. We will
also concentrate on advcl:rel, as relative clauses
can be marked by different pronouns and can show
non-projectivity. We will discuss and exemplify
the output of the models for these constructions,
using four erroneously annotated sentences. Fi-
nally, in Section 4.4, we will show some recurrent
errors made by the models tagging the dependency
relations and the impact of a rule we designed to
correct the output of the parsing process.

8The LA was measured dividing the number of token
whose deprel was tagged correctly by the number of tokens in
the test set.
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-Target +Target
UAS LA LAS UAS LA LAS

Old English 60.79 64.39 47.23
sv 27.06 24.44 9.45 65.07 73.61 57.20
de 32.91 25.34 10.12 65.82 72.19 56.45
is 20.31 22.64 4.57 68.44 73.76 58.70

sv+de 32.16 25.56 10.42 65.82 72.19 57.42
sv+is 26.39 23.76 9.45 64.62 70.09 54.42
de+is 30.73 27.74 11.17 66.34 74.29 57.42

sv+de+is 32.46 24.96 11.02 65.97 71.66 57.57

Table 2: UAS, LA and LAS of each model measured on the parsing of OE test data. -Target = cross-lingual models
trained without target language data. +Target = models trained including target language data.

advmod obl acl:relcl

oe P 41.67 61.26 62.50
R 35.71 80.95 52.63

oe-is P 65.45 65.42 72.22
R 51.43 83.33 86.67

oe-de-is P 58.21 70.93 51.85
R 55.71 72.62 63.64

Table 3: Precision (P) and Recall (R) for the dependency
relations advmod, obl and acl:relcl.

4.1 The deprel advmod

As shown in Figure 1, no relevant patterns of error
seem to be present. However, it is remarkable that
many of the errors are found with the word ne ‘not’
and swa ‘so’. Both can have several functions in
the sentences: ne can either be a negative adverb or
a negative conjunction, whereas swa can introduce
a subordinate clause or function as an adverb. The
different usages are distinguished in the UPOS,
which however is not considered by the models,
causing confusion in the syntactic annotation as
well.

An interesting example is shown in Figure 2,
where the adverb swutelicor ‘more clearly’ has
been annotated by the three models as obj of the
verb cweðað ‘(we) talk’ in this context, but gener-
ally ‘say’. This can be accounted for in light of the
absence of a true direct object depending on the
verb.

4.2 The deprel obl

As in 4.1, no significant patterns of error can be
identified for the deprel obl. Remarkably, Figure
5 compared to Figures 11 and 12 in Appendix A
shows that the best model in this respect is the one
trained only on OE data.

Figure 1: How oe model tagged tokens which had to be
tagged as advmod (see Figures 9 and 10 in Appendix A
for the other models).

we cweðað nu swutelicor . . .
PRON VERB ADV ADV

nsubj

root

advmod:tmod

obj

Figure 2: Dependecy tree of part of the sentence ‘we
cweðað nu swutelicor , on þam Godes wisdome , þe is
witodlice lif , & cann wyrcan his weorc be his dihte’
(‘we now talk more clearly about God’s wisdom, which
truly is life, and can make his actions by his command’).
Correct annotation in Figure 15 in Appendix B.

One example of incorrect annotation is worth
discussing: as touched upon in Section 2.2, the
annotation of postpositions has been problematic.
None of the three models could correctly recog-
nize that the adposition ongean ’against, towards’
depended on the preceding pronoun hiom ’them’.
The OE model considered hiom as case, directly
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. . . wiðstandan for þam strangan fingre þe hi gefreddam hiom ongean
VERB ADP DET ADJ NOUN SCONJ PRON VERB PRON ADP

conj case

det

amod

obj

mark

nsubj

acl:relcl

obj

advmod

Figure 3: Dependency tree of ‘[... & hi ne mihton na leng Moyse] wiðstandan for þam strangan fingre þe hi
gefreddan hiom ongean.’ (‘[and they could no longer] withstand [Moyses] for that strong finger that they felt against
them ’). This is the output of the oe-de-is model, see Figure 16 in Appendix B for the correct tree.

and he is ure lif on þam we lybbað and styriað
CCONJ PRON AUX DET NOUN ADP DET PRON VERB CCONJ VERB

cc

nsubj

cop

det:poss

root

case

obl:lmod

nsubj

obl

cc

conj

Figure 4: Dependency tree of part of the sentence ‘& he is ure lif on þam we lybbað & styriað, & on þam we syndon,
swa swa us sæde Paulus.’ (‘and he is our life, in which we live and move, in which we are, so as Paul said to us’).
This is the output of the oe-is model, see Figure 17 in Appendix B for the correct tree.

Figure 5: How oe model tagged tokens which had to be
tagged as obl (see Figures 11 and 12 in Appendix A for
the other models).

depending on the preceding verb gefreddan ’feel,
perceive’. On the other hand, both multilingual
models considered hiom as the object of gefred-
dan and ongean an adverb modifying the verb, as
shown in Figure 3.

4.3 The deprel acl:relcl
Most problems in the annotation of relative clauses
are: a) the great variability in the relative pronouns
marking them, and b) non-projectivity. Concern-
ing the point in a), OE has an invariable comple-
mentizer þe, which generally functions as a rel-

ative marker, at times accompanied by the deter-
miner se, seo, þæt. However, the determiner can
be found without the complementizer to mark rel-
ative clauses, above all when part of PPs, or rela-
tive clauses can simply be left unmarked. Other
POS, e.g. locative adverbs, can function as relative
pronouns. All three models tended to make the
same errors, generally recognizing and annotating
correctly only the sentences with þe, and making
mistakes when this element did not occur.

An example of this is shown Figure 4, where the
PP on þam ‘in which’ (lit. ‘in the.DAT’) was not
recognized by the models as marking the relative
clause. The sole model which recognized that this
was a subordinate clause was the de-is-oe model,
which annotated it as advcl correctly depending
on the noun lif ’life’, whereas the other models
considered it a nominal constituent (either conj or
obl). Another issue is that OE allowed for disconti-
nuity in relative clauses, which could be separated
from their antecedent by other constituents. Some
of the errors are probably due to this, as shown
in the sentence in Figure 6. This sentence shows
how the relative clause þe forlærdon Farao ‘which
corrupted the Pharaoh’, was not considered as de-
pending on the noun drymen ‘joys’, given that the
two constituents are separated by two PPs. What
the multilingual model annotated as relative clause
(erroneously, as it read the verb forlærdon as mod-
ifying Farao) is dependent on the nearest noun,
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Ða deoplican drymen mid heora drycræftum on Egypta lande þe forlærdon Farao worhton
DET ADJ NOUN ADP DET NOUN ADP PROPN NOUN SCONJ VERB PROPN VERB

det

amod

root

case

det:poss

obl

case

nmod:poss

obl mark

amod nsubj

acl:relcl

Figure 6: Dependency tree of ‘Ða deoplican drymen mid heora drycræftum on Egypta lande þe forlærdon Farao
worhton [tacna ongean Moysen of þam ylcan antimbre þe God ær gesceop...]’ (‘The deep joys, which corrupted
the Pharaoh with their magical arts in the lands of Egypt, made...’). This is the output of the oe-de-is model, see
Figure 18 in Appendix B for the correct tree.

. . . manega tacna ongean Moysen of þam ylcan antimbre þe God ær gesceop
DET NOUN ADP PROPN ADP DET ADJ NOUN SCONJ PROPN ADV VERB

det

obj

case

obl

case

det

amod

obl

mark

nsubj

adv:tmod

acl:relcl

Figure 7: Dependency tree of ‘[Ða deoplican drymen mid heora drycræftum on Egypta lande þe forlærdon Farao
worhton] tacna ongean Moysen of þam ylcan antimbre þe God ær gesceop...’ (‘...[made] towards Moyses many
signs of the same substance, which God had created before...’). This is the output of the oe-de-is model, see Figure
19 in Appendix B for the correct tree.

Figure 8: How oe model tagged tokens which had to
be tagged as acl:relcl (see Figures 13 and 14 in Ap-
pendix A for the other models).

i.e. lande ‘lands’. On the contrary, the follow-
ing relative clause (Figure 7) þe God ær gesceop
‘which God had created before’, has been annotated
correctly by all three models, as it is immediately
preceded by its antecedent, antimbre ‘substance’.

4.4 Recurrent erroneous dependency relations

During the manual check of the output generated
by the models, we noticed some recurrent errors

that the models could have avoided. These errors
are due to the fact that the generated tree and the
annotation of dependency relations do not take into
account the POS of the tokens.

form upos xpos deprel
ne CCONJ any cc
ne PART any advmod:neg
any any starts with MD aux
any any ADV^L advmod:lmod
any any ADV^T advmod:tmod

Table 4: Deprel correction table (upos=universal part-
of-speech; xpos=language-specific part-of-speech).

We decided to assign automatically a depen-
dency relation to tokens which had certain features,
as displayed in Table 4. As discussed in Section
4.1, the word ne ‘not, nor’ could function both as
negative particle (in which case was assigned PART
as universal POS), but also as a negative coordina-
tive conjunction, thus assigned CCONJ as universal
POS. Syntactically, the former function can be la-
beled only as advmod:neg, while the latter only
as cc, whether it conjuncts two NPs/PPs or two
clauses. For this reason, we automatically assigned
the deprel advmod:neg to all the occurrences of
ne, whose UPOS was PART, and the deprel cc to

36



those tagged as CCONJ. Together with ne, we also
mentioned swa ‘so’, as a frequent error in advmod.
However, we could not proceed to an automatic cor-
rection of it, as we did with ne, since swa tagged
as ADV can also appear in the fixed expression swa
swa ‘so, in the same way’, introducing a subordi-
nate clause. In this case, the first swa, whose UPOS
is ADV, should be annotated as fixed, instead of
advmod.

before after
LA LAS LA LAS

oe 64.39 47.23 66.79 48.28
oe-is 73.76 58.70 75.34 59.30

oe-de-is 74.29 57.42 75.79 58.17

Table 5: Comparison between the LA and the LAS
before and after the correction.

We also noticed many errors in the annotation
of modals, which in the YCOE are all tagged as MD
(and its variants, which show mood and tense). Fol-
lowing Universal Dependencies guidelines, they
should all be annotated as aux, making an auto-
matic correction of these errors possible. The origi-
nal YCOE annotation is useful also with temporal
and spatial adverbs. They were originally tagged
as ADV^L and ADV^T, which can easily be automati-
cally converted, respectively, in advmod:lmod and
advmod:tmod, correcting both main deprel and the
subtype.

Our correction affected the label accuracy of the
treebanks resulting on an increase of 1 or 2 points
depending on the model, which had an impact also
on the LAS, as shown in Table 5.

5 Conclusion

In this paper we tested the dependency parsing per-
formances of four monolingual models and seven
multilingual models on Old English data. We
showed that the model trained just using data of the
target language achieved far better results than the
models (both monolingual and multiliguals) trained
without target language data and that, out of the
three support languages we selected, Icelandic and
German combined better than Swedish according
to the scores reached parsing OE test data. As dis-
cussed in 3.2, we expected this result given the
fact that Modern Icelandic and Modern German
retained many morphosyntactic features similar to
those of the target language.

Then, we also discussed some cases of problem-

atic annotation: in Sections 4.1, 4.2, 4.3 we gave
some linguistic explanations of the errors made by
the best models, which include advmod, obl and
acl:relcl showing that some poor results might
be due to the peculiarity of such constructions in
OE. Finally, in 4.4, we discussed the impact which
the correction of the dependency relation annota-
tion using some rules based on the word forms, the
universal parts-of-speech and the language-specific
parts-of-speech had on the results achieved by the
best models. This errors might have been avoided
if we had used the option to force the models to
learn embeddings for the parts-of-speech during the
training phase, which would have made the parsing
process aware of the already annotated parts-of-
speech. The situation in which the POSs are anno-
tated, though, is not so usual for OE, except for the
above-mentioned YCOE and YCOEP treebanks.

Our test, following the methodology described
in Meechan-Maddon and Nivre (2019), led to the
same conclusions in terms of the benefits that sup-
port languages have on the parsing scores when
combined to OE data during the training phase. In
particular this is true when the support languages
are related to the target language or, at least, share
a significant number of features with the target lan-
guage.

This approach has proven useful for our broader
twofold aim: a) having an alternative to a rule-
based conversion of the YCOE(P) treebanks and b)
developing a tool to annotate other OE texts, which
are not included in the above-mentioned treebanks.
Despite the challenges, using this approach to parse
historical languages can accelerate the process of
creating new resources and produce outputs that,
while not perfect, are satisfactory in terms of de-
pendency parsing.
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A Additional tables and figures

character conversion
ä æ
ö o
ü u
Ä A
Ö O
Ü U
ß ss
á a
é e
í i
ó o
ú u
ý y
Á A
É E
Í I
Ó O
Ú U
Ý Y
å a
Å A

Table 6: The character conversion table.

Figure 9: How oe-is model tagged tokens which had to
be tagged as advmod.

Figure 10: How oe-de-is model tagged tokens which
had to be tagged as advmod.

Figure 11: How oe-is model tagged tokens which had
to be tagged as obl.

Figure 12: How oe-de-is model tagged tokens which
had to be tagged as obl.
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Figure 13: How oe-is model tagged tokens which had
to be tagged as acl:relcl.

Figure 14: How oe-de-is model tagged tokens which
had to be tagged as acl:relcl.
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B Additional trees

we cweðað nu swutelicor . . .
PRON VERB ADV ADV

nsubj

root

advmod:tmod

advmod

Figure 15: Correct version of the dependency tree in Figure 2.

. . . wiðstandan for þam strangan fingre þe hi gefreddam hiom ongean
VERB ADP DET ADJ NOUN SCONJ PRON VERB PRON ADP

conj

case

det

amod

obl

mark

nsubj

acl:relcl

obl

case

Figure 16: Correct version of the dependency tree in Figure 3.

and he is ure lif on þam we lybbað and styriað
CCONJ PRON AUX DET NOUN ADP DET PRON VERB CCONJ VERB

cc

nsubj

cop

det:poss

root

case

obl

nsubj

acl:relcl

cc

conj

Figure 17: Correct version of the dependency tree in Figure 4.

Ða deoplican drymen mid heora drycræftum on Egypta lande þe forlærdon Farao worhton
DET ADJ NOUN ADP DET NOUN ADP PROPN NOUN SCONJ VERB PROPN VERB

det

amod

nsubj

case

det:poss

obl

case

nmod:poss

obl

mark

acl:relcl

obj

root

Figure 18: Correct version of the dependency tree in Figure 6.

worhton manega tacna ongean Moysen of þam ylcan antimbre þe God ær gesceop
VERB DET NOUN ADP PROPN ADP DET ADJ NOUN SCONJ PROPN ADV VERB

root

det

obj

case

obl case

det

amod

nmod

mark

nsubj

adv:tmod

acl:relcl

Figure 19: Correct version of the dependency tree in Figure 7.
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Abstract
When multilingual speakers involve in a conver-
sation they inevitably introduce code-switching
(CS), i.e., mixing of more than one language
between and within utterances. CS is still an
understudied phenomenon, especially in the
written medium, and relatively few computa-
tional resources for studying it are available.

We describe a corpus of German-English code-
switching in social media interactions. We fo-
cus on some challenges in annotating CS, espe-
cially due to words whose language ID cannot
be easily determined. We introduce a novel
schema for such word-level annotation, with
which we manually annotated a subset of the
corpus. We then trained classifiers to predict
and identify switches, and applied them to the
remainder of the corpus. Thereby, we created a
large-scale corpus of German-English mixed ut-
terances with precise indications of CS points.

1 Introduction

Multilinguality is becoming more and more ubiqui-
tous, to the extent that psycholinguists increasingly
acknowledge that bilingualism is the rule and not
the exception (Harris and McGhee Nelson, 1992).
Grosjean (2010, p. 16) stated that “bilingualism is
a worldwide phenomenon, found on all continents
and in the majority of the countries of the world”
and Grosjean and Li (2013) assessed that more than
half the world’s population is multilingual.

Multilingual speakers have two or more lan-
guage systems active in their minds, and they tend
to use them interchangeably, especially when com-
municating with other multilinguals. This process
of mixing two or more languages within a discourse
or even within a single utterance is called code-
switching (CS). In order to understand and produce
natural language, NLP systems need to cope with
this phenomenon, but today’s language technology
still cannot efficiently process CS, partly due to
lacunae in our understanding of the factors driving
CS, and partly due to lack of resources.

We introduce a corpus of German-English CS in
spontaneous written communication.1 We discuss
challenges in determining the language ID of to-
kens in multilingual texts in Section 4, and present
our novel annotation scheme in Section 5. We de-
scribe the corpus in Section 6, and then describe
classifiers (Section 7) that accurately identify the
language ID of tokens in the corpus, thereby al-
lowing us to effectively identify switch points in
unseen texts. We conclude with suggestions for
future research.

2 Background and Related Work

The Phenomenon of CS Code-switching is the
process of mixing two or more languages within a
discourse or even within a single utterance, where
the mixed words or fragments do not suffer any
syntactic or phonological alternation. CS can hap-
pen on various linguistic levels (phonological, mor-
phological, lexical, syntactic), and can be intra-
sentential (the switch occurs within the boundaries
of a sentence or utterance), or inter-sentential (the
switch occurs between two sentences or utterances).
There are two competing theories on how this pro-
cess works: as a symmetric relation or as an asym-
metric relation. In the symmetric approach both
languages are equally dominant, and any lexical
items from either language can be replaced by the
corresponding items of the other language, as long
as the switch happens at syntactic boundaries that
are shared by both languages. The monolingual
fragments conform to the grammar of the corre-
sponding language they are taken from (Poplack,
1980). In the asymmetric approach one of the lan-
guages is more dominant than the other, and only
content morphemes can be taken from both lan-
guages, whereas late system morphemes indicat-
ing grammatical relations can only be taken from
the subordinate language. The dominant language

1All the data and code developed in this work are available
at https://github.com/HaifaCLG/Denglisch.
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from which the grammatical framework is taken is
called the Matrix Language, and the subordinate
language that is mixed into it is called the Embed-
ded Language (Joshi, 1982).

Oral CS CS in oral communication has been
studied extensively. It interacts with speakers’ pro-
ficiency as well as style and content of the utter-
ances, serving several, partly contradicting, pur-
poses, such as compensating for words the speaker
does not know in one language or expressing nu-
anced meanings that cannot be expressed precisely
with the other language (Gardner-Chloros, 2009).
But CS can also serve sociolinguistic purposes such
as conveying identity, interpersonal relations and
formality. Conclusions from past research have
differed greatly in whether CS is a strategy used
by highly adaptive speakers to convey very subtle
meaning differences between words of different
languages (Kootstra et al., 2012), or a strategy used
by speakers less familiar with one of the languages
to overcome lexical deficiencies (Poulisse, 1990).

Written CS CS in written communication has
not drawn much attention in research so far. Writ-
ten communication differs significantly from spo-
ken interaction, especially in formality and spon-
taneity: e.g., literary texts undergo an inherent pro-
cess of conscious reflection, correction, editing and
review. Findings thus far have differed on whether
oral and written CS behave in the same manner and
serve the same purposes. Written CS in literary
texts does partially serve the same purposes as in
spoken CS (Gardner-Chloros and Weston, 2015),
but there are additional functions and purposes that
are not found in spontaneous oral speech, such as
serving as a poetic device (Chan, 2009).

Online Forums With the increasing ubiquity
of online discussion platforms, there are large
amounts of written communication reflecting more
spontaneous speech productions than classical writ-
ten texts, thereby constituting a hybrid between
speech and formal writing. Research on CS in
online forums has so far mainly focused on compu-
tational challenges for NLP algorithms (Çetinoğlu
et al., 2016). Sociolinguistic aspects of the commu-
nicative purpose of CS in these settings are severely
understudied. Most sociolinguistic works mainly
focused on very limited data of a small number of
language-pairs or authors (Sebba et al., 2011).

Rabinovich et al. (2019) developed a large-scale
corpus of written CS data from Reddit posts con-

taining various languages switched with English,
but not including the German-English pair that we
focus on here. They compared monolingual and
code-switched posts, finding that there are topical
and stylistic distinctions, as well as a difference in
the proficiency of speakers. Shehadi and Wintner
(2022) compiled an Arabizi corpus from Twitter
and Reddit posts which contains CS between Ara-
bic, English and French, and trained classifiers to
identify switches.

Annotating CS Language annotation of bilin-
gual data is not always trivial (Clyne, 2003;
Alvarez-Mellado and Lignos, 2022), especially
when borrowings and named entities are involved.
Borrowing is a continuous process, with different
stages, where a word is first introduced as a com-
pletely foreign sounding word and is then phono-
logically and morphologically adapted to the bor-
rowing language, until it becomes a common word
of the language’s lexicon. Clear cuts on when a
word is still to be considered a foreign word or
already a common word of the language are hard
to make. Due to the geographical and phylogenetic
closeness of German and English and their com-
mon cultural and religious roots, it is often hard
to determine whether a word is borrowed, adapted,
foreign or native to the language. Alvarez-Mellado
and Lignos (2022) added a “language” tag, BOR,
to indicate recent borrowings, in addition to a tag
for named entities. Shehadi and Wintner (2022)
proposed the use of a shared category for words
that can be used in both languages. We further re-
fine their annotation scheme and the definition of
the shared category. For a different approach to
language ID annotation of multilingual texts, see
Zhang et al. (2018).

Predicting CS Points CS is influenced by var-
ious sociolinguistic characteristics, such as topic
and setting or the speakers involved in the conver-
sation and their level of familiarity. It can serve
several sociopragmatic functions such as direct quo-
tation, emphasis, clarification, parenthetical com-
ments, etc. Several linguistic features can be ex-
ploited for predicting CS points. Soto et al. (2018)
showed that POS-tags, cognates, and entrainment
of a word can trigger switches on the succeeding
word, but not on the preceding word. This suggests
that predicting CS points from the previous words
alone is possible. Solorio and Liu (2008) predicted
CS points using lexical and syntactic features, such
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as tokens, part-of-speech (POS) tags, and tree tags.
Recent works show that the strong relationship be-
tween CS and cognate words, as proposed by Clyne
(1967, 1980, 2003) in the Triggering Hypothesis,
can be used to improve language models (Solorio
and Liu, 2008; Soto and Hirschberg, 2019).

It is important to note that predicting CS is a
difficult task because CS is a subjectively moti-
vated process, subject to the speaker’s preferences
and background. Clearly, bilingual speakers do
not have to code-switch, as by definition they can
converse in any of their two languages. Under-
standing when and where they do code-switch is an
ultimate goal of our research program, but undoubt-
edly some degree of arbitrariness is inherent to the
phenomenon. Solorio and Liu (2008) therefore pro-
posed the use of human judgments additionally to
standard statistical evaluation measures.

3 Experimental Setup

Data Reddit is a large-scale social news and dis-
cussion platform, with several hundreds of thou-
sands of sub-categories (sub-reddits) on different
topics, and over 100 million new posts a year.
There are many region-based sub-reddits, which
attract large bilingual communities. The posts and
comments are length-unlimited, and unlike in lab-
settings the interlocutors produce language sponta-
neously, which allows us to analyze natural conver-
sation flow.

German is one of the most widely-used lan-
guages in the world. With approximately 100
million native speakers, it is the most prevalent
mother-tongue and, after English, the most widely
understood language in Europe.2 Since English
is the world’s main lingua franca, that non-native
speakers across Europe use on a regular basis, Ger-
man speakers are constantly exposed to English
(through movies, music, the Internet, etc.) and CS
exists in their daily life. It is thus worthwhile to
investigate CS in German-English. However, to the
best of our knowledge, no corpus or any work on
written German-English CS is available, although a
German-Turkish corpus of Twitter posts does exist
(Çetinoğlu, 2016).

Most existing CS corpora and studies on CS
use language pairs in communities where both lan-
guages are either co-official or co-native to the
community (e.g., Hindi-English, where English is

2https://en.wikipedia.org/wiki/List_of_
European_languages_by_number_of_speakers

an official language and a lingua franca throughout
India (Ganji et al., 2019); Maltese-English, where
Malta as a former British colony maintained En-
glish as a lingua franca (Camilleri Grima, 2013);
Turkish-German in the German-Turkish commu-
nity (Çetinoğlu, 2016); etc.) Here, we address CS
in a country that is officially monolingual (German)
and neither has a major community of English-
natives nor uses English as a lingua franca.

We investigate German-English CS using
country-specific sub-reddits for German-speaking
countries/regions, like r/Germany or r/DE. Since
these sub-reddits contain discussions about region-
based topics, we expect authors in these communi-
ties to be speakers of both German and English.

Statistical Classification We use (supervised)
statistical classification in order to identify CS
points. Statistical classification is the problem of
identifying to which of at least two categories a
given observation belongs. A classifier is trained
on labeled examples, i.e., instances of which the
classification is known a priori. Each instance is
represented by a set of features, to which the clas-
sifier assigns weights during training. Given that
the chosen features are actually relevant for the
classification and given that the training set is large
enough, the classifier can then predict the category
of a new unseen instance. We use Conditional
Random Fields (CRF) for the classification (Laf-
ferty et al., 2001); CRF is a sequence to sequence
classifier that uses its predictions on the previous
instance in order to predict the label of the current
instance.

Linguistic interpretation of the results can help
us extend our knowledge of CS. By predicting CS
points, we can learn about the specific features of
language that trigger CS or discourage it. Such
linguistic insights into the CS process can be used
to build NLP systems that better cope with CS and
multilingual discourse.

4 Shared Lexicon

The key to identifying CS points is precise anno-
tation of the language ID of each token in the text.
In multilingual texts, this problem is non-trivial
(Alvarez-Mellado and Lignos, 2022). We now dis-
cuss some of its challenges. We provide examples
from German-English, but most of the observations
are valid for any language pair.

Many words are shared across the German and
English lexicons. We differentiate between inher-
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ited words, or cognates, which developed from
words in an earlier stage of the language, and bor-
rowed words, which are taken from or developed
from words of another language. Borrowing is a
continuous process with different stages: words are
first introduced into the language as a completely
foreign sounding word; they are gradually adapted
to the phonological and morphological rules of
the borrowing language until eventually they are
considered to be common words of the language
(Haspelmath, 2009; Grant, 2015; Campbell, 2020).

Loan words are fully integrated borrowings, i.e.,
fully adapted to the borrowing language in flex-
ion, phonology and orthography. Borrowings with-
out (or with minimal) adaptions are called foreign
words. A pseudo-borrowing is a word created
from elements of a borrowing language, but which
does not exist in the donor language (e.g., Handy–
cellphone) (Bussmann, 2008; Campbell, 2020).

The reasons that words are borrowed or shared
across languages include geographical language
contact, phylogenetic closeness, and common cul-
tural background (Haspelmath, 2009; Grant, 2015;
Campbell, 2020). It is not always easy to tell
whether a word is borrowed, native, or a switch.

German and English are both Germanic lan-
guages, which share a common ancestral lexicon
and many similar-looking words. Both languages
were religiously and culturally influenced by Greek
and Latin. Nevertheless, words can be marked by
native morphology or orthography and some of
these adaptions may intuitively look more German
than others (e.g., -ieren, which is usually used on
long integrated Latin words instead of -en). Further,
not all of these words are actually shared. Many
Latinate words entered English through Old French
and by today either displaced their Germanic equiv-
alents or shifted their meaning.

Many cultural terms are borrowed into other lan-
guages as full new concepts without translations.
This is the case for modern inventions, but many
everyday words entered the German lexicon cen-
turies ago, and native speakers are often unaware of
their foreign roots (e,g, meschugge, Schal, cotton,
assassin).

Named entities are usually borrowed without
translation, but they may take different forms: they
can be shared completely or adapted orthographi-
cally, phonologically, and morphologically, some-
times with very distant looking forms, or even be
taken from different etymological roots. Addition-

ally, they can take derivational or inflectional mor-
phemes of the borrowing language or even be used
in compounds with native words.

Additional challenges are due to the fact that
some very high-frequency words share spelling
with a word of the other language (e.g., was, die)
although they are totally unrelated. Furthermore,
words can be composed of components of two dif-
ferent languages (e.g., Pushnachrichten–push noti-
fications).

Using English entities like Fifth Avenue, or un-
translatable terms like hamburger, in a German sen-
tence cannot be considered a regular switch, since
there is no actual German equivalent for such terms.
Nevertheless, the use of these terms might activate
the English lexicon and trigger a future switch. The
extent of such triggering may be reduced for enti-
ties or terms that are adapted to German in orthogra-
phy and morphology. These considerations are the
motivating principles for our annotation scheme,
which we now present.

5 Annotation Scheme

We introduce a novel, highly-detailed annotation
scheme that reflects the observations of Section 4
above. We present the scheme in Section 5.1, and
then propose a flattened version of it in Section 5.2.
Crucially, while we define the schemes and exem-
plify annotated instances in terms of English and
German, the schemes are applicable to any lan-
guage pair.

5.1 Detailed Annotation Scheme

The annotation scheme is summarized in Table 1.
We defined the following basic categories:
English (1): pure/regular English words.
German (2): pure/regular German words.
Overlap (3): words that belong to both mental lex-

icons, including shared and adapted named
entities (3a), borrowed words (3), language-
mixed words (3c), and words that overlap in
the given context (3b).

Neutral (4): tokens that are language universal,
including numbers (4b), emoticons (4c), in-
terjections (4d), and words of other languages
than English and German (4a).

In addition, we sometimes add the origin of the
word to the tag, as a suffix -E for English, -D for
German, and -O for other. We now explain how we
assign labels to the problematic cases described in
Section 4.
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1 English
2 German
3 Overlaps

3a Named Entities
3a-E English Origin
3a-D German Origin
3a-AE Adapted to English
3a-AD Adapted to German

3c Merge-Words
3c-C Compounds
3c-M Morphology
3c-EC Entity Compounds
3c-EM Entity Morphology

3b Ambiguous Words

3-E Untranslatable English
3-D Untranslatable German
3-O Untranslatable Other

4 Neutral
4a Foreign 4b Numbers

4b-E English only
4b-D German only

4c Smiley

4d Interjections
4d-E English only
4d-D German only
4e-E English abbr.

<url> URL
<punct> Punctuation
<EOS> End of Sentence
<EOP> End of Paragraph

Table 1: Detailed Annotation Scheme.

Named Entities are often borrowed and shared
across languages. They can be adapted to the bor-
rowing language on all linguistic levels. We intro-
duce the following subcategories: NE of German
Origin (3a-D), NE of English Origin (3a-E), NE
Adapted to German (3a-AD), NE Adapted to En-
glish (3a-AE), NE of Other origin (3a). We differ-
entiate among the following adaption cases:

Unadapted entities: entities that do not show any
kind of adaption to the borrowing language
or are native to the language (Paris, Berlin)
are tagged according to their origin (3a-E for
English, 3a-D for German, 3a for Other).

Translated entities: entities that are full transla-
tions (United Kingdom–Vereiniges Königre-
ich ) or stem from different etymologies (Ger-
many–Deutschland ) are considered regular
words (1 / 2).

Orthographic adaptions: entities that have only
spelling differences due to orthographical
rules (English /c/ vs. German /k/ ) or pronunci-
ation are tagged equally to the original name.

Morphologic adaptions: major phonological and
morphological adaptions in the entity itself af-
fect the annotation in case they identify one of
the languages (Kalifornien–California, where
-ien is a German location morpheme). Such
entities are tagged as Adapted Entities (3a-AE
for adapted to English, 3a-AD for adapted to
German). Entities that show case or plural
markings (Münchens, where -s is a genitive
morpheme) are also Adapted Entities.

Lexical adaptions entities containing translated
word parts (New Zealand–Neuseeland ) are
considered Adapted Entities. Prefixes of other
languages than German and English (‘anti-’)
were not relevant for the annotation.

We consider the following to be NEs: geograph-
ical location as well as their demonyms, including

religious and ethnic or tribal groups, as well as
language communities, persons, companies and or-
ganizations, names of weekdays and months, units,
and measures. The origin of an entity was identified
by etymological roots, and phonetic, phonological
and lexical features of the word.

Borrowings Often, words are borrowed as new
concepts without any native translation. This is
especially the case for modern inventions (Smart-
phone) and cultural terms related to food (Döner),
religion (Hijab ), festive activities and traditions
(Oktoberfest) and philosophy/ideology (LGBTQ,
Feng Shui ), including academic and honorific titles
(Tsar, Shah ).

We differentiate among the following cases:
Established untranslatables: well-established

cultural and technological terms without
native translations are tagged as 3-E/D/O
according to their origin.

Unestablished untranslatables: unestablished
technical terms common only to certain
groups (Blockchain) and terms that only
recently entered the lexicon (Lockdown) are
tagged as regular English words (1).

Translatables: Borrowings that have translation
equivalents that could have been chosen in-
stead (Bildschirm–Display), are tagged as reg-
ular words (1 / 2).

Integrated old loans: Words that originate from a
third language, e.g., Old French, Latin, Greek,
Arabic, or Persian, and have been fully inte-
grated in the language (e.g., cemetery, origin,
assassin, coffee, cotton), including Greek or
Latin prefixes, are considered regular words
(1 / 2).

Unintegrated old loans: Many unintegrated
Latin words are found in abbreviations (e.g.,
PS ) and were tagged as 4a. Those Latin
abbreviations that are spelled out with English
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words and are not used in German (e.g.) are
tagged as English (1).

Neologisms and pseudoborrowings: Borrowed
Greek and Latin neologisms (video) are
tagged as 3-O. Pseudo-borrowings (Handy)
are tagged as 3-E.

Mixes Borrowed words can be compounded
with native words (Wohlstandsbubble) or mor-
phologically adapted to the borrowing language
(gesterotyped ). Such words contain intra-word
switches. We differentiate:
Compounding: Compounds of an English and a

German word are tagged 3c-C.
Flexion: English words with German flexion mor-

phemes are tagged 3c-M.
The same is possible with borrowed NE:
Entity Compounds: Borrowed English entities

(3a-E, 3a-AE) with German flexion (googlen)
or vice versa are tagged as 3c-EM.

Inflected Entities: English Entities compounded
with German words (NRA-mäßig) are tagged
as 3c-EC.

Compounds and flexion on NEs of the same or a
third language are tagged as Adapted Entities.

Ambiguous Cases Words that cannot be iden-
tified as German or English in the given con-
text due to overlapping spelling and meaning and
switches occurring around them (taxes with a sep-
arate Einnahmen-Überschussrechnung plus Um-
satzsteuererklärung) are tagged as 3b.

Language Markings on Neutral Items Neu-
tral language-universal tokens like numbers and
interjections can bear cues to the active language
lexicon (90s–90er, 10th–10ter, ähm–erm, achso).
Those tokens that are specific to one lexicon
are tagged as English/German use only (4b-E/D,
4d-E/D), those used in both languages as 4b, 4d.
English language abbreviations that are used as in-
terjections across languages (lol, rofl ) are tagged
4e-E.

5.2 Collapsed Annotation Scheme

These categories were over-refined, and some of
them had relatively few occurrences in our corpus.
We therefore defined a collapsed version of the
scheme, as shown in Table 2.
English (E): all English words (1), English num-

bers and interjections (4b-E, 4d-E).
German (D): all German words (2), German num-

bers and interjections (4b-D, 4d-D).

Mix (M): words containing properties of both
languages, including intra-word switches
(3c-(E)M/(E)C).

Shared English (SE): all English words that are
used in both languages (3a-(A)E, 3-E, 4e-E).

Shared German (SD): all German words that are
used in both languages (3a-(A)D, 3-D).

Shared Other (SO): all words of other origin that
are used in both languages (3a, 3-O, 4a), in-
cluding shared interjections (4d) and other
overlaps (3, 3b).

Other (O): all tokens that are language indepen-
dent, including neutral number constructions,
emoticons, and punctuation (4b, 4c, <punct>,
<url>, 4).

E English 1, 4b-E, 4d-E
D German 2, 4b-D, 4d-D
M Mix 3c, 3c-C, 3c-M, 3c-EC, 3c-EM
SE Shared English 3a-E, 3a-AE, 3-E, 4e-E
SD Shared German 3a-D, 3a-AD, 3-D
SO Shared Other 3, 3a, 3b, 3-O, 4a, 4d
O Other 4, 4b, 4c, <punct>, <url>

Table 2: Collapsed Annotation Scheme.

6 Corpus Creation

We used a modified version of the method used by
Rabinovich et al. (2019) to collect and extract our
data. We downloaded approximately 17 million
comments from the German-language sub-reddits
r/DE, r/Deutschland, r/Germany, r/Berlin using
the Pushshift Reddit API. We extracted 10,000
comments that potentially contained CS using the
Polyglot language detector. We3 annotated 950
of the extracted comments manually following the
detailed scheme of Section 5. These contained
over 75,000 tokens in 4,200 sentences, of which
1,250 contained intra-sentential switches. We then
generated a version with the collapsed annotation
scheme.

We then downloaded another set of 25.5 mil-
lion comments from German-language sub-reddits,
including also sub-reddits dedicated to cities and
regions in Austria and Switzerland, as well as a few
general topics. Of those, 21,500 comments were
extracted as potentially including switches. These
comments, together with the remainder of the ini-
tially downloaded comments, were used to create a
larger automatically annotated corpus. The data for
the automatic annotation thus consists of 31,500

3All annotation was done by the first author. We therefore
cannot report inter-annotator agreement.
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comments containing 230,000 sentences with over
5 million tokens.

To identify code-switches in the automatically-
tagged corpus we use two different criteria.
The strict definition requires a sentence to con-
tain at least one word annotated “pure English”
(1), and at least one tagged as “pure German”
(2). The relaxed definition only requires a to-
ken tagged as English-origin, excluding named
entities (1,4b-E,4d-E,3-E) and a token simi-
larly annotated as German-origin, excluding NEs
(2,4b-D,4d-D,3-D), or a token tagged as Merge-
Word, excluding NE-Merger (3c-M,3c-C). Ta-
ble 3 lists data on the manually-tagged and
automatically-tagged corpora. It reports the total
number of sentences in each corpus, the number of
sentences containing CS (both strict and relaxed),
and the number of posts containing CS (for posts,
the strict and relaxed numbers are almost identical).

We now provide some observations on the
manually-annotated portion of the corpus.

Amount of Switches The portion of bilingual
posts was very small, only 0.62‰ of the down-
loaded comments. A considerable amount of the
bilingual raw data contained the second language
only as citations or as titles (of books, movies,
songs, etc.)

Types of Switches Many of the extracted posts
contained switches on sentence boundaries. Intra-
sentential switches were often insertional, i.e., com-
prised of only a single switched word or construct
of a few switched words in an otherwise monolin-
gual sentence. Intra-word switches do exist, espe-
cially as German flexion and derivation on English
words and entities.

Topics A few topical peculiarities were striking:
computer and gaming related terms as well as so-
cial media related terms were often switched to
English in otherwise German comments; terms re-
lated to politics, authorities, law or regulations were
often switched to German in otherwise English
comments.

7 Identifying Switches

In order to identify switches in an unseen utter-
ance, we need to identify the language ID tag of
the words in the sentence. We now describe a clas-
sifier that establishes this task.

7.1 Word-Level Classification

We used CRF to train a sequence to sequence classi-
fier, using various features we list below. We opted
for more traditional, statistical classification rather
than neural classification both because we were
interested in interpreting the features and because
Shehadi and Wintner (2022), on a very similar task,
report that both methods yielded almost identical
accuracy.
Orthography: the word in lower case; whether

the word is in upper, lower or all-upper case;
whether the word is is an emoji or emoticon;
whether it contains digits, punctuation, or spe-
cial German letters (ü, ö, ä, ß ).

N-Grams: whether the word contains one of the
most frequent English or German letter bi-
and trigrams; 400 most frequent n-grams in
the corpus as separate features.

Morphology: whether the word contains German
or English derivational or inflexional affixes,
including common verbal prefixes and noun
and adjective suffixes.

Function Words: whether the word is included in
German or English lists of function words.4

Frequency: whether the word is in the 207 most
frequent German words, or the 5050 most fre-
quent English words, taken from the one bil-
lion word Corpus of Contemporary American
English.

Lexical Components: whether the word contains
lexical parts that are regularly used in German
or English named entities, e.g., weiler, burg,
neu; borough, dale, port.

Word Lists: several word lists for named entities
and cultural terms, e.g., the names of the
biggest German cities or companies.

We used 10-fold cross-validation for evaluation.
The evaluation results are listed in Table 4, reflect-
ing an overall accuracy of 0.965.

7.2 Sentence-Level Classification

Following Shehadi and Wintner (2022) we com-
bined the results of the word level annotation to
form bit-vector annotations for sentences. Each
sentence is thus associated with a single bit-vector
indicating which of the language category tags are
present in it. We then trained a classifier to predict
the full bit-vectors at the sentence level. The re-
sults, reflecting the accuracy of the sentence-level
classifier on each category, are presented in Table 5.

4We compiled these lists and will make them available.

48

https://de.wikipedia.org/wiki/Liste_der_häufigsten_Wörter_der_deutschen_Sprache
https://de.wikipedia.org/wiki/Liste_der_häufigsten_Wörter_der_deutschen_Sprache
http://www.english-corpora.org/coca
http://www.english-corpora.org/coca


Corpus Sentences Strict CS Relaxed CS Posts with CS
Manually-tagged 4,200 1,250 1,400 950
Automatically-tagged 228,800 72,250 74,000 30,150
Total 233,000 73,500 75,400 31,100

Table 3: Statistics of the corpora: the total number of sentences in each corpus, the number of sentences containing
CS (both strict and relaxed), and the number of posts containing CS.

Tag Prc Rcl F1 Support
English 0.97 0.98 0.98 29918
German 0.96 0.98 0.97 29730
Mix 0.50 0.19 0.28 246
Shared English 0.82 0.55 0.66 699
Shared German 0.78 0.54 0.64 807
Shared Other 0.75 0.50 0.60 1108
Other 0.99 0.98 0.99 12505
Micro Avg 0.96 0.96 0.96 75013
Macro Avg 0.82 0.68 0.74 75013
Weighted Avg 0.96 0.96 0.96 75013

Table 4: Results: Word-Level Classification.

The overall accuracy of predicting the full bit-array
of a sentence correctly is 0.764.

Tag Acc Prc Rcl F1
English 0.95 0.96 0.96 0.96
German 0.96 0.97 0.98 0.97
Mix 0.96 0.59 0.26 0.36
Shared English 0.95 0.86 0.68 0.76
Shared German 0.95 0.81 0.65 0.72
Shared Other 0.92 0.83 0.61 0.70
Other 1.00 1.00 1.00 1.00

Table 5: Results: Sentence-Level Classification.

7.3 Analysis

Mix Many of the words classified as Mix were
seen in the training corpus. Some of the misclassi-
fications of 3c-M and 3c-C on full-German words
(gebacken–baked, Krisentermine–crisis dates) in-
dicate that the classifier actually learns to classify
words as Mixed that could be decomposed to parts
reflecting both languages.

Untranslatables Identifying untranslatables
works relatively well even with only few training
instances, probably due to the word lists. Most
of the words tagged as 3-E/D/O were actually
contained in the word lists.

NEs Most of the words classified as Adapted En-
tities contain one of the derivation suffixes (-ish,
-ian, etc.) Many words classified as 3a-D contained

lexical features of the Lexical Components lists,
this was not observed for 3a-E. This might be due
to the training corpus containing several German
person and town names, but not many English ones.

Ambiguous The classification of ambiguous
words is rather poor, probably because identify-
ing whether the word can be disambiguated in the
context is a very subjective feature and only very
few examples were seen in training. It mainly clas-
sifies some of the instances of the words seen as 3b
in training as 3b.

8 Conclusion

We presented a corpus of German-English code-
switched utterances from user generated social me-
dia content, which contains precise language an-
notation indicating code switches. Our corpus is
partly hand-annotated and partly automatically an-
notated. We addressed some challenges in anno-
tation of multilingual data by introducing various
types of shared and mixed categories. We trained
classifiers to predict our word-level annotation and
switch-points. First experimental results from the
prediction of switch-points indicate that properties
of shared and mixed words are relevant factors for
CS. This encourages us to use our corpus as a basis
for further sociolinguistic research on spontaneous
written CS, specifically for studying the use and
effects of Shared and Mixed words on switches in
German-English and how these compare to other
language pairs. Such work is currently underway.

Ethical considerations

This research was approved by the University of
Haifa IRB. We collected data from a social media
outlet, Reddit, in compliance with its terms of ser-
vice. For anonymity, we systematically replaced
all user IDs by unique IDs; we do not have, and
therefore do not distribute, any personal informa-
tion of the authors. With this additional level of
anonymization, we anticipate very minimal risk of
abuse or dual use of the data.
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Limitations

Like any other dataset, the corpus we report on
here is not representative. In particular, it probably
includes German as used mainly by users highly
fluent in English. It is very likely unbalanced in
terms of any demographic aspect of its authors.
Clearly, the automatic annotation of language IDs
is not perfect, and may introduce noise, especially
on the smaller and more subjective categories (e.g.,
3b, M). Further, when extracting the comments for
the final corpus, very short comments were not in-
cluded and comments with only a single switch
or borrowed word might have been skipped, due
to the rather low sensitivity of the language detec-
tor. Use of this corpus for linguistic research must
therefore be done with caution. Nevertheless, we
trust that the sheer size of the dataset would make
it instrumental for research on code-switching in
general and in German-English in particular.
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Abstract

Sound correspondence patterns form the ba-
sis of cognate detection and phonological re-
construction in historical language comparison.
Methods for the automatic inference of corre-
spondence patterns from phonetically aligned
cognate sets have been proposed, but their ap-
plication to multilingual wordlists requires ex-
tremely well annotated datasets. Since annota-
tion is tedious and time consuming, it would
be desirable to find ways to improve aligned
cognate data automatically. Taking inspiration
from trimming techniques in evolutionary bi-
ology, which improve alignments by exclud-
ing problematic sites, we propose a workflow
that trims phonetic alignments in comparative
linguistics prior to the inference of correspon-
dence patterns. Testing these techniques on
a large standardized collection of ten datasets
with expert annotations from different language
families, we find that the best trimming tech-
nique substantially improves the overall con-
sistency of the alignments. The results show
a clear increase in the proportion of frequent
correspondence patterns and words exhibiting
regular cognate relations.

1 Introduction

With the introduction of automated methods for the
inference of correspondence patterns from multilin-
gual wordlists (List, 2019), computational histori-
cal linguistics has acquired a new technique with
multiple applications in the field. Correspondence
patterns have been used to identify problematic cog-
nate judgments in individual datasets (List, 2019)
or to assess their general characteristics (Wu et al.,
2020), they have been used as the basis to predict
cognate reflexes (Bodt and List, 2022; List et al.,
2022c; Tresoldi et al., 2022) or to reconstruct proto-
forms (List et al., 2022b). They have also shown to
be useful to compare different cognate judgments
with respect to the overall regularity they introduce
in a multilingual dataset (Greenhill et al., 2023).

While machine-readable correspondence pat-
terns have already shown to be useful for various
tasks in historical linguistics, their basic properties
have so far not yet been thoroughly investigated.
Thus, although we can easily see that correspon-
dence patterns show long-tail distributions with
respect to the number of alignment sites that indi-
vidual patterns reflect in multilingual datasets, no
closer investigations of these patterns have been
carried out so far. Here, historical linguistics can
learn from evolutionary biology, where specific
characteristics of alignments of DNA or protein se-
quences have been investigated for several decades
now. Scholars have also looked into the charac-
teristics of those alignment sites that turn out to
be problematic when it comes to phylogenetic re-
construction and similar secondary tasks (Talavera
and Castresana, 2007; Dress et al., 2008). In order
to handle these “irregular” sites, biologists have
proposed methods to trim alignments by removing
sites that contradict more general evolutionary ten-
dencies. This allows scholars to reduce the amount
of artifacts in the data and retrieve more accurate in-
formation about the evolutionary processes behind
the alignments.

In computational historical linguistics, trimming
of alignments has so far been ignored. In classi-
cal historical language comparison, however, the
practice of ignoring specific sites in the alignment
of cognate words has been practiced for a long
time. When arguing for particular sound changes
or correspondence patterns, scholars routinely con-
sider only the supposed root of a cognate set (Trask,
2000, 290), ignoring inflectional and derivational
markers or irregular parts of individual cognate re-
flexes. While this is a common procedure for the
comparative method, it is seldom made explicit.
One of the few cases where this process is made
explicit is offered by Payne (1991). Here, the au-
thor provides an alignment matrix where all the
non-cognate material is set into brackets, distin-
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guishing them from the true alignment sites. This
step is accompanied by a detailed discussion of the
morphemic elements and its implication for recon-
structing the proto-forms, a step that is rarely put
into such detail. The importance of this practice is
also reflected in tools that allow for the manual cor-
rection of alignments, like EDICTOR (List, 2017a)
and RefLex (Segerer and Flavier, 2015) which of-
fer options to flag alignment sites as problematic
(or important). Specifically the trimming facility of
the EDICTOR tool has also been used to increase
the transparency of cognate sets in studies devoted
to phylogenetic reconstruction (Sagart et al., 2019;
Cayón and Chacon, 2022).

Given the highly skewed distributions of align-
ment sites over correspondence patterns in com-
putational comparative linguistics and the practice
of human annotators to regularly ignore certain
parts of phonetically aligned cognate sets in his-
torical linguistics, it would be beneficial to find
automated ways to trim phonetic alignments in
multilingual wordlists. Trimmed alignments could
either form the basis of a more extensive annotation
of phonetic alignments in a computer-assisted set-
ting (List, 2017b), or they could serve as the basis
of extensive cross-linguistic, typologically oriented
studies devoted to the regularity of sound change
and sound correspondence patterns. For example,
correspondence patterns have already been used in
typological studies investigating the history of pro-
noun systems in South America (Rojas-Berscia and
Roberts, 2020), or for studies with simulated data
that use phonetic alignments to construct artificial
cognate sets (Wichmann and Rama, 2021).

In the following, we will provide a first frame-
work for the trimming of phonetic alignments and
test it on ten datasets from typologically diverse
language families. Our experiments show that trim-
ming increases the overall regularity of the corre-
spondence patterns – even when using very rudi-
mentary strategies– and thus shrinks the long tail of
their distributions over alignment sites. The closer
inspection of individual trimmed alignments, how-
ever, also shows that our methods still have a lot
of room for improvement. We conclude by point-
ing to various techniques that could enhance the
trimming of phonetic alignments in the future.

2 Background

Sound correspondences are the core of the compar-
ative method. They form the basis for proving ge-

netic relationship between languages, for establish-
ing the internal classification of language families,
as well as for the reconstruction of proto-languages.
Sets of sound correspondences are commonly ana-
lyzed as correspondence patterns. A crucial com-
ponent of correspondence patterns in contrast to
sound correspondences is that the correspondence
set is not defined on the basis of language pairs,
but rather as a pattern shared between several lan-
guages (List, 2019, 141). In other words, a corre-
spondence pattern is defined as the set of sounds in
any number of daughter languages that derive from
the same phoneme of the ancestral language in a
specific environment (Hoenigswald, 1960; Anttila,
1972).

In order to qualify as a pattern, sound correspon-
dences must be backed by many examples. Ex-
amples are drawn from concrete cognate sets that
need to be phonetically aligned in order to reveal
which sounds correspond with each other. In order
to constitute a valid pattern that would be accepted
as a regular or systematic sound correspondence
(Trask, 2000, 336f), a considerably large amount of
examples backing a certain pattern must be assem-
bled from the data. This step is necessary to avoid
chance similarities resulting from erroneous cog-
nate judgments or undetected scarce borrowings.
While the minimum number of examples is not uni-
versally agreed upon, most scholars tend to accept
two or three examples as sufficient to consider a
pattern as regular.

Correspondence patterns are typically repre-
sented with the help of a matrix, in which the
rows correspond to individual languages and the
columns correspond to patterns, with cell values
indicating the sounds (the reflexes) of individual
language varieties in individual patterns (Clackson,
2007, 307). Correspondence patterns are tradition-
ally inferred by manually inspecting phonetic align-
ments of cognate sets, trying to identify individual
columns (alignment sites) in the alignments that
are compatible with each other (Anttila, 1972; List,
2019). Figure 1 illustrates this process with pho-
netic alignments of fictitious words from fictitious
languages. In order to reconstruct the ancestral
form underlying a cognate set, it is common to
ignore certain sites in the alignment that are consid-
ered as difficult to align. Problems of alignability
(Schweikhard and List, 2020, 10) usually result
from the fact that words in a cognate set are not
entirely, but only partially cognate. This can be
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Figure 1: Corresponding alignment sites in a set of four
fictitious languages.

Figure 2: Trimming morphemes in Quechua. The root is
combined with different morphemes in some varieties.

due to processes of word formation or inflection in
individual language varieties (Wu and List, 2023),
as illustrated in Figure 2 with data from Quechua
(Blum et al., forthcoming).

3 Materials and Methods

3.1 Materials
We use ten freely available datasets from typo-
logically diverse language families, taken from
the Lexibank collection (List et al., 2022a).
This collection contains datasets that were
(retro)standardized following the recommenda-
tions of the Cross-Linguistic Data Formats ini-
tiative (CLDF, https://cldf.clld.org, Forkel et al.
2018). One core aspect of CLDF is to make
active use of reference catalogs like Glottolog
(https://glottolog.org, Hammarström et al. 2022)
and Concepticon (https://concepticon.clld.org),
List et al. 2023). Reference catalogs in this con-
text are metadata collections that provide extensive
information on very general linguistic constructs,
such as languages, concepts, or speech sounds. By
linking the languages in a given dataset to Glot-
tolog, by providing Glottocodes for individiual lan-
guage varieties, one guarantees the comparability
of the language varieties with other datasets which
have also been linked to Glottolog. By mapping
concepts in multilingual wordlists to Concepticon,
one guarantees the comparability of the concepts
with other datasets that have also been linked to
Concepticon. Apart from Glottolog and Concepti-
con, many datasets from the Lexibank collection of-

fer standardized phonetic transcriptions following
the Cross-Linguistic Transcription Systems refer-
ence catalog (CLTS, https://clts.clld.org, List et al.
2021, see Anderson et al. 2018). In this reference
catalog, more than 8000 different speech sounds
are defined and can be distinguished with the help
of distinctive features. At the same time, new, so
far unseen sounds can be derived using a specific
parsing algorithm underlying the PyCLTS software
package (List et al., 2020). As a result, the Lex-
ibank collection of multilingual wordlists offers
a large number of multilingual datasets that have
been standardized with respect to languages, con-
cepts, and transcriptions.

Apart from offering standardized phonetic tran-
scriptions, all datasets also offer cognate judgments
provided by experts. Alignments were computed
automatically, using the SCA method for multiple
phonetic alignments (List, 2012, 2014) in its default
settings. Of the ten datasets, two (CROSSANDEAN

and WALWORTHPOLYNESIAN) were reduced to 20
language varieties in order to have datasets of com-
parable sizes. While the datasets differ with respect
to the number of language varieties and time depth
of the families in question, they are all large enough
to allow us to infer a substantial amount of frequent
sound correspondence patterns.

3.2 Methods
3.2.1 Trimming Phonetic Alignments
The main purpose of trimming is to remove prob-
lematic alignments and increase the potential of
retrieving relevant information from the remaining
sites. In biology, trimming of sequence alignments
is primarily performed to improve phylogenetic in-
ference. The goal is to reduce the noise in the data
in order to get a clearer picture of the actual phylo-
genetic information contained in DNA sequences
(Talavera and Castresana, 2007). Despite the re-
moval of some data, the accuracy of phylogenetic
trees inferred from the data often improves. To as-
sure that enough relevant information is maintained
after trimming, trimmed alignments need to have
some minimal length. Several tools for automated
trimming have been developed in evolutionary biol-
ogy. Some of them select the most reliable columns
and remove sparse alignments that consists mainly
of gaps (Capella-Gutiérrez et al., 2009), while other
tools focus on entropy values and evaluate whether
a site is expected or not (Criscuolo and Gribaldo,
2010). The most ambiguous and divergent sites
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Data set Lang. Concepts Cog.-Sets Words Source
CONSTENLACHIBCHAN 25 106 213 1216 Constenla Umaña (2005)
CROSSANDEAN 20 150 223 2789 Blum et al. (forthcoming)
DRAVLEX 20 100 179 1341 Kolipakam et al. (2018)
FELEKESEMITIC 21 150 271 2622 Feleke (2021)
HATTORIJAPONIC 10 197 235 1710 Hattori (1973)
HOUCHINESE 15 139 228 1816 Hóu (2004)
LEEKOREANIC 15 206 233 2131 Lee (2015)
ROBINSONAP 13 216 253 1424 Robinson and Holton (2012)
WALWORTHPOLYNESIAN 20 205 383 3637 Walworth (2018)
ZHIVLOVOBUGRIAN 21 110 182 1974 Zhivlov (2011)

Table 1: Number of languages, concepts, non-singleton cognate sets and total entries across the different datasets

are removed in this approach, arguing that they
might result from erroneous judgements of homol-
ogy (Steenwyk et al., 2020).

In contrast to the trimming of DNA sequences in
biology, the main goal of trimming alignments in
linguistics is not to infer phylogenetic trees, but to
make the alignments more useful for secondary use
in computing sound correspondences and helping
phonological reconstruction. Each cognate set is
reduced to a ‘core’ alignment, which can then later
be reconstructed as approximating the root in the
proto-language of the respective cognate set.

Our initial trimming strategies focus on the pres-
ence of gaps in the alignment sites. For this pur-
pose, we compute the proportion of gaps in each
site and evaluate whether this proportion is above
or below a certain threshold (gap threshold). All
sites which are above the threshold are identified as
candidates for trimming. The default value for the
gap threshold in our implementation is 0.5, which
means that we could trim all sites in which the
majority of sounds is a gap.

However, since a naive trimming of all align-
ment sites exceeding our gap threshold might well
lead to the trimming of all sites in an alignment
and therefore discard the corresponding cognate
set in its entirety, we define a minimal skeleton
of alignment sites that should not be touched by
the trimming procedure (similar to the minimal se-
quence length in DNA trimming). This skeleton
is based on consonant-vowel profiles of the align-
ments and defaults to CV and VC. The preference
of minimal CV/VC skeletons for aligned cognate
sets is justified by linguistic practice (Tian et al.,
2022) and can be adjusted to account for extended
root structures, such as, for example, CVC . This
means that only those results of the trimming pro-

cedure are accepted that leave a core alignment
of at least one consonant and one vowel, ignoring
their particular order. In order to make sure that
the core is preserved, we first define an ordered list
of candidate sites that could be removed and then
start removing them site after site, checking after
each removal whether the core skeleton has been
left untouched. When only the core skeleton is left,
trimming is stopped.

Based on this general procedure of trimming un-
til a core skeleton defined by the user is reached,
we test two detailed strategies for trimming. In
the first strategy, we only trim consecutive gaps
occurring in the beginning or the end of the align-
ment, a strategy that is also used in the context of
sequence comparison in biology (Raghava and Bar-
ton, 2006). This core-oriented strategy allows us
to drop spurious prefixes and suffixes occurring in
some language varieties in individual alignments.
In order to create our ordered list of candidate sites,
we start from the right-most sites in our alignment
and combine them with the left-most sites. In the
second strategy, we trim all sites where the fre-
quency of gaps exceeds our threshold, regardless
of their position. This gap-oriented strategy would
also trim gapped sites occurring in the beginning
and the end of an alignment, but may additionally
trim gapped sites regardless of their position. In
order to create our ordered list of candidate sites,
we sort all sites exceeding the gap threshold by
the proportion of gaps in reversed order. Figure 3
illustrates the calculation of gap profiles and the
trimming using the two strategies defined here for
a toy example of fictitious words from fictitious
languages.
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Figure 3: Artificial example for the computation of gap profiles followed by trimming using the core-oriented (left)
and the gap-oriented strategy (right).

3.2.2 Evaluating Cognate Set Regularity
With the method by List (2019), correspondence
patterns can be inferred from phonetically aligned
cognate sets with the help of an iterative partition-
ing strategy which clusters the individual alignment
sites. The resulting patterns are reflected by varying
amounts of alignment sites, which we can use to
compute certain statistics, building on earlier work
by Greenhill et al. (2023). In a first step, we can
compare the number of frequently recurring pat-
terns with the number of patterns that do not recur
frequently in the data. Based on this comparison,
we can compute the proportion of alignment sites
that are assigned to a frequently recurring pattern.
This comes close to the notion of “regular” corre-
spondence patterns in traditional historical linguis-
tics, with the difference that we need to choose a
concrete threshold by which a pattern recurs in our
data (the pattern threshold, which is set to 3 by de-
fault). By defining frequently recurring patterns as
regular, we can now assess for individual cognate
sets how many of the alignment sites reflect regular
patterns and how many reflect irregular patterns.
This allows us to distinguish regular from irregu-
lar cognate sets by calculating the proportion of
alignment sites reflecting regular correspondence
patterns and setting some threshold beyond which
we consider a cognate set as irregular (the cognate
threshold, which is set to 0.75 by default). Hav-
ing identified regular cognates in a given wordlist,
we can contrast them with irregular cognates and
calculate the proportion of reflexes (words in indi-
vidual cognate sets) that appear in regular cognate
sets. Given that this proportion gives us an idea of
how many of the words in our data that appear in
cognate relations can be assigned to some regular
cognate set via regular sound correspondences, we
interpret this proportion of regular words as the
overall regularity of the dataset.

Selecting meaningful thresholds is not an easy
task, specifically when calculations depend on mul-

tiple parameters as in our case. We decided to
take a conservative pattern threshold of 3, which
means that a pattern to be considered as regular
must at least recur across three alignment sites in
a given dataset. For the regularity of cognate sets,
we decided for an even more conservative thresh-
old of 0.75, which means that three quarters of the
alignment sites in a given cognate set must reflect
correspondence patterns that recur three or more
times in the data.

3.2.3 Evaluating Trimmed Alignments
We make use of this interpretation of frequency as
regularity in order to evaluate the success of our
trimming operations. In order to check to which
degree the trimming of phonetic alignments leads
to an increase of overall regularity, modeled by tak-
ing the frequency of correspondence patterns into
account, we compare three different constellations,
namely (a) no trimming, (b) core-oriented trim-
ming, and (c) gap-oriented trimming. We compare
the three methods by computing the proportion of
regular correspondence patterns and the propor-
tion of regular words in all datasets, as outlined in
the previous section. A successful trimming strat-
egy should lead to an increase of both measures.

For further evaluation, we implement a random
model that compares our targeted trimming strate-
gies with a random strategy for trimming. To ac-
count for this, we randomly delete the same amount
of alignment sites from each alignment as we did
with the gap- or core-oriented strategies, while pre-
serving the ratio of consonantal and vocalic align-
ment sites. With this step we assure that the re-
sulting randomly trimmed alignment preserves the
minimal CV/VC skeleton. For each dataset and
trimming-strategy, we run the random model 100
times and analyze how many times the random
model surpasses the results of the targeted model
with respect to the proportion of regular words.
This error analysis helps us to assess whether a
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trimming strategy systematically outperforms the
random model.

3.2.4 Implementation
The new methods for the trimming of phonetic
alignments are implemented in Python in the form
of a plugin to the LingRex software package
(https://pypi.org/project/lingrex, List and Forkel
2022, Version 1.3.0). LingRex itself extends
LingPy (https://pypi.org/project/lingpy, List and
Forkel 2021, Version 2.6.9) – which we use for
phonetic alignments – by providing the method
for correspondence pattern detection which we
use to evaluate the consequences of trimming
our alignments. For the handling of the cross-
linguistic datasets provided in CLDF, CLDFBench
(https://pypi.org/project/cldfbench, Forkel and List
2020, Version 1.13.0) is used with the PyLexibank
plugin (https://pypi.org/project/pylexibank, Forkel
et al. 2021, Version 3.4.0 ).

4 Results

4.1 General Results
The two trimming strategies were applied to all
datasets in our sample and regularity scores for
the proportion of regular sound correspondence
patterns and the proportion of regular words were
computed. Given that the trimming strategies might
reduce alignments only to a core skeleton (CV/VC),
only those cognate sets whose alignments consist
of at least one vocalic and one consonantal site
were considered in this comparison. Phonetic align-
ments were carried out with the help of the default
settings of the SCA method (List, 2012). Corre-
spondence patterns were computed with the help
of the method by List (2019). The results of our
general comparison of different trimming strategies
are presented in Table 2. For both the proportion of
regular correspondence patterns and the proportion
of regular words, the best result for each dataset
is highlighted in the table. Without exception, the
gap-oriented trimming strategy yields the highest
proportion of regular correspondence patterns and
the highest proportion of regular words. The core-
orientied trimming strategy outperforms the base-
line without trimming in some cases, but not consis-
tently, often only leading to minimal improvements
over the baseline. Random tests confirm this trend
for both trimming strategies.

The reduction of alignment sites generally leads
to a reduced number of correspondence patterns in-

Figure 4: Distribution of alignment sites per pattern
with gap-oriented trimming and without. Each point
on the x-axis represents one correspondence pattern, its
value on the y-axis reflects the number of alignment
sites it contains. The patterns are sorted on the x-axis by
their number of alignment sites. Gap-oriented trimming
and the baseline are distinguished by shape and color.

ferred from the individual datasets, no matter which
trimming procedure is applied. This holds in all set-
tings for both irregular and regular correspondence
patterns (see Appendix A for details). Gap-oriented
trimming removes more patterns than core-oriented
trimming, which is also expected, given that in the
latter setting we preserve some sites in the core
that would otherwise have been trimmed. Figure
4 visualizes the reduction of correspondence pat-
terns and alignment sites for all ten datasets in
our sample. This analysis allows us to make two
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Original Core Gap
Dataset P W P W P W
CONSTENLACHIBCHAN 0.71 0.50 0.69/ 0.70 0.46/ 0.47 0.76/ 0.70 0.51/ 0.43
CROSSANDEAN 0.73 0.58 0.74/ 0.73 0.60/ 0.59 0.75/ 0.73 0.64/ 0.59
DRAVLEX 0.56 0.23 0.57/ 0.55 0.27/ 0.23 0.61/ 0.55 0.31/ 0.24
FELEKESEMITIC 0.55 0.22 0.58/ 0.56 0.25/ 0.24 0.62/ 0.56 0.29/ 0.25
HATTORIJAPONIC 0.58 0.33 0.57/ 0.58 0.33/ 0.33 0.59/ 0.58 0.38/ 0.34
HOUCHINESE 0.65 0.40 0.65/ 0.65 0.42/ 0.40 0.69/ 0.64 0.45/ 0.35
LEEKOREANIC 0.44 0.21 0.47/ 0.45 0.20/ 0.21 0.52/ 0.47 0.22/ 0.20
ROBINSONAP 0.64 0.36 0.65/ 0.63 0.37/ 0.47 0.67/ 0.63 0.41/ 0.35
WALWORTHPOLYNESIAN 0.66 0.40 0.66/ 0.65 0.40/ 0.39 0.72/ 0.66 0.48/ 0.39
ZHIVLOVOBUGRIAN 0.57 0.24 0.58/ 0.57 0.26/ 0.25 0.61/ 0.58 0.28/ 0.26

Table 2: Proportion of regular correspondence patterns (P) and regular words (W) across all datasets after trimming.
The numbers after the slashes provide the average from 100 iterations of the random model.

general observations. First, frequently recurring
correspondence patterns tend to grow with respect
to the number of alignment sites in which they re-
cur after trimming. We attribute this to the greedy
nature of the correspondence pattern inference pro-
cedure. Second, the long tail of correspondence
patterns with very few alignment sites is substan-
tially shortened in almost all languages. This pro-
vides yet another perspective on the necessity of
trimming in linguistics. Many of the patterns with
a low amount of alignment sites do indeed seem
to contain erroneous alignment judgements, and
trimming them successfully improves the distribu-
tion of sites across the patterns. The two datasets
where the tail does not seem substantially short-
ened, CROSSANDEAN and ZHIVLOVOBUGRIAN,
are also the ones with the lowest gain in the pro-
portion of regular correspondence patterns. While
there are still small improvements, it does seem
that in those cases the gap-oriented trimming does
not seem as effective as for other datasets.

One likely explanation for this observation is the
fact that both datasets, as well as HATTORIJAPONIC,
include language varieties that are closely related
to each other. ZHIVLOVOBUGRIAN includes data
from one subgroup of the Uralic language family,
while the Quechua languages from CROSSANDEAN

are generally considered to be quite similar to each
other and of shallow time-depth. In those cases,
we expect many forms that are (nearly) identical
to each other. This would directly result in corre-
spondence patterns of high frequency, from which
not too many sites are trimmed. Especially for
CROSSANDEAN, this is reflected by the fact that it
has the highest proportion of regular words across

all the datasets, pointing to a very regular set of
lexical items.

Table 3 shows the results of our error analysis,
comparing in how many out of 100 trials for each
trimming strategy the proportion of regular words
was higher in the random trial than in the concrete
trimming method. As we can see from the table,
the random-deletion model often outperforms the
core-oriented trimming strategy, while it performs
consistently worse than the gap-oriented trimming
strategy. This clearly shows that it is not enough
to trim alignment sites at random in order to re-
duce the noise in the data. As can be expected due
to traditional theories on the regularity of sound
change, specific sites, which reflect irregular cor-
respondence patterns, must be targeted. For some
datasets, the random model does surprisingly well
in the core-oriented setting, and in some cases, it
is even consistently better than the targeted core-
strategy. This can be explained by the fact that the
random trimming might also trim sites within the
core – sites that apparently are very irregular in
some languages – and hence improve the model in
comparison to a trimming-model where a certain
core is always preserved. Given that the model
performs worse than the gap-oriented trimming in
all languages, it seems recommendable to trim all
sites above the gap-threshold, regardless of their
position in the alignment. The successful trimming
of sites that include a majority of gaps shows that
those sites contain many irregular correspondences,
and removing them improves our measures of reg-
ularity. We are now able to explain more words in
the dataset with a lower number of regular corre-
spondence patterns.
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Dataset Core Gap
CONSTENLACHIBCHAN 0.58 0.00
CROSSANDEAN 0.02 0.00
DRAVLEX 0.00 0.00
FELEKESEMITIC 0.17 0.01
HATTORIJAPONIC 0.40 0.00
HOUCHINESE 0.05 0.00
LEEKOREANIC 0.54 0.06
ROBINSONAP 0.34 0.00
WALWORTHPOLYNESIAN 0.11 0.00
ZHIVLOVOBUGRIAN 0.12 0.05

Table 3: Percentage of models with random deletion of
alignment sites that achieved higher regularity than the
respective trimming model.

Further experimentation will have to be done
with respect to different gap thresholds. Our initial
threshold of 0.5 reflects the fact that we did not
want to search for the threshold with the highest
number of regularity, but rather to account heuris-
tically for sites that include more gaps than re-
flexes of sound. Furthermore, the optimal thresh-
old might well be different for each language fam-
ily, given that correspondence patterns can differ
greatly across languages. For example, patterns of
change in which sounds are lost in certain positions
might be very frequent for one language family, but
not in another, leading to a different role of gaps in
the correspondence patterns.

4.2 Success and Failure of Trimming
Our implementation is fully compatible with
computer-assisted workflows (List, 2017b). We
output all data in a way that experts can check
them, and make both the trimmed sites as well as
the resulting (ir)regular correspondence patterns
explicit. This makes it possible to use the out-
put of our method in various tasks in historical
linguistics. Figure 5 provides one example from
the CONSTENLACHIBCHAN dataset of the output
that our trimming provides. The figure presents a
subset of cognate words for the concept ASHES, in-
cluding all gaps in the original alignment from the
selected languages. All alignment sites which fea-
tured mostly gaps were successfully trimmed from
the alignment and are displayed as greyed out in
the example. Three alignment sites remain, which
pattern well with the reconstruction of ASHES in
Proto-Chibchan as provided by Pache (2018, 41).
If the core-oriented trimming were performed in-
stead, five instead of three alignment sites would

Figure 5: Gap-oriented trimming for the cognate words
of ASHES in Chibchan languages

Figure 6: Trimming for the cognate words of WATER in
Chibchan

have remained in the final alignment, as the two
sites represented by the fourth and sixth column are
within the preserved core. This case illustrates the
advantage of the gap-oriented trimming strategy, as
all spurious alignment sites are trimmed from the
data, regardless of their position.

The closer inspection of individual trimmed
alignments shows that our methods still have a
lot of room for improvement. One major prob-
lem lies in the nature of the gap-oriented trimming.
As we remove all sites which include mostly gaps,
we might lose relevant correspondence patterns in
which the gaps do not constitute an erroneous align-
ment, but rather an actual case of gaps in the pattern.
It is a very reasonable assumption that there are lan-
guage families in which merger with zero occurred
for some correspondence pattern in the majority
of languages. One such example can be found in
Figure 6, where the trimmed alignments for the
concept WATER in several Chibchan languages can
be found. Again, we add to the data from the CON-
STENLACHIBCHAN-dataset the reconstruction as
provided by Pache (2018, 235). As we can see,
the alignment site which includes the reflexes the
glottal stop as reconstructed for Proto-Chibchan
contains gaps in most languages. With the current
methodology which focuses exclusively on gaps,
this pattern will be trimmed from the alignment,
despite reflecting relevant information. This is par-
alleled by discussions in biology, where gaps might
contain phylogenetically relevant information (Tan
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et al., 2015). This opens up the question whether
we will be able to feed such information into the
trimming algorithm, and preserve certain patterns
that we know of that would otherwise be trimmed.

What remains to be done in future studies is
to manually evaluate trimmed correspondence pat-
terns. This is a general task for historical language
comparison, as linguists often base their reconstruc-
tion judgements on impressionistic statements of
regularity or only report the most frequent corre-
spondence patterns.

5 Conclusion

We introduce the concept of trimming multiple se-
quence alignments, originally developed for ap-
plications in evolutionary biology, to the field of
historical linguistics. Trimming as such is already
practiced implicitly in the comparative method, but
as of yet, there are no computational implementa-
tions for the procedure. Our trimming algorithms
provide considerable improvements compared to
state-of-the-art alignment methods. By trimming
the alignment sites down to a subsequence without
gaps, we achieve a higher number of regular corre-
spondence patterns and cognate sets than without
trimming. Even though our technique is merely
a very preliminary approximation to the classical
workflow of the comparative method, the average
regularity of correspondence patterns across data
sets is improved in all settings analyzed. Our study
thus shows that automated trimming is both achiev-
able and worthwhile in computational historical
linguistics.

The main target of our trimming-strategies were
alignment sites that included more gaps than de-
fined in a certain threshold. Our model comparison
shows that the best results are achieved when all
such sites are trimmed, rather than only those at
the periphery of stable alignment sites. Similar to
biology, we find that alignment sites with many
gaps contain divergent information, and trimming
them improves the accuracy of our methods. It is
also not sufficient to trim sites at random, since
in that case we lose correspondence patterns that
explain the data well. The examples we provide
show both the potential of trimming alignment sites
and their methodological limitations. The success
of our strategy varies considerably between the
datasets. A closer analysis of those cases where
improvements are considerably small could pro-
vide valuable information for improved trimming

strategies to be implemented in the future.

Limitations

In addition to the already discussed problems re-
lated to the exclusive focus on gaps, we have only
tested the trimming with respect to a generalized
function of regularity in each dataset. It is not yet
clear whether this actually improves the computa-
tional success of secondary tasks like reconstruc-
tions or new methods of cognate detection.
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replicate the results reported here, along with
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Shirō Hattori. 1973. Japanese dialects. In Henry M.
Hoenigswald and Robert H. Langacre, editors, Di-
achronic, areal and typological linguistics, num-
ber 11 in Current Trends in Linguistics, pages 368–
400. Mouton, The Hague and Paris.

Henry M. Hoenigswald. 1960. Language Change and
Linguistic Reconstruction. The University of Chi-
caco Press, Chicago.

Jı̄ngyı̄ Hóu, editor. 2004. Xiàndài Hànyǔ fāngyán
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Analysis Frequ. Pat. Rare Pat. All Pat. Reg. Words Irr. Words All Words
constenlachibchan 884 355 1239 607 609 1216
constenlachibchan/gap 593 188 781 622 594 1216
constenlachibchan/gap/r 549 232 781 517 699 1216
constenlachibchan/core 680 304 984 563 653 1216
constenlachibchan/core/r 693 291 984 572 644 1216
crossandean 781 296 1077 1624 1165 2789
crossandean/gap 724 243 967 1777 1012 2789
crossandean/gap/r 708 259 967 1660 1129 2789
crossandean/core 769 276 1045 1667 1122 2789
crossandean/core/r 760 285 1045 1634 1155 2789
dravlex 665 515 1180 312 1029 1341
dravlex/gap 494 311 805 415 926 1341
dravlex/gap/r 439 366 805 317 1024 1341
dravlex/core 591 442 1033 359 982 1341
dravlex/core/r 566 466 1033 306 1035 1341
felekesemitic 928 755 1683 579 2043 2622
felekesemitic/gap 824 504 1328 773 1849 2622
felekesemitic/gap/r 743 585 1328 643 1979 2622
felekesemitic/core 860 632 1492 654 1968 2622
felekesemitic/core/r 838 654 1492 632 1990 2622
hattorijaponic 812 580 1392 562 1148 1710
hattorijaponic/gap 620 424 1044 644 1066 1710
hattorijaponic/gap/r 600 444 1044 587 1123 1710
hattorijaponic/core 707 534 1241 569 1141 1710
hattorijaponic/core/r 721 520 1241 568 1142 1710
houchinese 1329 726 2055 723 1093 1816
houchinese/gap 1020 453 1473 819 997 1816
houchinese/gap/r 940 533 1473 640 1176 1816
houchinese/core 1212 646 1858 756 1060 1816
houchinese/core/r 1201 657 1858 723 1093 1816
leekoreanic 603 764 1367 441 1690 2131
leekoreanic/gap 524 480 1004 464 1667 2131
leekoreanic/gap/r 467 537 1004 433 1698 2131
leekoreanic/core 543 623 1166 434 1697 2131
leekoreanic/core/r 521 645 1166 440 1691 2131
robinsonap 1094 616 1710 518 906 1424
robinsonap/gap 742 358 1100 584 840 1424
robinsonap/gap/r 693 407 1100 498 926 1424
robinsonap/core 877 479 1356 532 892 1424
robinsonap/core/r 861 495 1356 523 901 1424
walworthpolynesian 1568 820 2388 1472 2165 3637
walworthpolynesian/gap 1187 470 1657 1746 1891 3637
walworthpolynesian/gap/r 1094 563 1657 1414 2223 3637
walworthpolynesian/core 1377 708 2085 1452 2185 3637
walworthpolynesian/core/r 1357 728 2085 1415 2222 3637
zhivlovobugrian 469 355 824 482 1492 1974
zhivlovobugrian/gap 414 265 679 546 1428 1974
zhivlovobugrian/gap/r 393 286 679 506 1468 1974
zhivlovobugrian/core 420 307 727 505 1469 1974
zhivlovobugrian/core/r 413 314 727 494 1480 1974

Table 4: Full results with information on all patterns and words
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Abstract
We introduce a crosslinguistic database for at-
titude predicates, which references their com-
binatorial (syntactic) and semantic properties.
Our data allows assessment of crosslinguistic
generalizations about attitude predicates as well
as discovery of new typological/crosslinguistic
patterns. This paper highlights empirical and
theoretical issues that our database will help
to address, motivates the predicate sample and
the properties that it references, as well as our
methodological choices. Two case studies illus-
trate how the database can be used to assess the
validity of crosslinguistic generalizations.

1 Introduction

Attitude predicates are natural language expres-
sions characterized by the fact that they combine
with sentential complements and that they ascribe
to their subject an attitude. They are used to talk
about what people believe, wonder, hope, or say.
These predicates exhibit a variety of combinatorial
restrictions in terms of the types of clauses they
can combine with. For example, they can be dis-
tinguished into three classes based on whether they
are compatible with declarative or question com-
plements: Antirogatives like believe combine only
with declaratives, in (1a). Rogatives like wonder
combine only with interrogatives, in (1b). And
responsives like know combine with either, in (1c).

(1) a. Al believes that/*whether Jo is Dutch.
b. Al wonders *that/whether Jo is Dutch.
c. Al knows that/whether Jo is Dutch.

Other instances of combinatorial restrictions in-
clude responsive predicates that are compatible
with constituent questions (who, what, which, etc.)
while being incompatible with whether questions,
e.g., be amazed or be surprised, and predicates
that differ in terms of whether they are compati-
ble with indicative or subjunctive complements in
languages that make the distinction.

In a tradition tracing back at least to Frege (1898
[1948]), attitude ascriptions have been studied ex-
tensively in the philosophical and the linguistic
literature. One recent strand of research argues that
differences in the combinatorial properties of atti-
tude predicates, rather than being accidental and
idiosyncratic facts, can be explained generally on
the basis of their semantic properties (Zuber, 1982;
Egré, 2008; Mayr, 2019; Theiler et al., 2019; Ue-
gaki and Sudo, 2019). We elaborate on some of
these semantic properties and how they might re-
late to attitude verbs’ combinatorial properties in
Section 2. A second, intimately connected strand of
research aims to uncover semantic properties that
classes of attitude predicates have in common (in
addition to places of variation), within a given lan-
guage’s lexicon and across languages, i.e., crosslin-
guistic universals in the attitude domain (White
and Rawlins, 2016; Roelofsen and Uegaki, 2020;
Steinert-Threlkeld, 2019; Maldonado et al., 2022).

In this paper, we present a database that will
allow researchers to address these questions and
explore other linguistic properties of attitude predi-
cates in a crosslinguistic way. The database refer-
ences a sample of semantic and combinatorial prop-
erties of approximately 50 attitude predicates from
15 languages. The values of these properties are
based on introspective judgments of native speak-
ers of each language, and are collected by means of
a questionnaire. They are summarized in tables in
CSV format, one per language and speaker, which
are accompanied by text documents that contain
the linguistic examples that motivate the speaker’s
responses and reference additional facts about the
data (e.g., the variety of the language spoken by
the native speaker consultant, particular clause type
distinctions available in the language, etc.).

This resource adds to a set of existing databases
about the properties of attitude predicates: The
Mega databases MegaAcceptability (White and
Rawlins, 2016), MegaVeridicality (White and
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Rawlins, 2018), MegaNegRaising (An and White,
2020), MegaIntensionality (Kane et al., 2021) and
MegaOrientation (Moon and White, 2020), as well
as the ZAS Database of Clause-embedding Predi-
cates (Stiebels et al., 2018). The contribution of our
database is novel in at least three respects. First, it
enables a crosslinguistic exploration of the prop-
erties of attitude predicates. This is important be-
cause generalizations that concern these predicates
are often formulated on the basis of a single lan-
guage and yet, given their nature, are expected to
hold crosslinguistially. Second, it is the same speak-
ers that provide the introspective judgments that
underlie the semantic and combinatorial properties
that are tested. To the extent that we can assume
that these judgments come from the same source
grammar, within speaker and within language com-
parisons can be made consistently. It has been
shown that speakers may differ from one another
in terms of how strongly a linguistic expression dis-
plays some property, and that correlations between
syntactic or semantic properties may ultimately de-
pend on this gradient perception (Chemla et al.,
2011; Tonhauser et al., 2018). Third, the quan-
titative component of the database (the summary
tables in CSV format) is supported by a qualita-
tive component (the text documents with examples
and other considerations supporting/qualifying the
consultant’s judgments). This makes it possible
not only to draw broad generalizations, but also
to examine the properties of specific predicates in
more depth. We would finally like to highlight
that the dataset may be used for a broad range of
applications in NLP, including but not limited to
improving and evaluating the performance of natu-
ral language understanding and machine translation
systems. This, we believe, is particularly valuable
in that our dataset references several ‘low resource’
languages, for which such systems might perform
poorly.

Outline Section 2 of this paper presents the se-
mantic properties of attitude predicates included
in our database and how these have been argued
to relate to these predicates’ combinatorial prop-
erties. Section 3 references the predicates that we
have included, as well as the response categories
that were used to elicit these predicates’ semantic
and combinatorial properties. Section 4 contains
practical information about how the database is for-
matted, can be accessed, and further contributed to.
Section 5 presents two case studies illustrating how

the database can be used to test generalizations con-
cerning attitude predicates. Section 6 concludes.
(We draw attention to Limitations in the Appendix.)

2 Semantic Properties

This section introduces the semantic properties of
attitude predicates included in our database and rel-
evant generalizations about them in the literature.

A predicate V is veridical iff x Vs that S entails
S. For instance, know is veridical, but be certain is
not: (2) entails that it is raining but (3) does not.

(2) Alice knows that it is raining.
(3) Alice is certain that it is raining.

Veridicality is argued to correlate with the ability to
take interrogative complements (e.g., Egré, 2008).

A predicate is projective under negation (or pro-
jective for short) if one can infer the complement
when the predicate is negated. For instance, be
happy and be surprised are projective (4).

(4) Alice isn’t happy/surprised that it is raining
⇝ It is raining

A predicate V is neg-raising if not V S is interpreted
as V not S. For instance, think and believe are neg-
raising (5), whereas know and be sure are not (6).

(5) Alice does not think/believe it is raining
≈ Alice thinks/believes it is not raining.

(6) Alice doesn’t know/isn’t sure it is raining
̸≈ Alice knows/is sure it is not raining.

It has been suggested that neg-raising predicates
are generally anti-rogative, and several theoretical
explanations for this have been proposed (Zuber,
1982; Mayr, 2019; Theiler et al., 2019).

Many predicates, such as be happy and hope,
have meanings that intuitively involve a notion of
preference. Several formal semantic accounts char-
acterize preferentiality in terms of focus sensitiv-
ity and gradability (Villalta, 2008; Romero, 2015;
Uegaki and Sudo, 2019). A predicate V is focus
sensitive if its truth conditions can be influenced
by the placement of focus in the embedded clause.
For instance, be happy and hope are focus sensitive
because the two sentences in (7) need not be true
at the same time: Mary might be the best among
syntax teachers, but syntax might not be the best
among subjects Mary can teach.

(7) a. Alice is happy/hopes that
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MARY will teach syntax.
b. Alice is happy/hopes that

Mary will teach SYNTAX.

In contrast, know and think are not focus sensi-
tive. If one sentence in (8) is true of Alice’s epis-
temic/doxastic state, the other must be true as well.

(8) a. Alice knows/thinks that
MARY will teach syntax.

b. Alice knows/thinks that
Mary will teach SYNTAX.

A predicate is gradable if it can participate in de-
gree constructions, e.g., intensification (9) or com-
parison (10).

(9) Alice is very happy that Mary is here.
(10) Alice hopes that it is raining more than

Bob does.

Karttunen (1977) observes that a certain class of
preferential predicates, which he calls emotive fac-
tives, can take wh-questions but not whether ques-
tions (11) (see Section 5.1 for further discussion,
and Saebø (2007) and Abenina-Adar (2019) for
challenges). Uegaki and Sudo (2019) suggest that
non-veridical preferential predicates such as hope
cannot take embedded questions altogether (12).

(11) It is amazing what they serve for breakfast
/ *whether they serve breakfast.

(12) *Alice hopes whether Bob left / who left.

There is no consensus on exactly how to charac-
terize emotive factives (see, e.g., Egré, 2008, for
discussion), but it is uncontroversial that when they
take a declarative complement, the attitude holder
must believe that the complement is true (13).

(13) Alice is happy/surprised that it is raining
⇒ Alice believes that it is raining

There is a complication, however. It is unclear what
level of credence believe corresponds to, since this
attitude predicate can often be used when the sub-
ject is not fully certain that the complement is true
(e.g., Hawthorne et al., 2016). Therefore, in our
database we instead directly test the compatibility
between a predicate and various levels of credence.
For instance, a predicate V always implies likeli-
hood if x Vs that S entails that x considers S more
likely than not S.

For question-embedding predicates, one impor-

tant semantic property is what can be inferred about
the relation between the subject’s belief and possi-
ble answers to the embedded question. Some pred-
icates, such as know, entail that there is a possible
answer to the embedded question that the subject
believes (14). Such predicates are belief-implying.
Some predicates, such as wonder, entail that there
is no possible answer that the subject believes (15).
Such predicates are ignorance-implying. Other
predicates, such as care, are neutral wrt belief and
ignorance. Alice cares (about) who won can be
true with or without Alice having a belief as to who
won (Elliott et al., 2017).

(14) Alice knows whether Bob left.
⇒ Alice believes that Bob left or

she believes that Bob didn’t leave.
(15) Alice wonders whether Bob left.

⇒ Alice neither believes that Bob left nor
does she believe that Bob didn’t leave.

Ciardelli and Roelofsen (2015) use the fact that
predicates such as wonder entail ignorance to ex-
plain their rogativity.

For a responsive predicate V , an important ques-
tion is how the meanings of their declarative-
embedding use x Vs that S and their interrogative-
embedding use x Vs Q are related. V is Q-to-P
veridical if x Vs Q entails x Vs that p, where p is
the true answer to Q. For instance, if Alice knows
which player won and in fact Bob won, then it fol-
lows that Alice knows that Bob won.
V is Q-to-P distributive if x Vs Q entails x Vs that

p for some p that is a potential answer to Q. For in-
stance, if Alice is certain (about) which player won,
then there must be some player y such that Alice is
certain that y won. Note that Q-to-P veridical predi-
cates must be Q-to-P distributive but not vice versa.
For instance, be certain is Q-to-P distributive but
not Q-to-P veridical.

Finally, V is P-to-Q distributive if x Vs that p,
where p is a possible answer to a question Q, entails
x Vs Q. For instance, Alice is certain that Bob won
entails Alice is certain (about) which player won.

Spector and Egré (2015) propose that respon-
sive predicates are all Q-to-P distributive, whereas
Roelofsen and Uegaki (2020) propose, instead, that
they are all P-to-Q distributive (see Section 5.2 for
further discussion).

Before concluding this section, we note that the
semantic properties described here can in principle
be applied to predicates in any language. Similarly,
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Class Verbs

Communication accept, announce, argue, assert,
claim, complain, deny, explain,
inform, tell, whisper, write

Doxastic agree, assume, believe, (be) cer-
tain, (be) convinced, doubt, ex-
pect, forget, know, learn, prove,
(be) right, suspect, think, (be) un-
aware, (be) wrong

Perception see
Directive decide, demand, order, propose
Emotive fear, (be) happy, hope, pray, pre-

fer, regret, (be) surprised, want,
(be) worried

Inquisitive ask, (be) curious, inquire, inves-
tigate, wonder

Relevance care

Table 1: Verb classes and verbs included in the database

the empirical generalizations proposed in the litera-
ture make crosslinguistic predictions, even though
they were typically motivated by data from English
or a few well-studied languages. Testing such pre-
dictions in a wider range of languages is crucial to
assess the validity of existing proposals.

3 Design of the Crosslinguistic Database

Our database is designed to assess empirically the
kinds of crosslinguistic generalizations described
in Section 2. Furthermore, it will possibly enable
discovery of previously unnoticed correlations, in
particular ones involving interactions between mul-
tiple properties. In this section, we introduce the
general design of the database. We will also briefly
discuss practical aspects of data collection.

3.1 The properties and sample predicates

The database contains information about ∼50
clause-embedding predicates in each language.
Each predicate is annotated with respect to ∼15
semantic properties and ∼12 combinatorial prop-
erties. The numbers are approximate because in
some languages there are multiple attitude pred-
icates corresponding to just one predicate in an-
other language, and certain languages make more
clause type distinctions than others. In the English
database there are 48 predicates, listed in Table 1.
The semantic and combinatorial properties consid-
ered are listed in Table 2.

Semantic properties The semantic properties
are annotated based on inferential diagnostics and
acceptability judgments. For example, the property
of Veridicality is annotated based on the following
inferential test:
Veridicality test Consider:

(16) Ann V s that it is raining.

Does this sentence always imply that it is raining?
If not, does it always imply that it is not raining?

Marking instructions

• If you answered yes to the first question, please
mark V as always veridical.

• If you answered yes to the second question,
please mark V as always anti-veridical.

• If you answered no to both questions, but you
feel that the sentence typically implies that it is
raining, please mark V as typically veridical.

• Similarly, if you answered no to both questions,
but you feel that the sentence typically implies
that it is not raining, please mark V as typically
anti-veridical.

• Otherwise, please mark V as neither.

An example of a semantic property annotated
based on acceptability judgments rather than an
inferential test is Gradability. Specifically, this
property is annotated based on the acceptability
of sentences like (9) and (10) above. For some
predicates, the judgments can be unclear, in which
case the option undecided is used.

Combinatorial properties Combinatorial prop-
erties are annotated based on whether the predicate
can take specific clause types. The relevant clause
types for English are listed in the last row of Ta-
ble 2, and those for other languages contain cor-
responding information with respect to syntactic
equivalents of these clause types. Some languages
involve further clause-type distinctions. For exam-
ple, the data for Catalan, French, Italian, and Span-
ish involve an indicative/subjunctive mood distinc-
tion and the data for Greek, Hungarian, Japanese,
and Turkish involve complementizer and other
clause-type distinctions.

Predicate sample The sample of 48 English
predicates in Table 1 has been selected from various
classes of predicates investigated in the theoretical
literature and cover a wide range of combinations
of semantic and combinatorial properties. For lan-
guages other than English, we initially ask consul-
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Semantic properties Response options

Veridicality† veridical, anti-veridical, neither
Conjunction with negation of the complement contradictory, redundant, neither
Conjunction with the complement contradictory, redundant, neither
Complement projection/reversal through negation† projective, reversive, neither
Neg-raising† neg-raising, non-neg-raising

Subject’s





likelihood
unlikelihood

equal likelihood



 estimation towards complement

always implies, typically implies,
compatible, incompatible

Subject’s





certainty
counter-certainty

uncertainty



 towards complement

always implies, typically implies,
compatible, incompatible

Subject’s





preference
opposition

indifference



 towards complement

always implies, typically implies,
compatible, incompatible

Focus sensitivity focus-sensitive, non-focus-sensitive
Grammatical gradability with declaratives gradable, non-gradable, undecided
Belief/ignorance implications w.r.t. interrogatives† belief-, ignorance-implying, neutral
Grammatical gradability w.r.t. interrogatives gradable, non-gradable, undecided
Q-to-P veridicality† veridical, anti-veridical, neither
Q-to-P distributivity† distributive, non-distributive
P-to-Q distributivity† distributive, non-distributive

Combinatorial properties Response options

Finite & non-finite declaratives; acceptable, unacceptable,
Finite & non-finite interrogatives degraded (from ? to ???),
(polar, alternative, which, who/what); [preposition/particle/etc.] required,
Concealed questions; Intransitive use undecided

Table 2: All of the properties included in the questionnaire, where † indicates properties for which a graded response
was elicited, e.g., typically or always veridical.

tants to provide direct translations of the English
predicates, to the extent that such translations exist.
If a direct translation does not exist, consultants are
encouraged to consider predicates that are similar
in meaning to the original English predicate and
comment on the extent to which they are compara-
ble in the text document. We further discuss this
translation-based method of sampling predicates
across languages in the Limitations section.

3.2 Annotation

The annotation instructions are collated in a ques-
tionnaire format, with accompanying predicate-
specific notes that discuss certain confounding fac-
tors that need to be controlled for on a predicate-
specific basis. Both documents are accessible at

https://osf.io/vd8mg/. Data were annotated
by native speakers with a background in linguistics
(at least an undergraduate degree). Each consul-
tant spent 60 to 100 hours (distributed over 3 to 4
months) on completing their dataset, and consulted
regularly with at least one of the authors during
this process in order to clarify difficult judgments
or resolve possible complications. Annotation was
performed across all properties by a single con-
sultant for each language. This design allows a
within-subject testing of possible correlations be-
tween different properties. At the same time, since
the format of our database tracks consultant IDs
for each data point, our design of the database does
not preclude addition of data based on annotation
from other speakers in the future.
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4 Practical Details about the Database

4.1 Format

The database is located at https://wuegaki.
ppls.ed.ac.uk/mecore/mecore-databases/.
Each language has its own folder containing the
following documents: (i) a README file contain-
ing basic information about the language, the list
of language-specific semantic and combinatorial
properties, and the data collection process, (ii) a
table (a CSV file) in wide format, where each row
corresponds to a predicate and each column to a
combinatorial or semantic property (see Table 3),
(iii) the corresponding text document containing
the linguistic examples used in determining the
properties and relevant discussions.

The tables are in wide format so that it is easy
to visually inspect them, which is useful when one
is casually exploring the database. However, as
discussed in the previous section, different lan-
guages have different sets of properties. For in-
stance, Mandarin Chinese has two negation mark-
ers which can lead to different interpretations. As a
result, each negation-related property corresponds
to two columns in the Mandarin table but only one
in other languages. Therefore it is impossible to
directly aggregate tables in wide format from differ-
ent languages. They need to be converted to long
format tables first to be appended to one another. In
this case, the long format includes an additional col-
umn called NegationMarker. For a negation-related
property, the value of this column is the negation
marker under consideration. If the property does
not involve negation, the value is NONE.

Other language-specific distinctions are, e.g.,
mood (for Romance languages) and complemen-
tizer (for Japanese, Greek, Turkish and Hungarian).
Information about such distinctions is stated in the
README file for the relevant languages.

4.2 Snapshot

At the time of writing, the database contains 15
languages: Catalan, Dutch, English, French, Ger-
man, Greek, Hebrew, Hindi, Italian, Japanese,
Kîîtharaka, Mandarin, Spanish, Swedish and Turk-
ish. For two of the languages, German and Polish,
a detailed report on the process of creating a first
version of the dataset (superseded by the version
that we currently release) is available as Master’s
theses (Naehrlich, 2022; Klochowicz, 2022).

4.3 Contributing to the database

Researchers are welcome to contribute to the
database. The simplest way is to use our question-
naire and predicate-specific notes to collect data
on (possibly a subset of) the translations of the
48 English predicates in the current database (as
part, for example, of a student’s research project or
internship). While the questionnaire and predicate-
specific notes are designed for trained linguists as
consultants, they can be adapted to a fieldwork
setup for consultants with no training in linguistics.

We emphasize that the additional data need not
be about a new language. Due to intra-language
variation, it is also valuable to have judgments from
multiple speakers of the same language.

One can also apply the questionnaire to predi-
cates beyond the ones in the current database. In
this case, contributors are encouraged to provide
predicate-specific notes on the additional predicates
to faciliate future crosslinguistic investigations.

5 Two case studies

We discuss two case studies using our database.
Although strong conclusions cannot be drawn from
the limited sample we currently have, as a proof
of concept, they show how our database informs
debates about crosslinguistic generalizations.

5.1 Emotive factives and whether questions

The first case study concerns the relation between
combinatorial and semantic properties. Recall that
Karttunen (1977) observes that emotive factives
cannot take whether questions (11). We aim to
evaluate this generalization crosslinguistically.

In line with how this class of predicates is gen-
erally thought of in the literature, we adopt the
following criteria. A predicate is emotive factive if
it is (i) typically or always veridical, (ii) typically
or always projective, (iii) focus sensitive, (iv) grad-
able, and (v) it entails that the subject believes the
complement—which we operationalize as imply-
ing that, according to the subject, the complement
is more likely than its negation (e.g., Egré, 2008;
Villalta, 2008; Romero, 2015). In our database
for English, 4 predicates satisfy these criteria: be
happy, be surprised, regret, and care. The first
three are indeed canonical examples of emotive
factives, and intuitively care is an emotive predi-
cate and shares the semantic properties listed above,
e.g., it is typically veridical and projective (17).
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Predicate English
translation

Veridicality/
Anti-veridicality . . . Finite

declaratives
Finite which
interrogatives . . .

vergeten forget always veridical . . . acceptable acceptable . . .
ongelijk hebben be wrong always anti-veridical . . . acceptable acceptable . . .
geloven believe neither . . . acceptable unacceptable . . .
zich afvragen wonder NA . . . unacceptable acceptable . . .
. . . . . . . . . . . . . . . . . .

Table 3: Part of the Dutch predicate table in wide format

(17) Alice cares/does not care that Bob won
⇝ Bob won

But, while the first three predicates indeed cannot
take whether questions, care can (18), which makes
it a potential counterexample to the generalization.

(18) Ann cares whether Bob or Charles won.

However, note that the meaning of (18) is differ-
ent from what one would expect when an emotive
factive predicate takes a question complement. For
instance, (19) entails that there is an answer p to
the embedded question such that the subject is sur-
prised that p. That is, canonical emotive factives
are Q-to-P distributive. In contrast, (18) does not
have such an entailment (20). This is because Alice
cares that x won entails that Alice believes that x
won, but (18) can be true even if Ann does not have
a belief about who won at all (Elliott et al., 2017).

(19) Alice is surprised (about) who won.
⇒ ∃x. Alice is surprised that x won.

(20) Alice cares whether Bob or Charles won.
̸⇒ ∃x. Alice cares that x won.

This observation allows us to refine the original
generalization by Karttunen. A predicate cannot
take whether questions if it is an emotive factive
(as operationalized above) and Q-to-P distributive.

This refined generalization is highly robust
crosslinguistically. When the counterparts of
canonical emotive factives be happy, be surprised
and regret take whether questions, the results are
consistently judged unacceptable or highly marked.
The counterparts of care consistently lack Q-to-P
distributivity and can take whether questions.

It is worth looking into Kîîtharaka rigara, of-
fered by our consultant as the translation of English
be surprised, in some more detail. This predicate
has two senses. When it takes a declarative comple-
ment, it is translated as be surprised. When it takes
a wh-question, it can mean that there is an answer

p to the question such that the subject is surprised
that p. In this respect rigara is an emotive factive
predicate just like be surprised. However, when
rigara takes a question, it can also be translated
as wonder. Crucially, although rigara can take
whether questions, it can only be translated as won-
der in such cases. In particular, Bill rigara whether
Mary left means that Bill wonders whether Mary
left, and crucially, it does not entail that either Bill
rigara that Mary left or Bill rigara that Mary did
not leave must be true. Thus, when rigara takes
whether-complements, it is not Q-to-P distributive.

There are further cases of predicates that satisfy
the criteria of emotive factives while lacking Q-to-
P distributivity. For instance, Swedish vara orolig
över, unlike its English counterpart be worried, is
always veridical (therefore a more accurate trans-
lation would be it worries x that). It is not Q-to-P
distributive and can take whether questions.

This case study lends support for a modified ver-
sion of Karttunen’s generalization: if a predicate
is an emotive factive and Q-to-P distributive, it is
incompatible with whether questions. It also high-
lights the utility of our database in the investigation
of crosslinguistic correlations between semantic
and combinatorial properties of attitude predicates.
Without the type of data available in the current
database, it would be difficult to empirically assess
the relevance of Q-to-P distributivity to Karttunen’s
original observation in a crosslinguistic context.

5.2 P-to-Q distributivity

The second case study concerns the crosslinguistic
validity of the generalization that all responsive atti-
tude predicates satisfy P(roposition)-to-Q(uestion)
distributivity (Roelofsen and Uegaki, 2020). To il-
lustrate, from (21a), we may infer (21b) and (21c),
where the embedded declarative in (21a) (“P”) is
one of the possible answers to the embedded inter-
rogatives in (21b) and (21c) (“Q”).

(21) a. Al knows/cares that Jo is Dutch.
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b. Al knows/cares whether Jo is Dutch.
c. Al knows/cares where Jo is from.

Roelofsen and Uegaki identify three classes of
potential counter-examples to P-to-Q distributiv-
ity, without drawing definite conclusions. First,
some predicates are non-veridical with declarative
complements, but veridical with interrogative com-
plements (Q-to-P veridical). A prototypical ex-
ample is tell (Karttunen, 1977). Examples like
(22) do not entail the embedded clause, suggesting
non-veridicality with declaratives, but the conjunc-
tion of (23a) and (23b) is often judged to entail
(23c), suggesting that tell might be Q-to-P veridi-
cal. (Note, however, that the predicate is not consid-
ered Q-to-P veridical by everyone—see Tsohatzidis
1993; Holton 1997; Spector and Egré 2015, a.o.)

(22) Al told Jo that Sue won. ̸→ Sue won.

(23) a. Al told Jo which runner won.
b. Zoe won.
c. ∴ Al told Jo that Zoe won.

If this is correct, tell cannot be P-to-Q distributive
as (23a) does not follow from (22) in situations
where Sue did not win.

Second, there are predicates similar to
Kîîtharaka rigara, which alternate between
surprise- and wonder-like interpretations. Third,
predicates like English explain alternate between
‘explanans’ (‘that which explains’) and ‘explanan-
dum’ (‘that which is explained’) interpretations
(Pietroski, 2000; Elliott, 2017; Bondarenko, 2021).
What unifies these predicates is that they have
qualitatively different meanings across declarative
and interrogative embedding.

Our sample corroborates that there is a general
tendency for responsive predicates to be P-to-Q
distributive, but also that the identified classes of
counter-examples are crosslinguistically attested:
Speakers of some languages in our sample judged
that every predicate obeys the property (Dutch, En-
glish, Greek, Kîîtharaka and Mandarin); for others
there was a variable, but small number of excep-
tions (Catalan, Italian, Hebrew, Hindi, Japanese,
Polish, Spanish, Swedish and Turkish). Among
these exceptions, we first find communicative and
doxastic predicates that are non-veridical in declar-
ative, but veridical in interrogative embedding.
Some examples include Turkish bildir- ‘inform’
and Polish wyjaśniać ‘explain’ (see also Özyıldız
2019, Bondarenko 2020, Jeong 2020).

Second, we find predicates like Swedish tänka
på, which roughly translates sentences of the form
‘think about the fact that x won’ with declaratives,
and ones like ‘think about which runner won’ with
questions. Importantly, the former is reported to en-
tail the belief that x won, and the latter, ignorance
about which runner won. As belief is incompatible
with ignorance in this situation, P-to-Q distribu-
tivity fails. One way of identifying this kind of
predicate involves comparing their values for like-
lihood and certainty implications with the one for
belief/ignorance implications w.r.t. interrogatives.
Mismatching values here will point towards a shift
in meaning across declarative and interrogative em-
bedding. Among this class of predicates, we also
find the counterparts of ‘think’ in Catalan, Spanish
and Turkish, surprise/wonder-type predicates in
Japanese, Spanish and Swedish, and a third set of
predicates instantiated by Turkish communicatives
de-, yaz- and fısılda- (‘say,’ ‘write,’ and ‘whisper’).
With declaratives, these Turkish predicates imply
that their subject linguistically produced the declar-
ative (e.g., Al said: “Jo won.”), but with interrog-
atives, that the subject produced the interrogative
(e.g., Al said: “Which runner won?”). Hence, P-
to-Q distributivity fails for them as well.

This case study confirms a general tendency for
predicates to be P-to-Q distributive, but also reveals
variation, both within and across languages. Its re-
sults are consistent with debates in the literature,
e.g., regarding the properties of tell and explain.
Some exceptions to the general tendency are better
understood (e.g., veridicality alternating predicates)
than others (e.g., the class of surprise/wonder pred-
icates). This, in turn, paves the way for new empir-
ical and theoretical research.

6 Conclusions

We have presented our crosslinguistic database for
combinatorial and semantic properties of attitude
predicates. As our case studies show, the database
enables assessment of two types of crosslinguistic
generalisations: one concerning correlations be-
tween semantic and combinatorial properties of at-
titude predicates and the other concerning general
semantic constraints on attitude predicates. The
database complements existing resources due to
three features: (i) crosslinguistic data; (ii) enabling
within-subject comparison across properties, and
(iii) accompanying text documents that allow fine-
grained qualitative assessment of data.
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Limitations

The data collection process was time-intensive.
Each language required a total of 60 to 100 hours
of work by a native speaker with a background
in linguistics, typically over the course of 3 to 4
months with regular consultation sessions with one
of the authors of the present paper. Because of
this, the current database for the most part only fea-
tures introspective judgments coming from a single
speaker per language (although occasionally infor-
mants would consult other native speakers and/or
corpora when they were uncertain). While this is a
good place to start, the database is not yet equipped
to address issues pertaining to within and across
speaker variability. For the same reason, we have
had to limit the number of attitude predicates that
we tested to a manageable number. While we be-
lieve that our sample covers much of the logical
space of possibilities for the meaning of attitude
predicates, the number of predicates remains small
(especially in comparison with the Mega datasets).
The fact that our initial survey is translation based
makes it also possible that certain predicates of
interest in the target languages were missed.

The languages that were included in the database
are typologically diverse, but they do not cover
all known language families and are currently re-
stricted to the spoken modality. There is nothing,
however, that prevents the inclusion of other lan-
guages, including sign languages, and we are hope-
ful that our database will expand in these directions.

Regarding the tests that we have used to elicit
semantic and combinatorial properties, while some
are relatively easy to transpose into other languages
(e.g., conjunction with the (negation of the) com-
plement), others are harder, and their results might
be less reliable. For example, the question about
neg-raising is currently eliciting an inference which
might be driven by factors other than the predicate
actually being neg-raising. An alternative, arguably
more reliable test would make use of strict Nega-
tive Polarity Items (NPIs), but identifying NPIs in a
given language requires detailed knowledge of the
language and may only be possible for languages
the researcher is familiar with or has conducted
extensive fieldwork on.

Regarding the consistency of the data, there are
some values that some of the properties cannot
jointly take. For example, a predicate cannot at the
same time be less than always veridical, always
Q-to-P veridical and always P-to-Q distributive.

However, this particular combination of values has
been observed for certain predicates in our sample.
We have attempted to minimize such inconsisten-
cies by conducting follow-up interviews with our
speakers, and making sure that they assessed the
predicates in all relevant contexts of use. Rather
than being a problem, however, this can be seen as
a feature of our method, as it allows us to identify
strong tendencies in how speakers interpret attitude
ascriptions.

Finally, we note that, while the tables that are
included in the database are machine readable, the
supporting text documents are currently not. They
have to be processed directly by the interested re-
searcher. We are working towards making the text
documents machine readable as well.
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Abstract

This article presents a comparative analysis of
four different syntactic typological approaches
applied to 20 different languages to determine
the most effective one to be used for the im-
provement of dependency parsing results via
corpora combination. We evaluated these strate-
gies by calculating the correlation between the
language distances and the empirical LAS re-
sults obtained when languages were combined
in pairs. From the results, it was possible to
observe that the best method is based on the
extraction of word order patterns which happen
inside subtrees of the syntactic structure of the
sentences.

1 Introduction

Dependency parsing is a Natural Processing Pro-
cessing (NLP) task that concerns the process of
determining the grammatical structure of a sen-
tence by examining the syntactic relations between
its linguistic units. In other words, it consists of
the identification of heads and dependents as well
as the type of relationship between them (Jurafsky
and Martin, 2009).

From 2015 onward, the usage of deep learning
techniques has been dominant in studies regarding
the dependency parsing task. Although it has pro-
vided a great improvement in overall results even
for under-resourced languages (Otter et al., 2018),
it requires a large amount of annotated data which
can be problematic, particularly in terms of cost
(Guillaume et al., 2016).

To overcome the problem of lack of data, cross-
lingual parsing strategies using typological meth-
ods have been proposed to determine which lan-
guages can be combined for effective improvement
of dependency parsing results (Ponti et al., 2019b).
Most of these studies rely on the usage of infor-
mation provided by typological databases such as
WALS (Dryer and Haspelmath, 2013) sometimes
combined with n-grams analysis extracted from

corpora. On the other hand, the usage of corpus-
based typology for this aim is still incipient.

Moreover, most studies focus on the obtained
improvement, without analyzing the existence of a
proper correlation between the typological features
involved in the process with the overall synergy
regarding the impact on the dependency parsing
results.

Therefore, our aim in this paper is to propose an
examination of several corpus-based typological
methods in terms of correlation between language
distances and dependency parsing scores. The pa-
per is composed as follows: Section 2 presents an
overview of the related work to this topic. In Sec-
tion 3, we describe the campaign design: language
and data-sets selection, corpus-based typological
characterization, dependency parsing experiments,
and correlation measures; Section 4 presents the
obtained results which are discussed in Section 5.
In Section 6 we provide conclusions and possible
future directions for research.

2 Related Work

The WALS database is one of the most used ty-
pological resources in NLP studies (Ponti et al.,
2019a). It contains phylogenetic, phonological,
morphosyntactic, and lexical information for a
large number of languages that can be used for
a large variety of linguistic studies (Dryer and
Haspelmath, 2013). Along with that, the URIEL
Typological Compendium was conceived as a meta-
repository that is composed of numerous databases
(WALS included) and is the base of the lang2vec
tool (Littell et al., 2017). This tool is a powerful
resource that allows languages to be characterized
as vectors composed of typological features associ-
ated with specific values. Users can choose the type
of features (i.e.: genealogical, phonological, syn-
tactic, etc) according to their precise needs. While
proposing an effective way to compare languages
typologically, this tool does not characterize all lan-
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guages homogeneously as it depends on the avail-
ability of linguistic descriptions provided by its
sources. Thus, low-resourced languages usually
have less information. For example, it is not possi-
ble to compare all 24 European Union languages
as there are no common features with valid values
for all of them. Furthermore, typological databases
usually fail to illustrate the variations that can oc-
cur within a single language (i.e.: in general, only
the most frequent phenomena are reported in the
literature, and not all attested ones).

In terms of corpus-based typological studies, a
broad survey was provided by Levshina (2022).
The author showed that while several authors
quantitively analyzed specific word-order patterns
(e.g.: subject, verb, and object position (Östling,
2015), and verb and locative phrases (Wälchli,
2009)), other researchers have focused on quantita-
tive analyses regarding language complexity (e.g.:
(Hawkins, 2003) and (Sinnemäki, 2014)). On the
other hand, the concept of Typometrics was intro-
duced by Gerdes et al. (2021). The focus of their
research was to extract rich details from corpora
for testing typological implicational universals and
explored new kinds of universals, named quantita-
tive ones. Thus, different word-order phenomena
were analyzed quantitatively (i.e.: the distribution
of their occurrences in annotated corpora) to iden-
tify the ones present in all or most languages.

Thus, it is possible to notice that most studies
regarding quantitative typology focus either on the
analysis of specific linguistic phenomena or on the
identification of universals. Our approach differs
from theirs as our aim is to compare languages (i.e.:
language vectors) using quantitative information
concerning all syntactic structures extracted from
corpora to obtain a more general syntactic overview
of the elements in our language set and use the
results as strategies to improve dependency parsing
results.

An interesting method concerning the extrac-
tion and comparison of syntactic information from
tree-banks was developed by Blache et al. (2016a).
The MarsaGram tool is a resource that allows syn-
tactic information (together with its statistics) to
be extracted from annotated corpora by inferring
context-free grammars from the syntactic struc-
tures. MarsaGram allows the extraction of linear
patterns (i.e.: if a specific part-of-speech precedes
another one inside the same subtree ruled by a
determined head). The authors conducted a clus-

ter analysis comparing 10 different languages and
showed the potential in terms of typological analy-
sis of this resource. However, the results were only
compared to the genealogical classification of the
selected languages and did not provide any com-
parison to other corpus-based methods. Moreover,
the authors did not use the obtained classification
with the perspective of improvement of dependency
parsing systems via corpora-combination.

One example of effective usage of typological
features (from URIEL database) to improve results
of NLP methods was presented by Üstün et al.
(2020). The authors developed the UDapter tool
that uses a mix of automatically curated and pre-
dicted typological features as direct input to a neu-
ral parser. The results showed that this method
allows the improvement of the dependency parsing
accuracy for low-resourced languages. A similar
study, using a different deep-learning architecture
was conducted by Ammar et al. (2016), however,
in both cases, there is no detailed analysis of which
features were the most relevant.

Furthermore, Lynn et al. (2014) proposed a study
concerning the Irish language using delexicalized
corpora. The authors performed a series of cross-
lingual direct transfer parsing for the Irish language
and the best results were achieved with a model
trained with the Indonesian corpus, a language
from the Austronesian language family. The au-
thors proposed some analysis considering similar-
ities between the treebanks of both languages in
terms of dependency parsing labels, however, a de-
tailed statistical analysis of corpora and a complete
comparison of specific typological features were
not carried out.

While some papers focus on genealogical fea-
tures, others consider syntactic ones. For example,
Alzetta et al. (2020) presented a study whose aim
was to identify cross-lingual quantitative trends in
the distribution of dependency relations in anno-
tated corpora from distinct languages by using an
algorithm (LISCA - LInguiStically– driven Selec-
tion of Correct Arcs) (Dell’Orletta et al., 2013)
which detects patterns of syntactic structures in
tree-banks. However, only four Indo-European
languages were scrutinized but some interesting
insights concerning language peculiarities were ob-
served.

Thus, studies regarding corpus-based typology
and dependency parsing are usually presented with-
out a specific comparison to other existing ap-
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proaches or to the classic one concerning typo-
logical databases. That is why in this article the
idea is to analyse possible quantitative typological
methods in terms of correlation with the improve-
ment obtained regarding dependency parsing re-
sults when corpora from different languages are
combined.

3 Campaign Design

In this section, a brief overview of the selected
data-sets is provided, followed by a description
of selected the corpus-based syntactic typological
approaches. Moreover, we detail the dependency
parsing experiments and the correlation measures
that were chosen for the analysis of the results.

3.1 Parallel Corpora

For the ensemble of experiments presented in this
paper, we decided to use the Parallel Universal
Dependencies (PUD) compilation that was created
for the CoNLL 2017 shared task on Multilingual
Parsing from Raw Text to Universal Dependencies
(Zeman et al., 2018).

Levshina (2022) showed the benefit of using
parallel corpora in typological studies, as the bias
regarding size and content is avoided. Especially in
this case, the usage of parallel sentences allows the
focus to be on the syntactic strategies that are used
by each language to express the same meaning.

The PUD collection provides 1,000 parallel sen-
tences from news sources and Wikipedia anno-
tated following Universal Dependencies guidelines
(De Marneffe et al., 2021) in the CoNLL-U format
for twenty languages1: Arabic, Chinese, Czech, En-
glish, Finnish, French, German, Hindi, Icelandic,
Indonesian, Italian, Japanese, Korean, Polish, Por-
tuguese, Russian, Spanish, Swedish, Thai, and
Turkish. The PUD corpora are composed of transla-
tions from English (750 sentences), German (100),
French (50), Spanish (50), and Italian (50). Al-
though avoiding some biases linked to size and
genre, these data-sets may contain some "transla-
tionese" ones, phenomena described by Volansky
et al. (2015). Dependency parsing annotations were
done automatically and, then, verified manually.

The list of PUD languages together with their
ISO 639-3 codes and their genealogical informa-
tion2 is provided in Table 1. Although the total

1Originally it was composed of fewer languages. Polish
and Icelandic were added after the shared task, for example.

2Although the existence of the Altaic family has been

number of languages is limited to 20, the PUD col-
lection provides, at least, some variety in terms of
genealogy (i.e.: most languages belong to the Indo-
European family, but 8 other different linguistic
families are also present in this data-set).

The PUD Collection used in this article corre-
sponds to the one available in the Universal Depen-
dencies3 data-set v.2.7 (November 2020).

3.2 Corpus-based Typological Approaches

Four different quantitative approaches were se-
lected:

• MarsaGram all properties

• MarsaGram linear properties

• Head and dependent relative order

• Verb and object relative order

Each method is fully described in the sub-
sections below. In the results section, these strate-
gies are compared to the typological classification
obtained with lang2vec tool (Littell et al., 2017):
PUD languages are represented as language vectors
composed of 41 syntactic features with valid values
(i.e.: 0.0, 0.33, 0.66, and 1.0). The total number
of syntactic features in this tool is 103, but only 41
are common to all PUD languages.

For each typological method, first, we generated
the language vectors by extracting the syntactic
information from the data-sets. Then, dissimilar-
ity matrices were calculated using Euclidean and
cosine distances (using R scripts). Thus, for each
strategy, two matrices were obtained. The distance
information between the languages is one of the
inputs for the correlation analysis.

3.2.1 MarsaGram all properties
MarsaGram is a tool for exploring treebanks, it ex-
tracts context-free grammars (CFG) from annotated
data-sets that can be used for statistical compari-
son between languages as proposed by Blache et al.
(2016b). We have used the latest release of this soft-
ware downloaded from the ORTOLANG platform
of linguistic tools and resources4.

This software identifies four types of properties
from the corpora:

challenged by some experts as detailed by Norman (2009),
WALS database consider it in its genealogical classification.

3https://universaldependencies.org/
4https://www.ortolang.fr/market/tools/ortolang-000917
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Language ISO 639-3 Family Genus
Arabic arb Afro-Asiatic Semitic
Chinese cmn Sino-Tibetan Chinese
Czech ces Indo-European Slavic
English eng Indo-European Germanic
Finnish fin Uralic Finnic
French fra Indo-European Romance
German deu Indo-European Germanic
Hindi hin Indo-European Indic
Icelandic isl Indo-European Germanic
Indonesian ind Austronesian Malayo-Sumbawan
Italian ita Indo-European Romance
Japanese jpn Japanese Japanese
Korean kor Korean Korean
Polish pol Indo-European Slavic
Portuguese por Indo-European Romance
Russian rus Indo-European Slavic
Spanish spa Indo-European Romance
Swedish swe Indo-European Germanic
Thai tha Tai-Kadai Kam-Tai
Turkish tur Altaic Turkic

Table 1: List of languages inside PUD collection, their respective ISO 639-3 three-character code, and their
genealogical information according to WALS.

• Precede or Linear: It describes the relative po-
sition of two elements (A precedes B) inside a
subtree governed by a specific head. Each ele-
ment is described by its part-of-speech (POS)
and dependency relation (deprel) in the syn-
tactic tree. Although being part of the same
subtree, elements A and B are not necessarily
syntactically linked. An example of a sen-
tence with this property is presented in the
Annex section (Figure 1).

• Require: This property describes the cases
where the presence of an element A requires
the existence of an element B inside the sub-
tree. An example of a sentence with this prop-
erty is presented in the Annex section (Figure
2).

• Unicity: an element A has this property if in-
side the subtree it occurs only once (i.e.: no
other element with the same part-of-speech
and dependency label is attested). In the An-
nex section, one example of a sentence with
this property is presented (Figure 3).

• Exclude: In this case, the presence of element
A excludes the occurrence of element B inside
the subtree.

Property Number of Patterns %
Linear 21,242 13.38
Require 6,189 3.90
Unicity 2,144 1.35
Exclude 129,180 81.37

Table 2: Distribution of extracted features using
MarsaGram in terms of properties.

Of the four properties described above, only
the linear one is directly linked to word-order pat-
terns on the surface level of the sentence. In total
158,755 patterns were extracted from the PUD cor-
pora. The distribution in terms of types of property
is presented in table 2.

Each language vector regarding the MarsaGram
all properties strategy is composed of these fea-
tures associated with the value corresponding to its
frequency of occurrence inside the corpus.

3.2.2 MarsaGram linear properties
As previously explained, the patterns with the linear
property extracted with the MarsaGram tool are
the ones that correspond to word-order phenomena
inside subtrees. Thus, it seems pertinent to analyze
them separately from the patterns regarding other
properties, especially because when all phenomena
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are considered, the large majority correspond to the
"exclude" property as presented in Table 2.

Thus, by extracting just linear patterns from
PUD corpora, we generated language vectors com-
posed of 21,242 features.

3.2.3 Head and dependent relative order
Besides the typological analysis provided from the
data extracted using the MarsaGram tool, we also
propose a quantitative approach concerning syntax,
more specifically the head directionality parameter
(i.e.: whether the heads precede the dependents
(right-branching) or follow them (left-branching)
in the surface-level of the sentence (Fábregas et al.,
2015).

Hence, the attested head and dependent relative
position patterns (and their frequency) in the dif-
ferent PUD corpora were extracted using a Python
script. All observed features extracted from the
PUD corpora (2,890 in total) have been included
in the language vectors. From this total, 1,374
features (47.5%) correspond to cases where the
dependent precedes the head, and 1,516 (52.5%)
to right-branching patterns. In the cases where a
feature was not observed in a determined language,
the value 0 was attributed to it.

Two examples of head and dependent relative
position patterns are presented below:

• ADV_advmod_precedes_ADJ - head-final or
left-branching - It means that the dependent,
which is an adverb (ADV) precedes the head
which is an adjective (ADJ) and has the syn-
tactic function of an adverbial modifier (adv-
mod). The dependent can be in any position of
the sentence previous to the head, not neces-
sarily right before. An example of a sentence
with this pattern is presented in the Appendix
section (Figure 4).

• NOUN_obl_follows_VERB - head-initial or
right-branching - In this case, the dependent
(NOUN), comes after the head, which is a
verb, and has the function of oblique nominal
(obl). The dependent can be in any position af-
ter the head, not necessarily being right next to
it. An example of a sentence representing this
pattern is presented in the Appendix (Figure
5).

This specific analysis of the head and depen-
dent relative position corresponds to a quantitative
interpretation of the Head and Dependent theory

(Hawkins, 1983) which considers that there is a ten-
dency of organizing head and dependents in homo-
geneous word ordering. This author proposed a set
of language types according to attested word-order
phenomena concerning a limited list of elements
as heads and dependents. In this article, we de-
cided to consider all possible head and dependent
pairs to conduct our analysis to have a more global
overview of these ordering phenomena.

3.2.4 Verb and object relative order

Inside the ensemble of features extracted for the
analysis of the head and dependent relative position,
it is possible to extract the ones regarding verbs and
direct objects (deprel: "obj") for a specific analysis
of these phenomena. We decided to examine the
position of these two elements in detail as they are
key in typological studies such as the one proposed
by Dryer (1992) where correlations are defined
according to whether the verb comes before or after
the object.

Thus, to compose the language vectors we ex-
tracted the head and dependent patterns which con-
cern verbs and objects only (not only nominal but
all other possible ones). We have decided to con-
sider all the direct objects as if only nominal ones
were analysed, the obtained classification would
be similar to the general one available in databases
(VO or OV languages), thus, not allowing us to dif-
ferentiate in detail all PUD languages. In total, 13
OV and 12 VO features were attested in the PUD
collection, allowing us to generate a 25-dimension
language vector for each language.

3.3 Dependency parsing experiments

For the ensemble of experiments regarding depen-
dency parsing, we used the UDify tool (Kondratyuk
and Straka, 2019) which proposes an architecture
aimed at PoS-MSD and dependency parsing tag-
ging of tokenized texts integrating Multilingual
BERT language model (104 languages) (Pires et al.,
2019). It can be fine-tuned using specific corpora
(mono or multilingual) to enhance overall results.
This tool was selected as it presents state-of-the-art
algorithms concerning the specific task of depen-
dency parsing annotation.

Training parameters were defined as:

• Number of epochs: 80

• Warmup: 500
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Other parameters remained the same as proposed
by the authors. To calculate the statistical signifi-
cance of the results, for each training corpus, we
conducted 6 experiments with different values of
random seeds, allowing us to calculate the mean
value of the labeled attachment score (LAS) and its
standard deviation.

The baseline regarding dependency parsing
results consists of LAS values obtained with
monolingual-trained models of PUD languages.
For each experiment, 600 sentences were used for
training, 200 for validation, and 200 for testing.
Regarding the multilingual experiments, we com-
bined PUD languages in pairs (concatenation of the
training corpora). Thus, a total of 380 models were
trained. Validation and test sets were the same ones
as those used for the baseline experiments (mono-
lingual ones).

With the baseline scores and the results obtained
with the multilingual language pairs, we were able
to calculate deltas to quantify the existing synergy
between languages when corpora are combined for
dependency parsing improvement. The deltas were
obtained with:

Delta = LASlang_1_and_2 − LASlang_1 (1)

The deltas were considered statistically signifi-
cant if the p-value calculated between the two LAS
scores was lower than 0.01.

3.4 Correlation calculation

The main focus of this study is to check whether
the language distances obtained from the corpus-
based typological approaches correlate with the
LAS deltas (i.e., with the synergy between the lan-
guages when combined in dependency parsing ex-
periments with deep-learning tools).

Two different correlation coefficients were cho-
sen as they represent different ways that variables
can correlate: Pearson’s and Spearman’s. The first
one corresponds to the measure of linear correla-
tion between two variables (Pearson, 1895), while
the second determines how well the relationship be-
tween two variables can be defined as a monotonic
function (Lehman, 2005).

Correlation values vary from -1 to 1. In our
case, we expect negative values as we hypothesize
that languages distances and deltas are inversely
correlated (i.e.: the higher the distance between the
languages, the lower will be the delta).

Language LAS Std. Dev.
tha 74.68 0.13
cmn 74.84 0.56
tur 76.68 0.21
hin 77.46 0.35
isl 78.90 0.16
fin 82.46 0.28
arb 83.34 0.24
swe 84.69 0.26
ind 85.72 0.19
kor 85.99 0.20
eng 86.63 0.15
ces 86.80 0.40
pol 86.88 0.21
rus 88.42 0.15
ita 89.48 0.14
deu 89.55 0.17
por 89.65 0.16
fra 91.20 0.21
spa 91.24 0.09
jpn 91.57 0.20

Table 3: LAS results obtained using UDify tool and
PUD corpora using monolingual models.

4 Results

In the following subsections, we present the base-
line results regarding the dependency parsing ex-
periments together with an overview of the LAS
values obtained when languages were associated.
Then, the correlation analyses are displayed.

4.1 Dependency parsing baseline

As previously explained, the baseline consists of
the LAS values obtained when monolingual train-
ing corpora were used to train the models using
UDify tool. The PUD corpora were divided into
train, development, and test sets (with 600, 200,
and 200 sentences respectively). For each dataset,
we conducted 6 experiments varying the random
seed value for the calculation of the standard de-
viation and p-values. The results are presented in
Table 3.

It is possible to notice that LAS results vary
from 74.68 (for the Thai language) to 91.57 (for
Japanese), almost 17 points of difference. More-
over, besides Japanese, all Romance languages also
have rather high scores. The German language ap-
pears in between the ones of the Romance group,
while other Germanic languages have lower scores
(below Slavic languages). English and Swedish
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Language Positive deltas Negative deltas
hin 0 0
jpn 0 6
kor 0 14
ind 1 1
tha 1 6
arb 2 0
fra 3 0
cmn 4 0
tur 4 1
deu 6 0
pol 9 0
ita 10 0
por 11 0
spa 11 0
ces 12 0
eng 14 0
isl 14 0
swe 14 0
rus 15 0
fin 16 0

Table 4: Number of positive and negative deltas con-
cerning the LAS scores of the language combination
experiments with the UDify tool (p-value < 0.01).

have quite similar results, however, Icelandic is po-
sitioned with the languages with the lowest scores
(below 80) which are: Thai, Chinese, Turkish, and
Hindi.

It has been shown by Alves et al. (2022) that
these results are moderately correlated with the
size of the language representation inside the lan-
guage model (mBERT) present in the UDify ar-
chitecture. However, it does not mean that this is
the only parameter with a major influence on the
results. Languages with more strict word order
configurations tend to have higher LAS.

4.2 Dependency parsing multilingual results
In Table 4, we present the overall synergy results
regarding the association of PUD corpora in terms
of the number of cases, per language, where the
combination of corpora provided statistically pos-
itive and negative deltas. For these experiments,
each PUD language was combined in pairs with
all the others (i.e.: the training sets were merged, a
total of 1.200 sentences, and the development and
test sets remained monolingual).

It is possible to observe that the group of lan-
guages with more than 10 cases of language combi-
nation with positive deltas is composed of Finnish,

some Slavic, Germanic, and Romance languages.
Nevertheless, not all PUD languages from these
genera have the same positive tendency: it is the
case of Polish, German, and French, all of them
with less than 10 positive deltas. The Finnish lan-
guage is the most favored one in terms of LAS
when combined with other languages (i.e.: statisti-
cally relevant positive delta in 84% of the cases).

On the other hand, Japanese, Korean, and Thai
do not obtain considerable improvement when com-
bined with other PUD languages in terms of LAS
but present many combinations which implicate a
decrease in this score when compared to the base-
line. Other non-Indo-European languages, such
as Indonesian, Chinese, Thai, and Arabic do not
benefit much from the language combinations but,
at least, do not present negative synergies.

4.3 Correlations

As previously described, we calculated Pearson’s
and Spearman’s correlation for each PUD language
and for each typological strategy using the lan-
guage distances from the dissimilarity matrices and
the LAS deltas obtained when the languages were
combined. All the correlation coefficients are dis-
played in the Appendix section (Tables 7 and 8)

When the obtained correlation value was be-
tween -0.7 and -0.5, it was considered a moderate
inverse correlation, and a strong one for values be-
low -0.7. In Tables 5 and 6, we present the overall
results concerning the number of cases presenting
either moderate or strong inverse correlation per
typological strategy (Pearson’s and Spearman’s cor-
relations respectively).

From the results displayed in table 5, the typolog-
ical approach which provides the language classifi-
cation which correlates the most with the empirical
improvement in terms of LAS is the MarsaGram
linear one concerning cosine distances. This ap-
proach presents a moderate or strong correlation
for half of all PUD languages. It indicates that the
linear order of components inside the same subtree
is one of the relevant factors that may affect deep-
learning systems. However, since the correlation is
not observed for all languages, further research is
necessary to verify the extent of this influence.

The classic classification using lang2vec syntac-
tic features only shows a strong or moderate cor-
relation for 7 out of the 20 PUD languages. This
score is even lower than other new methods such
as Head and Dependent (cosine) and MarsaGram
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Msg. Msg. Msg. Msg. HD HD VO VO L2v L2v
all all lin. lin.
Euc. cos Euc. cos Euc. cos Euc. cos Euc. cos

Strong 0 0 0 0 0 1 1 2 1 1
Moderate 3 8 3 10 7 7 5 2 6 5

Total 3 8 3 10 7 8 6 4 7 6

Table 5: Number of Pearson’s correlations (moderate and strong) regarding all 20 PUD languages. In bold is
highlighted the highest value regarding the total number.

Msg. Msg. Msg. Msg. HD HD VO VO L2v L2v
all all lin. lin.
Euc. cos Euc. cos Euc. cos Euc. cos Euc. cos

Strong 0 1 0 0 1 2 2 0 1 1
Moderate 3 2 3 7 6 5 5 5 5 5

Total 3 3 3 7 7 7 7 5 6 6

Table 6: Number of Spearman’s correlations (moderate and strong) regarding all 20 PUD languages. In bold is
highlighted the highest value regarding the total number.

all properties (cosine).

5 Discussion

The results displayed in Table 4 show that as it is
described in the literature, combining corpora is
an effective way to improve dependency parsing
scores. In our experiments, we showed that the
simple association of corpora allowed us to im-
prove significantly the LAS score for 17 out of the
20 selected languages. The ones which did not
present any improvement are from linguistic fami-
lies which are not well represented in the language
sample. It is important to mention that all experi-
ments were conducted in a low-resourced scenario
(i.e.: corpora composed of 1,000 sentences) even
though the majority of the selected languages have
other annotated corpora. The idea was to find the
best typological method which could be used for
under-resourced languages which are the ones with
the lowest LAS scores in the literature.

Moreover, from tables 5 and 6, it is possible to
notice that the method with the highest number
of inverse correlations is the MarsaGram linear
one with language distances calculated with the
cosine measure. The scores were either moderate
or strong for half of the languages in the PUD
collection. This specific corpus-based approach
seems to be more effective than the state-of-the-art
one (i.e.: using features from the lang2vec tool).
Moreover, since the highest values were obtained
with Pearson’s correlations, it is possible to say
that what is observed is a linear inverse correlation

between the distances and the deltas.
However, even though the MarsaGram linear (co-

sine) strategy provides the most optimized results,
it fails to explain the LAS values for 10 PUD lan-
guages. For Icelandic, Indonesian, and Turkish,
the Pearson’s correlation coefficient of this strat-
egy is lower than -0.2, which indicates, at least, a
low correlation, while for Italian, this coefficient
is lower than -0.10 but higher than -0.20. On the
other hand, for Chinese, Japanese, German, and
Russian, this coefficient is very close to 0.00 (i.e.:
no correlation). And, for Korean and Hindi, values
are positive.

With the values from the dissimilarity matrix ob-
tained using the MarsaGram linear method, it is
possible to generate a dendrogram with the hclust()
function using R. The classification in clusters is
presented in the Annex (Figure 6). It is possible to
notice some similarities with the languages’ geneal-
ogy (e.g.: Romance languages in the same cluster)
and with other typological classifications (e.g. OV
languages on the same side of the dendrogram),
however not all languages are classed following
these expected configurations.

6 Conclusion and Perspectives

In this paper, we presented four corpus-based typo-
logical approaches and evaluated them in compari-
son with the state-of-the-art method consisting of
using syntactic information from databases. First,
we described these new strategies followed by the
results of the dependency parsing experiments via
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corpora association.
We showed that the combination of corpora is

an effective way to improve LAS results in low-
resourced scenarios and that the typological ap-
proach concerning the order of elements inside
subtrees (MarsaGram linear) is the one with the
highest number of moderate and strong correla-
tions for the languages in the PUD collection. In
the future, we aim to analyze in detail the languages
for which this method was not effective. Moreover,
we intend to increase the number of languages to
have a more homogeneous language-set in terms
of the number of languages per linguistic family
as well as conduct tests with non-parallel corpora.
Another perspective for future work is to optimize
Marsagram linear method defining weights for the
features as the extracted patterns may influence the
results differently.
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Figure 1: Example of a sentence with the pattern NOUN_precede_DET-det_NOUN-nmod rom the PUD English
corpus. The determiner (DET) on line 4 has the incoming relation det. It precedes the noun (NOUN) on line 5,
which has the incoming relation nmod. Both appear in the subtree headed by a NOUN (the first tag in the pattern
description); in this case, it is again the noun on line 5.

Figure 2: Example of a sentence with the pattern VERB_require_NOUN-nsubj:pass_AUX-aux:pass from the PUD
English corpus. The noun (NOUN) on line 2 has the incoming relation nsubj:pass. It requires the auxilary (AUX)
on line 3, which has the incoming relation aux:pass. Both appear in the subtree headed by a VERB (token "built" on
line 5).

Figure 3: Example of a sentence with the pattern ADJ_unicity_NOUN-obl:npmod from the PUD English corpus.
The head of the subtree is the token "old" (ADJ) on line 15. The element on line 13 ("year") has the part-of-speech
of noun (NOUN) and the dependency relation of obl:npmod and no other element with the same characteristics can
be found inside the same subtree.

Figure 4: Example of a sentence with two occurrences of the pattern ADV_advmod_precedes_ADJ. The adverb
(ADV) on line 9 has the incoming relation advmod. It precedes the adjective (ADJ) on line 10. And, the adverb
(ADV) on line 4 has the incoming relation advmod. It precedes the adjective (ADJ) on line 5.
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Figure 5: Example of a sentence with the pattern NOUN_obl_follows_VERB. The noun (NOUN) on line 11 has the
incoming relation obl. It comes after the verb (VERB) on line 5.

Figure 6: Marsagram Linear cosine Dendrogram
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Msg. Msg. Msg. Msg. HD HD VO VO L2v L2v
all all lin. lin.
Euc. cos Euc. cos Euc. cos Euc. cos Euc. cos

arb -0.11 -0.52 -0.03 -0.57 -0.54 -0.65 -0.59 -0.47 -0.59 -0.55
cmn 0.19 -0.11 -0.26 0.00 0.25 0.15 -0.06 -0.21 0.01 -0.03
ces -0.25 -0.60 -0.28 -0.57 -0.65 -0.67 -0.57 -0.57 -0.36 -0.28
eng -0.34 -0.53 -0.21 -0.59 -0.41 -0.49 -0.35 -0.16 -0.36 -0.41
fin -0.16 -0.52 -0.46 -0.63 -0.46 -0.44 -0.71 -0.72 -0.10 -0.01
fra -0.50 -0.51 -0.52 -0.62 -0.62 -0.59 -0.38 -0.31 -0.50 -0.47
deu -0.48 -0.11 -0.22 -0.03 -0.23 -0.22 0.03 0.46 -0.03 -0.02
hin -0.36 -0.27 0.05 0.40 0.12 0.41 0.56 0.50 0.44 0.46
isl 0.18 -0.19 -0.26 -0.36 -0.12 -0.31 -0.49 -0.44 -0.40 -0.42
ind 0.23 -0.30 0.20 -0.21 0.12 0.05 0.00 0.05 -0.21 -0.11
ita -0.21 -0.23 -0.02 -0.13 -0.14 -0.17 -0.30 -0.16 -0.10 -0.17
jpn -0.18 0.06 -0.15 -0.05 0.38 0.35 0.02 0.07 0.40 0.50
kor 0.30 0.29 0.08 0.38 0.42 0.49 0.41 0.47 0.43 0.37
pol -0.23 -0.37 -0.50 -0.62 -0.13 -0.34 -0.51 -0.40 -0.37 -0.34
por -0.64 -0.52 -0.39 -0.61 -0.64 -0.53 -0.45 -0.40 -0.57 -0.50
rus -0.16 -0.08 0.17 0.03 -0.27 -0.24 -0.46 -0.28 -0.15 -0.17
spa -0.59 -0.45 -0.57 -0.51 -0.53 -0.50 -0.43 -0.38 -0.60 -0.55
swe -0.48 -0.59 -0.31 -0.64 -0.58 -0.63 -0.59 -0.49 -0.70 -0.68
tha 0.26 -0.59 -0.22 -0.62 -0.64 -0.88 -0.60 -0.80 -0.76 -0.81
tur -0.09 0.10 -0.34 -0.25 -0.45 -0.53 -0.42 -0.56 -0.61 -0.60

Table 7: Pearson’s correlation values regarding all 20 PUD languages.

Msg. Msg. Msg. Msg. HD HD VO VO L2v L2v
all all lin. lin.
Euc. cos Euc. cos Euc. cos Euc. cos Euc. cos

arb -0.05 -0.33 -0.09 -0.53 -0.55 -0.66 -0.65 -0.52 -0.70 -0.69
cmn 0.24 -0.15 -0.12 -0.08 0.36 0.18 0.03 -0.12 -0.02 -0.03
ces -0.14 -0.54 -0.31 -0.49 -0.51 -0.48 -0.52 -0.57 -0.31 -0.31
eng -0.38 -0.59 -0.27 -0.48 -0.49 -0.52 -0.46 -0.02 -0.37 -0.38
fin -0.20 -0.48 -0.41 -0.60 -0.35 -0.44 -0.74 -0.66 -0.09 -0.06
fra -0.50 -0.48 -0.55 -0.59 -0.57 -0.56 -0.47 -0.26 -0.50 -0.53
deu -0.52 -0.28 -0.22 -0.03 -0.30 -0.29 0.05 0.44 -0.09 -0.08
hin -0.31 -0.23 0.06 0.32 -0.05 0.34 0.68 0.60 0.43 0.44
isl 0.24 -0.19 -0.21 -0.46 -0.03 -0.20 -0.50 -0.26 -0.43 -0.44
ind 0.13 -0.27 0.02 -0.22 0.04 0.01 -0.16 -0.24 -0.29 -0.23
ita -0.23 -0.31 -0.02 -0.11 -0.16 -0.15 -0.24 0.12 -0.20 -0.20
jpn 0.08 0.16 -0.01 -0.26 0.45 0.52 -0.10 -0.16 0.50 0.49
kor 0.52 0.34 0.13 0.52 0.18 0.53 0.22 0.17 0.24 0.27
pol -0.29 -0.44 -0.67 -0.62 -0.23 -0.42 -0.55 -0.48 -0.31 -0.31
por -0.42 -0.29 -0.23 -0.37 -0.41 -0.42 -0.49 -0.47 -0.48 -0.47
rus -0.01 -0.14 0.16 0.07 -0.08 -0.09 -0.46 -0.06 -0.08 -0.06
spa -0.51 -0.45 -0.55 -0.55 -0.56 -0.53 -0.50 -0.55 -0.67 -0.66
swe -0.46 -0.73 -0.38 -0.68 -0.70 -0.74 -0.80 -0.40 -0.64 -0.63
tha 0.25 -0.49 -0.19 -0.62 -0.51 -0.81 -0.36 -0.69 -0.68 -0.70
tur 0.09 -0.15 -0.26 -0.18 -0.59 -0.69 -0.15 -0.31 -0.59 -0.57

Table 8: Spearman’s correlation values regarding all 20 PUD languages.
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Abstract

The success of cross-lingual transfer learning
for POS tagging has been shown to be strongly
dependent, among other factors, on the (typo-
logical and/or genetic) similarity of the low-
resource language used for testing and the lan-
guage(s) used in pre-training or to fine-tune
the model. We further unpack this finding in
two directions by zooming in on a single lan-
guage, namely Persian. First, still focusing on
POS tagging we run an in-depth analysis of
the behaviour of Persian with respect to closely
related languages and languages that appear
to benefit from cross-lingual transfer with Per-
sian. To do so, we also use the World Atlas of
Language Structures to determine which prop-
erties are shared between Persian and other lan-
guages included in the experiments. Based on
our results, Persian seems to be a reasonable
potential language for Kurmanji and Tagalog
low-resource languages for other tasks as well.
Second, we test whether previous findings also
hold on a task other than POS tagging to pull
apart the benefit of language similarity and the
specific task for which such benefit has been
shown to hold. We gather sentiment analysis
datasets for 31 target languages and through
a series of cross-lingual experiments analyse
which languages most benefit from Persian as
the source. The set of languages that benefit
from Persian had very little overlap across the
two tasks, suggesting a strong task-dependent
component in the usefulness of language simi-
larity in cross-lingual transfer.

1 Introduction and Background

Cross-lingual transfer learning consists in using a
(usually high resource) language for fine-tuning a
pre-trained model for a given task, but then using
such model to obtain predictions for a different
(usually low-resourced) language. This is advanta-
geous if the lesser-resourced language lacks enough
resources for training. While in early work on trans-
fer learning English has often been used as source

language, due to its high availability, more recent
research has shown that this might not be the op-
timal choice. For example, de Vries et al. (2021)
show that for POS tagging language similarity has a
great impact on the success of transfer learning, and
even with a small amount of data, one can achieve
high accuracy.de Vries et al. (2022) expands this
study by doing cross-lingual transfer learning be-
tween over 100 languages, in search of good com-
binations of source and target languages. They find
that there is no single language that is a good source
language for cross-lingual transfer learning with all
other languages. Besides, the target language being
included in the model pre-training is the most effec-
tive factor on performance of the model which does
not play a role in low-resource settings. The next
best predictor found for finding a good performing
source-target language pair is the LDND distance
(Wichmann et al., 2010) between them, considered
as the language similarity measure. This measure
is based on the Levenshtein distance between a set
of selected words in two languages.

As a contribution to a better understanding of
the properties of source and target languages to-
wards successful transfer learning, and towards
better processing for low-resource languages, we
investigate cross-lingual transfer learning with a fo-
cus on Persian. We analyze the results of de Vries
et al. (2022) experiments that include Persian as ei-
ther the source or the target language to find the lan-
guages that are a good match with Persian for POS
tagging. To explain the potential reasons for the
results, we use the linguistic features from World
Atlas of Language Structures (WALS).

We also examine the performance of ParsBERT,
the pre-trained monolingual Persian model, in com-
parison to XLM-RoBERTa, a pre-trained multilin-
gual model, for the POS tagging task.

Finally, we investigate whether the language
pairs with Persian in the POS tagging are general-
izable to other NLP tasks or not. We perform cross-
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lingual transfer learning for sentiment analysis as
there is Persian dataset available for this task and
this task is a high-level NLP task compared to POS
tagging as a low-level NLP task. This combination
of tasks has been of interest for cross-lingual trans-
fer learning in other studies as well (Dat, 2021).

We gather sentiment analysis datasets from vari-
ous resources and carry out experiments using the
pre-trained multilingual XLM-RoBERTa language
model. We fine-tune this model using Persian data
and then test it with other languages. In the end,
we compare the best target languages with Persian
as source in sentiment analysis and POS tagging.

Persian language is the official language of Iran,
Afghanistan and Tajikestan. The variety of Per-
sian in these countries is Iranian Persian (main and
official variety of Persian), Dari, and Tajik. The
writing system of Iranian Persian and Dari are the
same, using Persian alphabet, whereas, the Tajik
variety has a different writing system. Figure 1
shows the geographical location of people whose
mother tongue is Persian.

Persian is an Indo-European language, with a
subject-object-verb word order, and it has words
borrowed from French and English. Additionally,
its grammar is similar to many Indo-European lan-
guages. But also it has many words in common
with Arabic, as Iran has Iraq as one of its neighbour
countries and the official religious book for both
countries is in Arabic.

Figure 1: Regions that the majority of people’s mother
tongue is Persian (Commons, 2021b)

Considering Iran’s population of 85 million peo-
ple, the number of Persian speakers is considerably
large. According to Figure 2, Persian speakers are
widely spread around the world. These observa-
tions show the importance of research with Persian
language as it is used by a lot of people around the
world, and it can result in applications benefiting a

large group of people.

Figure 2: Persian speakers spread around the
world (Commons, 2021a)

2 Experimental Setup

2.1 Datasets
For the POS tagging analysis, we a subset of the
Universal Dependencies (UD) dataset as de Vries
et al. (2022)1 that has a tag set of 17 tags. There
are 105 languages in this dataset in total, all having
at least 10 samples as test data that we consider
as target language in our analysis. Among them,
65 languages also have at least 25 samples as train
data which we consider as source languages. We
also obtained the accuracy scores of these 6825 dif-
ferent source-target language pairs using the XLM-
RoBERTa model from de Vries et al. (2022).

We use the LDND distance measure between
90 different languages from the ASJP database2

(Wichmann et al., 2022) as a measure of language
similarity. In addition, we use the WALS dataset
(wal, 2013)3 including 192 different phonological,
grammatical, and lexical properties of 2 676 unique
languages. The number of common linguistics
features is the second language similarity measure
that we use in our analysis.

A multilingual sentiment analysis dataset con-
taining all the languages that exist in UD dataset for

1https://huggingface.co/datasets/wietsedv/
udpos28

2https://asjp.clld.org/
3https://www.kaggle.com/datasets/rtatman/

world-atlas-of-language-structures
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POS tagging does not exist. The largest one that we
found contains negative and positive tagged data
including 23 languages4 as follows: Algerian, Ara-
bic, Basque, Bulgarian, Cantonese, Chinese, Croa-
tian, English, Finnish, German, Greek, Hebrew,
Indonesian, Japanese, Korean, Maltese, Norwe-
gian, Russian, Slovak, Spanish, Thai, Turkish, and
Vietnamese. In addition, we gather data for 8 lan-
guages namely Persian, Urdu, Hindi, Welsh, Polish,
Romanian, Bambara, and Uyghur from multiple
resources, resulting in 31 languages in total. De-
tails about the datasets is provided in appendix A.
We converted all of them to the same structure and
only kept the positive and negative data entries 5.

2.2 Methods

For POS tagging analysis, we analyze the results
of experiments that de Vries et al. (2022) did
with Persian and other languages. In each experi-
ment, de Vries et al. (2022) fine-tuned the XLM-
RoBERTa model with a source language and then
tested it with a target language. We focus on the re-
sult of experiments that have Persian as the source
or target language and attempt to find languages
that result in a high score with Persian in each
scenario. We find the target languages that have
Persian as one of their top 10 source languages
based on accuracy score. Then, we consider Per-
sian as the target language, and find the source
languages that have Persian as one of their top 10
target languages.

We also explore the linguistic features of the
languages that are a good pair with Persian using
the WALS data. We get all the features of the
languages and measure their Hamming distance to
the Persian features.

In our last experiment for POS tagging, we fine-
tune the ParsBERT language model for 3 epochs
with Persian data. At this stage, we achieved a high
performance with an accuracy score of 95.99% on
the validation set. As this score is higher than the
XLM-RoBERTa Persian monolingual score, we
kept this model and did not continue the training
procedure. Then, we test this model with Persian
and other languages that are a good match with it
for POS tagging.

For the sentiment analysis experiments, we use

4https://github.com/jerbarnes/typology_of_
crosslingual

5The whole dataset is accessible from https://
huggingface.co/sepidmnorozy

the XLM-RoBERTa6 pre-trained model, the same
model that is used by de Vries et al. (2022) for the
POS tagging experiments. We fine-tune the model
with Persian data for 10 epochs with the best score
occurring at the 5th epoch, yielding an accuracy of
87.21%. Model fine-tuning details are provided
in appendix A. We take the model checkpoint at
epoch 5 and test it with Persian and other target
languages to predict the sentiment of the input text
as positive or negative.

3 Results and discussion

3.1 POS-tagging
Using the XLM-RoBERTa model, the monolin-
gual Persian experiment 7 has the highest accuracy
of 91.43%. Considering Persian as the target lan-
guage, Persian itself is the best source language, as
the accuracy score drops under 81% in other exper-
iments. Only two languages: Gothic and Arabic
have Persian as one of their top 10 target languages
but with low accuracies of 53.12% and 76.08%.
Therefore, for POS tagging, Persian as target does
not benefit from other languages as the source lan-
guage. Details of source languages and scores is
provided in appendix3

Nevertheless, considering Persian as the source
language yields interesting results. The list of lan-
guages that have Persian as one of their top 10
source languages is as follows: Akkadian (low re-
source), Assyrian (low resource), Bambara (low re-
source), Bhojpuri (low resource), Hindi, Kurmanji
(low resource), Persian, Tagalog (low resource),
Urdu, Uyghur, and Welsh. Among these 11 lan-
guages, 6 languages are low resource languages
which draw our interest. For Tagalog (78.96%) and
Kurmanji (78.90%) we observe a score of roughly
79%, which is higher than the other low-resource
languages. In addition, among the languages result-
ing in a high accuracy for Kurmanji listed in ap-
pendix 4, Persian is the most similar language to it
regarding the LDND distance measure. Also from
another perspective to assess languages similarity,
we use the linguistic features from WALS dataset.
We observe that for Kurmanji there are only 12
features in WALS and 10 of them are shared with
Persian. Therefore, we propose that Persian is a
good source languages for Kurmanji. Besides, Per-
sian and Kurmanji are spoken in close geographical
locations (Iran, Turkey, Iraq, Syria).

6xlm-roberta-base
7The source language and the target language are the same
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For languages that have Persian as one of their
top 10 source languages, we provide the number
of features available for each language in WALS
and the number of common ones with Persian in
appendix 6. According to this table, first Hindi and
second Tagalog have the most common features
with Persian. Although Tagalog is a low-resource
language, it has 145 features listed in WALS. Be-
sides, Persian has 147 features and has 54 features
in common with Tagalog. In addition, among the
list of top 10 source languages for Tagalog shown
in appendix 5, Persian has the lowest LDND dis-
tance. Therefore we propose Persian as a potential
source language for Tagalog in other cross-lingual
tasks.

Using the Pars-BERT model, fine-tuning it with
Persian as source, and test it with Persian and oth-
ers as target, Persian as target has a score of 95.99%
which is higher than the monolingual Persian exper-
iment with XLM-RoBERTa. However, only with
Persian Pars-BERT outperforms XLM-RoBERTa.
Therefore, the monolingual Persian model is not
enough for transfer learning and other languages’
existence in the pre-training of the model has a
significant effect on both high-resource and low-
resource languages.

3.2 Sentiment analysis

The evaluation metrics for top 10 languages based
on the accuracy score are shown in figure 3. Sur-
prisingly the accuracy of the monolingual Persian
experiment is only 87.69%, and Persian is not on
the top of the list. However, Slovak has the highest
accuracy of 93.38% occupying the first rank.

In this binary sentiment analysis task, most of the
languages shown in Figure 3 have higher precision
than recall. High precision values show that the
model is not labeling negative samples as positive.
The opposite case happens for Polish and sharply
for German. For these two languages, the model
has a higher recall, better at predicting the positive
case and performs poorly on negative samples.

Considering Persian as the source language, the
target languages that have a high score for POS
tagging (listed in appendix7) and for sentiment
analysis (listed in figure 3) only have two languages
in common: “Polish” and “Bulgarian” Therefore,
based on our results, cross-lingual transfer learning
with Persian is task-dependent, and not the same
group of languages appeared for both tasks.

4 Conclusion

All in all, we analyse the result of previous exper-
iments for POS tagging and investigate whether
having Persian as source or target language in
cross-lingual transfer learning would be benefi-
cial for Persian and other languages. We observe
that Persian is the best source for itself as target
and achieves a score of 91.43% for POS tagging.
Besides, it can serve as a good source for 6 low-
resource languages. We use LDND distance mea-
sure and linguistic features from WALS to reason
that Persian can be a potential good source for
Kurmanji and Tagalog for other tasks than POS tag-
ging as well. Lastly for POS tagging, we observe
that ParsBERT outperforms XLM-RoBETa only
for monolingual Persian experiment and achieves
a score of 96%. Then, we gather data and perform
sentiment analysis to investigate whether the same
target languages found for POS tagging would also
benefit from Persian as the source language for
sentiment analysis. We observe different target lan-
guages from the POS tagging results and only two
languages: Polish and Bulgarian appear for both
tasks. In addition, monolingual Persian experiment
does not achieve the highest accuracy and Slovak is
the best performing target. Therefore, we conclude
that cross-lingual transfer learning with Persian is
task dependent.

5 Limitations

The main challenge of this work was to find senti-
ment analysis dataset for various languages, espe-
cially the low-resource ones.

References
2013. Wals online.

2021. Evaluating morphological typology in zero-
shot cross-lingual transfer. Association for Compu-
tational Linguistics, Online.

Wikimedia Commons. 2021a. File:map of persian
speakers.svg — wikimedia commons, the free media
repository. [Online; accessed 13-February-2022].

Wikimedia Commons. 2021b. File:persian language
location map.svg — wikimedia commons, the free
media repository. [Online; accessed 13-February-
2022].

Wietse de Vries, Martijn Bartelds, Malvina Nissim, and
Martijn Wieling. 2021. Adapting monolingual mod-
els: Data can be scarce when language similarity is
high. Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021.

92

https://wals.info/
https://doi.org/10.18653/v1/2021.acl-long.244
https://doi.org/10.18653/v1/2021.acl-long.244
https://commons.wikimedia.org/w/index.php?title=File:Map_of_Persian_speakers.svg&oldid=527368091
https://commons.wikimedia.org/w/index.php?title=File:Map_of_Persian_speakers.svg&oldid=527368091
https://commons.wikimedia.org/w/index.php?title=File:Map_of_Persian_speakers.svg&oldid=527368091
https://commons.wikimedia.org/w/index.php?title=File:Persian_Language_Location_Map.svg&oldid=606196262
https://commons.wikimedia.org/w/index.php?title=File:Persian_Language_Location_Map.svg&oldid=606196262
https://commons.wikimedia.org/w/index.php?title=File:Persian_Language_Location_Map.svg&oldid=606196262
https://doi.org/10.18653/v1/2021.findings-acl.433
https://doi.org/10.18653/v1/2021.findings-acl.433
https://doi.org/10.18653/v1/2021.findings-acl.433


Figure 3: Evaluation metrics for sentiment analysis testing

Wietse de Vries, Martijn Wieling, and Malvina Nissim.
2022. Make the best of cross-lingual transfer: Ev-
idence from POS tagging with over 100 languages.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 7676–7685, Dublin, Ireland.
Association for Computational Linguistics.

Mountaga Diallo, Chayma Fourati, and Hatem Had-
dad. 2021. Bambara language dataset for sentiment
analysis.

Luis Espinosa-Anke, Geraint Palmer, Padraig Corcoran,
Maxim Filimonov, Irena Spasic, and Dawn Knight.
2021. English–welsh cross-lingual embeddings. Ap-
plied Sciences, 11:6541.

Mehrdad Farahani, Mohammad Gharachorloo, Marzieh
Farahani, and Mohammad Manthouri. 2020. Pars-
bert: Transformer-based model for persian language
understanding.

Muhammad Yaseen Khan and Muhammad Suffian
Nizami. 2020. Urdu sentiment corpus (v1.0): Lin-
guistic exploration and visualization of labeled
datasetfor urdu sentiment analysis. In 2020 IEEE
2nd International Conference On Information Sci-
ence Communication Technology (ICISCT). IEEE.
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A Sentiment Analysis Details

Table 1 shows the details of different datasets we
gathered for sentiment analysis. Table 2 shows
the evaluation metrics while fine-tuning the XLM-
RoBERTa model for sentiment analysis.

B POS Tagging Details

Table 3, table 4, and table 5 show the top 10 source
languages for target languages Persian, Kurmanji,
and Tagalog respectively. Table 6 shows the num-
ber of features from WALS dataset for languages
that have Persian as one of their top 10 source lan-
guages. Table 7 shows the languages achieving the
highest accuracies when Persian is the source.
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Lang #pos #neg content source #train #val #test
Persian 35k 35k food reviews (Farahani et al., 2020) 56.7k 6.3k 7k
Urdu 500 480 political tweets Khan and Nizami (2020) 685 - 294
Hindi movie reviews Kaggle 513 115 -
Welsh 25k 25k movie reviews Espinosa-Anke et al. (2021) 25k - 25k
Polish 1762 2455 school, products, Kocoń et al. (2019) 3737 - 480

medicine, hotels
reviews

Romanian 17271 11675 products and Huggingface 17941 - 11005
movie reviews

Bambara 1663 579 sports, politics, Diallo et al. (2021) 1569 - 673
music, etc
Common-crawl

Uyghur 2450 353 Li et al. (2022) 1962 - 841

Table 1: Details of sentiment analysis data

Epoch Training Loss Validation Loss Accuracy F1 Precision Recall
1 0.3645 0.4315 0.8603 0.8466 0.9386 0.7711
2 0.374 0.4015 0.8713 0.8648 0.9105 0.8235
3 0.3363 0.4772 0.8705 0.8615 0.9256 0.8057
4 0.3131 0.4579 0.8702 0.8650 0.9007 0.8321
5 0.3097 0.4160 0.8721 0.8663 0.9069 0.8292
6 0.2921 0.4638 0.8673 0.8630 0.8917 0.8362
7 0.272 0.5183 0.8654 0.8602 0.8947 0.8283
8 0.2481 0.5846 0.8649 0.8624 0.8787 0.8467
9 0.192 0.6481 0.8610 0.8596 0.8680 0.8514
10 0.1945 0.7030 0.8603 0.8585 0.8699 0.8473

Table 2: XLM-RoBERTa fine-tuning results for sentiment analysis
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Idx Source Target Score dist
1 Persian Persian 91.43 nan
2 Urdu Persian 80.63 78.87
3 Czech Persian 80.09 94.62
4 Irish Persian 79.73 98.25
5 Croatian Persian 79.39 93.12
6 Armenian Persian 79.23 98.0
7 Romanian Persian 79.05 92.91
8 Galician Persian 78.88 92.96
9 Welsh Persian 78.7 97.71
10 Russian Persian 78.7 93.02

Table 3: Top 10 best source languages for Persian as
target

Idx Source Target Score Dist
1 Romanian Kurmanji 79.52 89.76
2 Galician Kurmanji 79.38 93.39
3 Czech Kurmanji 79.28 95.59
4 Persian Kurmanji 78.9 79.4
5 French Kurmanji 78.88 90.9
6 Icelandic Kurmanji 78.56 95.49
7 Croatian Kurmanji 78.51 93.89
8 Bulgarian Kurmanji 78.47 93.55
9 Dutch Kurmanji 78.32 90.39
10 Italian Kurmanji 78.24 89.86

Table 4: Top 10 best source languages for Kurmanji as
target

Idx Source Target Score Dist
1 Bulgarian Tagalog 81.56 102.73
2 Russian Tagalog 80.91 101.1
3 Polish Tagalog 80.17 98.98
4 Icelandic Tagalog 79.98 100.87
5 Hebrew Tagalog 79.24 101.8
6 Persian Tagalog 78.96 96.05
7 Urdu Tagalog 78.49 99.32
8 Serbian Tagalog 77.47 97.51
9 Faroese Tagalog 76.07 102.85
10 Spanish Tagalog 74.39 96.76

Table 5: Top 10 best source languages for Tagalog as
target

Idx Lang #features #Common
0 Persian 147 147
1 Hindi 144 71
2 Tagalog 145 54
3 Bambara 90 33
4 Welsh 69 28
5 Urdu 42 20
6 Bhojpuri 36 17
7 Uyghur 35 11
8 Kurmanji 12 10
9 Arabic 30 10
10 Assyrian 3 2

Table 6: WALS features for languages related to Persian

idx Lang Score Mono score Dist
1 Hebrew 89.58 93.75 99.16
2 Marathi 84.05 88.96 91.65
3 Estonian 83.52 96.80 100.19
4 Bulgarian 83.452 99.30 97.11
5 Polish 82.692 98.22 91.71
6 Serbian 82.472 99.06 93.93
7 Icelandic 82.32 95.64 98.67
8 Telugu 82.11 94.87 98.47
9 Tamil 82.00 85.64 97.17
10 Arabic 81.70 75.93 97.46

Table 7: Top 10 target languages for Persian as Source
language based on POS tagging score
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Abstract

We present a cross-linguistic study that aims
to quantify vowel harmony using data-driven
computational modeling. Concretely, we define
an information-theoretic measure of harmonic-
ity based on the predictability of vowels in a
natural language lexicon, which we estimate
using phoneme-level language models (PLMs).
Prior quantitative studies have relied heavily on
inflected word-forms in the analysis of vowel
harmony. We instead train our models using
cross-linguistically comparable lemma forms
with little or no inflection, which enables us
to cover more under-studied languages. Train-
ing data for our PLMs consists of word lists
with a maximum of 1000 entries per language.
Despite the fact that the data we employ are
substantially smaller than previously used cor-
pora, our experiments demonstrate the neural
PLMs capture vowel harmony patterns in a set
of languages that exhibit this phenomenon. Our
work also demonstrates that word lists are a
valuable resource for typological research, and
offers new possibilities for future studies on
low-resource, under-studied languages.

1 Introduction

1.1 Vowel Harmony
Many of the world’s languages exhibit vowel har-
mony – a phonological co-occurrence constraint
whereby vowels in polysyllabic words have to be
members of the same natural class (Ohala, 1994).
Natural classes of vowels are defined with respect
to polar phonological features such as vowel back-
ness (±BACK) and roundedness (±ROUND). In a
prototypical language with backness, or ±BACK

harmony, all vowels within a word tend to share
the ±BACK feature, i.e. they are either all front
(−BACK) or back (+BACK). Table 1 illustrates
vowel harmony in Turkish, one of the languages
best known to have this feature. In Table 1, the
nominative plural and genitive plural are examples
of −BACK harmony, while the genitive singular

column of +BACK harmony. In the case of Turk-
ish, vowel harmony can be defined as a constraint
applying to almost all words and the entire inflec-
tional system. In other languages vowel harmony
may be restricted to the inflectional system, or even
only a subset of inflectional suffixes. For example,
In Estonian there are vestiges of vowel harmony
in lexical items and it is absent from the inflec-
tional system, while in Bislama it only occurs in
a single suffix marking transivity (Crowley, 2014).
Between these extremes of Turkish and Bislama
lie languages such as Finnish and Hungarian, with
intermediate vowel harmony systems where not all
vowels participate in vowel harmony to the same
extent. Both languages have ±BACK harmony,
but a subset of the −BACK vowels allow +BACK

harmony to spread: In a word like [lAtik:o] ‘box’
(not [lAtik:ø]), +BACK harmony is not violated,
whereas a word containing only neutral vowels trig-
gers −BACK harmony, as in [merkitys] ‘meaning’
where the +BACK disharmonic form [merkitus] is
not possible.

The rather broad application of the term has
made it increasingly difficult to define it as a phono-
logical process (cf. Anderson 1980). If vowel
harmony is used as a typological feature to group
languages into phylogenetic families, this broad ap-
plication becomes perilous to the researcher since
they have to be aware of the the degree of vowel
harmonicity in the individual languages. Instead
of searching for a necessarily complex definition
of vowel harmony, research has consequentially
concentrated on a quantitative description.

1.2 Prior Work and Scope

Prior approaches to a quantitative description of
vowel harmony have mostly focused on strictly lo-
cal harmony processes. Mayer et al. (2010) used
vowel succession counts derived from corpora of
inflected word-forms to quantify vowel harmony in
a large number of languages in terms of χ2-values,
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Nom. Sg. Gen. Sg. Nom. Pl. Gen. Pl. Gloss
−BACK/−ROUND [ip] [ip-in] [ip-lEr] [ip-lEr-in] ’string’
+BACK/−ROUND [kWz] [kWz-Wn] [kWz-lar] [kWz-lar-Wn] ’girl’
−BACK/+ROUND [jyz] [jyz-yn] [jyz-lEr] [jyz-lEr-in] ’face’
+BACK/+ROUND [pul] [pul-un] [pul-lar] [pul-lar-Wn] ’stamp’

Table 1: Illustration of the Turkish vowel harmony system following Polgárdi (1999). The first vowel of a word
form determines the harmony type. If the first vowel is +BACK, the vowels of the following suffixes must agree w. r.
t. the +BACK feature. ±ROUND harmony applies only in suffixes that have separate forms for this feature: The
genitive suffix takes both ±BACK and ±ROUND forms, while the plural suffix varies only for ±BACK.

while Ozburn (2019) used count data to estimate
succession probabilities and calculate the relative
risk of encountering an harmonic vowel in a word
form. These two approaches treated all positions
in a word form identically. Goldsmith and Riggle
(2012) argued that vowel harmony involves at least
one type of non-local dependency, since it oper-
ates over consonants intervening between adjacent
vowels. They employed a simple n-gram language
model to learn the phonology of Finnish and calcu-
lated pointwise mutual information of vowel-vowel
and consonant-vowel pairs based on the phoneme
probabilities predicted by the language model, find-
ing evidence for consonant-vowel harmony besides
the expected ±BACK harmony, with a small bias
towards +BACK harmony. However, n-gram lan-
guage models are limited by their predefined con-
text size. A language model with a left-hand con-
text of n = 3 cannot capture the effect of vowel har-
mony if it operates over a neutral vowel intervening
between two harmonic vowels. While this effect
could be mitigated by allowing by allowing for a
larger or flexible n, estimating probabilities from
corpora becomes increasingly difficult with higher
values of n. In this study we aim to improve over
these methods by quantifying vowel harmony with
a information-theoretic measure based on surprisal,
capturing the relative strength of vowel harmony in
language in terms of the likelihood of a vowel in a
word to share a specific feature with preceding vow-
els. To do so, we employ neural recurrent language
models with variable-length preceding phoneme
context that are trained on cross-linguistically com-
parable lexical data. While some previous work
on modeling vowel harmony with language mod-
els has been carried out (Rodd, 1997), finding ev-
idence for Turkish vowel harmony in the hidden
activations of a simple neural language model, it
seems that this topic has not been further explored
since then. In the following section, we first intro-

duce feature surprisal as an information-theoretic
measure of vowel harmony (§2). We then present
our computational experiments with the introduced
measure of vowel harmony and discuss the results
of their application to a large collection of cross-
linguistic lexical data (§3, §4). We conclude by
discussing the implications of our study for future
studies on vowel harmony in classical and compu-
tational studies (§5).

2 Quantifying Vowel Harmony

2.1 Phoneme-Level Language Models

Preliminaries and Notations. To quantify
vowel harmony in our study, we make use of
phoneme-level language models (PLMs). Consider
a natural language with a lexicon L and a phoneme
inventory Φ (using IPA symbols). Using a cross-
linguistic word list, we obtain K samples from the
lexicon D = {wk}Kk=1 ∼ L where each sample
is a word-form that is transcribed as a phoneme
sequence w = (φ1, · · · , φ|w|) ∈ Φ∗. Given this
sample of word-forms as training data, a PLM can
be trained to estimate a probability distribution over
Φ by maximizing the term

J(θ,D) =
∑

w∈D
p(w; θ)

=
∑

w∈D

∏

t∈{1,··· ,|w|}
p(φt|φ<t; θ)

(1)

Here, θ are the parameters of the model that
are learned by maximizing the objective function
above. Once a PLM has been trained, it can be
used to compute the probability of unseen, held-
out word-forms (i.e, word-forms that were not ob-
served in the training data). Ideally, a PLM should
assign a higher probability mass to plausible word-
forms given the phonotactic rules of the language
of the train data, and lower probability to implausi-
ble word-forms.
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Recurrent PLMs. Although different archi-
tectures can be used to build a PLM, we choose
to employ a recurrent architecture based on uni-
directional long short-term memory (LSTM) cell
(Hochreiter and Schmidhuber, 1997). Given a
word-form as a sequence of phonemes w =
(φ1, · · · , φ|w|), each phoneme is first projected
into a continuous-vector phoneme representation
using an embedding matrix as E(φt) = xt ∈ Rd.
Then, the LSTM takes as input the sequence at
each position t within the word-form to compute
the hidden state representation

ht = FLSTM(xt,ht−1) ∈ Rh (2)

To obtain a probability distribution over the
phoneme inventory, a linear transformation is ap-
plied on the hidden state vector followed by a soft-
max function to obtain a probability vector as

p(φt|φ<t) = SOFTMAX(Wht + b) (3)

Here, W ∈ R|Φ|×h is a projection matrix at the
network output and b ∈ R|Φ| is a bias term.

Nevertheless, we make a few (trivial) design
modifications to the vanilla LSTM-based PLMs
to make them more suitable for our study. First,
since our main interest is to model the predictability
of the vowels, we confine the output probability
distribution to be over the set of vocalic segments,
which is a subset of the phoneme inventory V ⊂ Φ.
Second, we train and evaluate our PLMs to predict
the next vowel only in the intra-word positions
where we know that the next phoneme is indeed
a vowel, given a preceding phoneme context that
contains at least one vowel. While the output in this
modified PLM is over the set V , the word-forms
remain sequences in Φ∗. That is, both consonants
and vowels could appear in the preceding context.

Note that we do not employ fixed-length context
n-gram PLMs in our study since we aim to ac-
count for non-local phoneme dependencies within
a word-form. Given that word-forms within a lexi-
con have arbitrary lengths, restricting the preceding
context to a fixed number of phonemes does not
enable us to model vowel harmony across variable-
length contexts beyond phoneme n-grams. On
the other hand, we do not employ more power-
ful architectures such as a transformer (Vaswani
et al., 2017) or a bidirectional LSTM (Graves and
Schmidhuber, 2005) on grounds of suitability for
the task: (1) the dependencies between vowels are

relatively short (the domain of vowel harmony is
the phonological word), (2) vowel harmony is a
progressive phenomenon (i.e., operates from left
to right–unlike its regressive counterpart umlaut),
and (3) the training sets of the individual languages
in our study are likely too small to train a large
transformer model. Moreover, several prior stud-
ies within the information-theoretic approaches to
investigate phonological structure have also em-
ployed LSTM-based PLMs (e.g., Pimentel et al.,
2020, 2021a).

2.2 Harmony as Surprisal
Given that our phoneme-level language model that
was trained on a set of word-forms sampled from
a natural language lexicon, we can quantify the
vowel harmony phenomenon using Shannon’s in-
formation content, or surprisal. Given a non-initial
vocalic position t after a phoneme context φ<t,
vowel surprisal is

η(v, t) = −log2 p(v | t,φ<t) (4)

which is measured in bits. Note that surprisal
is maximal when the preceding context tells us
nothing about which vowels are more likely to oc-
cur. That is, if the vowels are sampled from a
uniform distribution over the vowel inventory V ,
then η(v, t) = log2|V| (bits). Therefore, surprisal
in our case is mainly a metric of how “predictable”
a vowel is in a given context. Now consider a set
of vowels H ∈ V that share a phonological fea-
ture. For a given vowel v ∈ H, we refer to the
set H as a harmonic group, while its disharmonic
counterpart ¬H ∈ V \ H as a disharmonic group
with respect to the vowel v. For example, consider
the front vowel [i] in Turkish that has the feature
−BACK. With respect to [i], the front vowels in the
Turkish vowel inventory H = {[i], [e], [y], [œ]}
make a harmonic group since they all share the fea-
ture −BACK, while the rest of the vowels make a
disharmonic group ¬H = {[W], [a], [u], [o]} since
they all lack the feature −BACK. Given a phoneme
context that contains at least one vowel v such that
v ∈ H, we compute the surprisal of a harmonic
group at position t in a word-form by summing
over the vowels in H, i.e.

η(H, t) = −log2
∑

π∈H
p(π | t,φ<t) (5)

We refer to the quantity η(H, t) as feature sur-
prisal, since all members of the harmonic group
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Language Harmonic Groups
Finnish −BACK {y, ø, æ} +BACK {u, o, A} BACK neutral {e, i}
Hungarian −BACK {y, ø} +BACK {u, o, 6} BACK neutral {e, i}
Manchu −BACK {e/7} +BACK {A, O} BACK neutral {i, u}

Khalkha Mongolian
−ATR {e, u, O} +ATR {a, 6, o} ATR neutral {i}

−ROUND {e, a, i} +ROUND {o} ROUND neutral {u, U}

Turkish
−BACK {i, e, y, œ} +BACK {W, a, u, o}
−ROUND {i, e, u, o} +ROUND {W, a, y, œ}

Arabic, Ainu, Armenian, Basque, Estonian† – – –

Table 2: Languages from NorthEuraLex used in our sample along with their harmonic groups. Khalkha Mongolian
has a special type of vowel harmony involving the placement of the tongue root: +ATR codes an advanced position
of the tongue root in the vocal tract, while −ATR encodes an retracted or further back position. Languages in our
sample that do not exhibit vowel harmony are marked with the symbol (†).

H share one phonological feature. Likewise, we
compute the surprisal of a disharnomic group by
summing over the vowels in ¬H as

η(¬H, t) = −log2
∑

π∈¬H
p(π | t,φ<t) (6)

Assuming that a PLM has learned the vowel har-
mony constraints of a language from the training
word-forms, we expect the model to predict that
vowels in H are more likely to co-occur in a single
word-form. By implication, we expect the model to
“disfavour” the occurrence of a vowel in ¬H when
observing members of H in the context. That is, in
a language that exhibits this linguistic phenomenon,
word-forms that conform to vowel harmony should
be assigned a higher probability than word-forms
that do not. For example, the Finnish word form [s
i l m æ s ae] is expected to be assigned a high prob-
ability by our model since the sequence of vowels
[i], [ae], [ae] is −BACK harmonic, and its dishar-
monic counterpart [s i l m æ s o] is expected to be
assigned a lower probability.

Note in equations (5) and (6) we compute the sur-
prisal at a single vocalic position in a given word-
form. To quantify harmonic group surprisal across
a set of held-out word-forms W , we compute the
quantity

η(H) = − 1

|W|
∑

w∈W

∑

t∈{τ,··· ,T}
η(H, t) (7)

which is the average feature surprisal. Here, the
outer sum

∑
w∈W iterates over all word-forms in

W , while the inner sum
∑

t∈{τ,··· ,T} iterates over
non-initial vocalic positions within the word-form
w. The feature surprisal of a disharmonic group
η(¬H) is computed in the same way as in equation
(7) but summing over the term η(¬H, t) instead.

Finally, we quantify the strength of a vowel har-
mony constraint in a language as the difference of
feature surprisal of the harmonic and disharmonic
vowels

∆η = η(H)− η(¬H) (8)

If feature surprisal in harmonic phoneme sequences
is lower than feature surprisal in disharmonic
phoneme sequences, ∆η is negative, indicating that
harmonic sequences are assigned higher probabil-
ity. It is worth pointing out that our grouping of the
vowels into harmonic groups is only used to obtain
feature surprisal values from the model after it has
been trained. That is, our PLMs for all languages
in our study are trained without an explicit signal
that informs the model about the features of the
vowels.

3 Experimental Data and Setup

3.1 Data
Previous research has made use of large corpora
of inflected word-forms (Goldsmith and Riggle,
2012) or running text (Mayer et al., 2010) to infer
vowel harmony patterns. This is mainly because
vowel harmony constraints often surface in inflec-
tional suffixes, especially in highly agglutinating
languages such as Finnish, Hungarian or Turkish.
Though this approach is not in itself problematic, it
relies on data that may not exist for the majority of
the world’s languages. It is also not applicable for
languages that have a different grammatical struc-
ture, for example, reduced or fusional morphology.
On the other hand, if a language has vowel har-
mony as a phonologically conditioned rather than
a purely grammatical phenomenon, the relevant
vowel harmony patterns should also be recoverable
from lexical data with little or no inflection at all.

We use parts of the NorthEuraLex database
(http://www.northeuralex.org/, Dellert et al.
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Maximum Minimum Average Median
Phoneme inventory size 72 (Skolt Sami) 23 (Turkish) 38.9 37
Number of word-forms 1513 (Manchu) 677 (Italian) 1136.6 1142

Table 3: Inventory sizes and word list lengths in the data sampled from NorthEuraLex.

2020) as experimental data to train our phoneme
language models and quantify the effect of vowel
harmony in languages that are known to exhibit
this linguistic phenomenon. NorthEuraLex offers a
large multilingual word list consisting of 1005 con-
cepts translated into 107 language varieties from
North Eurasia with translations provided in a uni-
fied transcription following the International Pho-
netic Alphabet (IPA). Moreover, NorthEuraLex
contains a larger number of diverse language vari-
eties from various language families that are known
to exhibit vowel harmony, as well as language vari-
eties that are known to lack the phenomenon.

As there is no clear definition of what consti-
tutes vowel harmony in languages, and linguistic
resources such as the World Atlas of Language
Structures (Dryer et al., 2014) do not provide this
information, we concentrate on a subset of 10 lan-
guage varieties from NorthEuraLex, with five vari-
eties traditionally known to exhibit vowel harmony,
and five known to not exhibit the phenomenon.
When selecting the languages, we tried to obtain a
rather diverse sample of languages from different
language families. Table 2 gives an overview over
the languages and their active harmony processes
(where present).

The NorthEuraLex data is available in the form
of Cross-Linguistic Data Formats (CLDF https:
//cldf.clld.org, Forkel et al. 2018), follow-
ing the recommendations underlying Lexibank
(List et al., 2022a), a large collection of lexi-
cal word lists (https://github.com/lexibank/
northeuralex). A core feature of CLDF is the
integration of reference catalogs. Reference cat-
alogs are metadata collections that offer basic in-
formation on major linguistic constructs, such as
languages (Glottolog, https://glottolog.org,
Hammarström et al. 2022) or concepts (Concepti-
con, https://concepticon.clld.org, List et al.
2022b). In addition to offering word lists stan-
dardized with respect to language names and con-
cept elicitation glosses, Lexibank offers standard-
ized phonetic transcriptions as specified by Cross-
Linguistic Transcription Systems (CLTS, https:
//clts.clld.org, List et al. 2021), a reference

catalog that offers a transcription system that con-
forms to the IPA but resolves ambiguities encoun-
tered in the original IPA specification (Anderson
et al., 2018).

Since NorthEuraLex is available in CLDF, this
means that we have direct access to standardized
phonetic transcriptions segmented into individual
sounds in each word form along with an underlying
set of distinctive features provided by CLTS. The
resulting data set provides on average 1136 unique
word-forms per language (with several concepts
having two or more word-forms as translational
equivalents), with larger differences between indi-
vidual languages. We decided against downsam-
pling word lists to a common size due to the already
small number of samples. The word list sizes range
from 971 (Ainu) to 1513 (Manchu).

3.2 Preprocessing

For each of the languages, identical word-forms
are collapsed to a single item, such that each se-
quence of phonemes is presented only once to
the model. In addition, word-forms which are a
substring of another word form are also ignored.
Thus, if the word list of a language contains the
sequences { [s i l m æ], [s i l m æ], [s i l m æ s: æ],
[s i l m æ d æ] }, only the latter two sequences are
kept: { [s i l m æ s: æ], [s i l m æ d æ] }. This
procedure ensures that only unique sequences are
presented to the model, and that train and test splits
do not contain identical forms, which might other-
wise lead to unjustified higher weights for sound
sequences recurring across the vocabulary of indi-
vidual language varieties.

3.3 Training

For each language, we randomly split the data into
60%, 10% and 30% subsets for train, validation and
test splits respectively. The models were trained
with the Adam optimizer (Kingma and Ba, 2015)
on the task of minimizing the cross entropy of the
predicted distribution and the true probability dis-
tributions over the vowel inventory. This is equiv-
alent to minimizing the negative log-likelihood of
the true phoneme at each position. 25% of the in-
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puts were randomly replaced by a mask token to
prevent overfitting on the relatively small sample.
Note that the output probability distribution of the
model is restricted to the vowel inventory of the lan-
guage plus the end-of-sequence token, since only
the vowel positions are of interest for the analysis.

A separate model was trained for each language
in our subset of 10 languages from NorthEuraLex.
The same hyperparameters were used for training
as in Pimentel et al. (2021b), with batch size re-
duced to 32 since NorthEuraLex wordlists are con-
siderably smaller than the datasets used in that pa-
per. Table 4 in Appendix A shows the exact config-
uration of the hyperparameters. After each epoch
the models were evaluated on a validation set, and
all models were trained until validation loss con-
verged. Training the models on unique sequences
derived from word lists ensures that the model sees
each sequence only once per epoch, and minimizes
overlaps between train, test and validation set.

3.4 Significance Tests
As the expected behavior of vowel harmony lan-
guages is that the vowels are not evenly distributed
over their words, average feature surprisal is likely
to not be normally distributed. The Shapiro-Wilk
test (Shapiro and Wilk, 1965) was used to check
whether the surprisal values for every comparison.
For every pairing of conditions at least one of them
was not normally distributed with p < 0.01. Thus,
the Wilcoxon signed-rank test was conducted to test
the significance of a paired contrast (as in the exam-
ple above). Effect size was calculated as the rank-
biserial coefficient using the common language ef-
fect size f = U

n1·n2
as r = f − (1− f), with U be-

ing the test statistic and n1 ·n2 being the number of
possible comparisons between two conditions. For
an unpaired contrast (e.g. the contrast between aver-
age feature surprisal for +ROUND after a −ROUND

vowel and average feature surprisal for +BACK af-
ter a −BACK vowel) a Mann-Whitney U-test was
conducted, with effect size calculated as the rank-
biserial coefficient using the T statistic and the
sum of ranks S as r = T

S . All significance tests
were conducted using the SciPy Python package
(Virtanen et al., 2020).

3.5 Implementation
The methods described here are implemented
in Python. The PyTorch library (Paszke et al.,
2019) is used to train and evaluate our neu-
ral models. CLDF data are accessed with

the help of CL Toolkit (https://pypi.org/
project/cltoolkit, List and Forkel 2021), a
Python package that provides convenient access
to lexical word lists in CLDF.

4 Experimental Results

4.1 Feature Surprisal

All vowel harmony languages show significant dif-
ferences in feature surprisal between harmonic and
disharmonic conditions with negative ∆η; individ-
ual results can be retrieved from the result tables 6-
10 in Appendix C. Feature surprisal in the +BACK

disharmonic condition was found to be higher than
feature surprisal in the −BACK disharmonic con-
dition for Finnish (∆η = −0.2148, p < 0.01),
Hungarian (∆η = −1.0806, p < 0.01) and Turk-
ish (∆η = −0.8602, p < 0.01), which confirms
the findings of Goldsmith (1985). Note that if the
+BACK and −BACK harmony were equally strong,
one would expect no difference in surprisal if the
harmony is violated. Three out of four languages
with ±BACK harmony show this tendency, indicat-
ing that the relative strength of +BACK harmony
over −BACK harmony is the usual case rather than
an exception. A possible explanation for this differ-
ence in strength is the existence of neutral vowels,
with 3 of the 4 ±BACK harmony languages in our
sample having at least one neutral vowel, and Turk-
ish, the only language without neutral vowels, also
showing the largest difference between the two
disharmonic conditions . The probabilities of the
neutral vowels are not included in the feature sur-
prisal calculation, causing feature surprisal to be
higher in the +BACK disharmonic condition while
lowering feature surprisal in the −BACK dishar-
monic condition. For Hungarian feature surprisal
was lowest in the neutral harmonic condition, mean-
ing that neutral vowels are most likely to occur
after another neutral vowel. Even though Hungar-
ian neutral vowels trigger −BACK harmony, the
low number of forms containing both −BACK vow-
els and neutral vowels makes it difficult for the
neural language model to learn the pattern, lead-
ing to the highest feature surprisal occurring in
the harmonic condition (i.e. for the −BACK fea-
ture). Figure 1 gives an overview of the relative
strength of vowel harmony for all languages and
harmonic features in the sample used in this study.
For this figure the sign of ∆η was reversed in or-
der to quantify the reduction of feature surprisal in
the harmonic sequences as compared to the dishar-
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Figure 1: Surprisal reduction for the 10 varieties from NorthEuraLex. Best viewed in color.

monic sequences for each combination of feature
and language. The boxplots of languages with-
out vowel harmony are located towards the left of
the plot with small differences between harmonic
and disharmonic sequences, with some vowel har-
mony languages showing similar, yet still positive
surprisal reduction (e.g. Finnish +BACK vowels,
Hungarian +BACK vowels)

4.2 The Case of Turkish

For Turkish the difference in feature surprisal be-
tween harmonic and disharmonic conditions was
large. Figure 2 shows that for both the ±BACK

and ±ROUND conditions, the disharmonic condi-
tion displays a much higher surprisal value as com-
pared to the harmonic condition (∆η = −3.6816,
p < 0.01 and ∆η = −2.7061, p < 0.01 re-

Figure 2: Feature surprisal for Turkish back har-
monic/disharmonic sequences (left) and round har-
monic/disharmonic sequences (right). The difference
between harmonic and disharmonic conditions is sig-
nificant with p < 0.01 in both cases.**: p < 0.01, *:
p < 0.05, ns: p > 0.05

spectively). A small but significant bias towards
+BACK harmony was detected (∆η = −0.8602,
p < 0.01). There is one obvious reason for the rel-
ative strength of ±BACK harmony over ±ROUND,
namely the parasitic nature of ±ROUND harmony
in Turkish: while all morphemes have different
forms for ±BACK, allowing for ±ROUND dishar-
mony, only a subset also has separate forms for
±ROUND (Tab. 1). Thus, there are more instances
of ±BACK harmony to be observed by the model,
and this is expected to result in higher surprisal
values for the ±BACK disharmonic conditions.

After ±ROUND vowels feature surprisal was also
much higher in the disharmonic conditions, with
feature surprisal in the round disharmonic condi-
tion being higher than in the unrounded dishar-
monic condition (∆η = −1.5827, p < 0.01).
In other words, +ROUND harmony seems to be
stronger than −ROUND harmony in Turkish. When
combining the disharmonic conditions within a har-
monic feature and comparing them to the dishar-
monic conditions in the other harmonic feature, the
combined back disharmonic condition (both front
disharmonic and back disharmonic) yields slightly
higher feature surprisal than the combined rounded
disharmonic condition (∆η = 0.8555, p < 0.01);
see Table 8 in the appendix. This is in line with
earlier research (Baker, 2009) that found a bias to-
wards ±BACK harmony over ±ROUND harmony.
This is also the expected result when taking into
account that many suffixes do not have +ROUND

forms and therefore introduce noise to the data.

4.3 Neutral Vowels

Learning vowel dependencies across neutral vow-
els turned out to be difficult: For Manchu and
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Khalkha Mongolian the number of test items in
this category was so low that no meaningful result
could be produced. This is again caused by the
nature of the data which consists of lemma forms.
For Finnish and Hungarian the number of items
was sufficient to conduct the appropriate signifi-
cance tests, but the numbers are still small (102
and 63 respectively). The neural language model
did not learn the association of neutral vowels with
−BACK as assumed for Finnish and Hungarian,
with significant ∆η > 0 between the neutral har-
monic and neutral disharmonic condition only for
Khalkha Mongolian and ±ATR sequences. In Hun-
garian, neutral vowels are most likely to occur after
other neutral vowels, but this is not the case for
Finnish, Manchu and Khalkha Mongolian. On the
other hand, Turkish as the only language in the
sample without neutral vowels showed the largest
difference between harmonic and disharmonic con-
ditions for both ±BACK and ±ROUND (see App. C
for results).

It may be noted that Turkish, the language with
the strongest vowel harmony effect in terms of
∆η, has no neutral vowels both for ±BACK and
±ROUND harmony. This could have facilitated the
generalization on the ±BACK and ±ROUND har-
mony patterns for the neural language model, at
least proving that the neural language model does
indeed assign higher surprisal to disharmonic se-
quences, since there the harmony system is sym-
metrical and the number of vowels is the same for
each feature.

5 Discussion and Conclusion

Prior work in the (computational) linguistics com-
munity has adopted information theory as a frame-
work for the study of human language structure
across different linguistic levels including phonol-
ogy (e.g., Pimentel et al., 2020, 2021c), morphol-
ogy (e.g., Rathi et al., 2021; Wu et al., 2019), and
syntax (e.g., Hahn et al., 2018; Futrell et al., 2015).
Following the same spirit, we have introduced an
information-theoretic metric to quantify vowel har-
mony based on feature surprisal. Our experiments
have demonstrated that feature surprisal is a good
indicator of whether a certain feature participates
in vowel harmony patterns in a language, produc-
ing significant differences between harmonic and
disharmonic conditions for most harmonic features
in five vowel harmony languages. The effect was
found on a very small sample of lemma forms

with little to no morphological information, show-
ing that large amounts of inflectional data are not
necessary to identify some, but not all vowel har-
mony constraints. When calculated for ±BACK

and ±ROUND features for five non-vowel harmony
languages, the difference in surprisal was close to
zero, meaning the neural language model did not
detect any preference for harmony constraints in
the languages evaluated.

We showed that neural language models can cap-
ture non-local harmony constraints over neutral
vowels, which is not possible with count-based
methods as employed by Mayer et al. (2010) or
bigram models as in (Goldsmith and Riggle, 2012).
Here the resolution of the analysis is more fine-
grained with respect to the features underlying the
harmonic groups. The advantage of the modeling
approach presented here over both count-based and
probabilistic models is that it can be used with a
small dataset (word lists of about 1000 word-forms,
of which ca. 300 are in the test set as the basis of
the actual analysis).

The analysis presented could be extended to
other types of phonological constraints, since neu-
ral language models in theory are able to learn all
types of dependencies over sequences of arbitrary
length. However, analysing Finnish, Hungarian,
Manchu and Khalkha Mongolian required prior
knowledge about harmonic vowels and the split of
vowels into harmonic groups, either because the
groups are not defined by the value of a feature as
is the case for languages with neutral vowels, or
because the feature representation in our standard-
ized data itself might not describe a sound with
the feature that is assumed to participate in vowel
harmony.

If it is not known which vowels participate in
vowel harmony, it seems best to use information
on distinctive features in the data in order to find
out which effects can be observed. However, if
the vowel harmony patterns are as complex as in
Khalkha Mongolian, the approach presented here
would probably find its limits in corpus size. Iden-
tifying the approximate number of distinct word-
forms needed to infer vowel harmony systems of
individual language varieties (similar to previous
studies inferring the number of words needed to
get an approximate account of phoneme numbers,
Dockum and Bowern 2019) would be an interesting
topic for future analysis.
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Limitations

The limiting factor in the analysis of Hungarian
and Khalkha Mongolian was the low number of
items with more than two vowels in the test data.
Although this was less of a problem in the other
three languages (Finnish, Turkish and Manchu all
have 400+ items with three or more vowels), this
is likely the case for many of the languages in
NorthEuraLex. Figure 3 in Appendix B shows
that many languages have an even lower number of
items with more than three vowels than Finnish and
Khalkha Mongolian. Given a train-valid-test split
of 60%-10%-30%, the number of items available
to the analysis of long-range dependencies (includ-
ing, but not restricted to, the operation of vowel
harmony across neutral vowels) will be very low
for these languages. This is an inherent property
of the data, and could only be amended by using
larger word lists or a larger corpora that are not
restricted to lemma forms.
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A LSTM Hyperparameters

Hyperparameter Value
Embedding Size 32

Hidden Size 256
LSTM Layers 2

Dropout 0.33
Batch Size 32

Table 4: Model and Training Hyperparameters as taken from (Pimentel et al., 2021b)

B Abbreviations of Harmonic Features

Abbreviation Feature
b back +BACK

f front −BACK

r round +ROUND

u unround −ROUND

atr advanced tongue root +ATR

natr retracted tongue root −ATR

n neutral
h harmonic

dish disharmonic

Table 5: Explanation of the abbreviations used in the result tables. The condition column refers to the type of
harmony tested, with vowel successions abbreviated in the way described in this table. The sequence "f_n_f"
represents sequences starting with a front/−BACK vowel, followed by a neutral/BACK neutral vowel and another
front/BACK vowel. If more than one harmonic feature is present (as in Turkish, Manchu and Khalkha Mongolian),
the magnitude of the effect on feature surprisal is compared between the two features in the disharmonic condition
only (compare row "f_r/dish" in Table 8).

C Result Tables

Table 6: P-values, ∆η and effect size for Finnish feature surprisal

Condition ∆η Statistic p-value Effect Size Test
f_f/f_b -0.8298 71.0 2.e-12 0.0263 Wilcoxon
b_b/b_f -0.8469 415.0 3.8e-17 0.0572 Wilcoxon
n_f/n_b 0.0009 4800.0 0.1723 0.4353 Wilcoxon
f_b/b_f -0.2148 3148.0 0.001 -0.2813 Mann-Whitney

f_n_f/f_n_b -0.563 59.0 7.57e-05 0.1052 Wilcoxon
b_n_b/b_n_f -0.6077 236.0 0.0009 0.2183 Wilcoxon
n_n_f/n_n_b -0.1206 85.0 0.1114 0.308 Wilcoxon
f_n_b/b_n_f -0.1188 688.0 0.4834 -0.0935 Mann-Whitney
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Table 7: P-values, ∆η and effect size for Hungarian feature surprisal

Condition ∆η Statistic p-value Effect Size Test
f_f/f_b -0.0917 270.0 0.64 0.4538 Wilcoxon
b_b/b_f -2.1995 2.0 9.46e-21 0.0003 Wilcoxon
n_f/n_b 0.7951 1270.0 2.47e-14 0.1287 Wilcoxon
f_b/b_f -1.0806 364.0 5.36e-13 -0.8154 Mann-Whitney

f_n_f/f_n_b 0.0864 27.0 1.0 0.4909 Wilcoxon
b_n_b/b_n_f -1.6036 0.0 0.0078 0.0 Wilcoxon
n_n_f/n_n_b 0.4453 243.0 0.0019 0.2348 Wilcoxon
f_n_b/b_n_f -0.674 24.0 0.1728 -0.4 Mann-Whitney

Table 8: P-values, ∆η and effect size for Turkish feature surprisal

Condition ∆η Statistic p-value Effect Size Test
f_f/f_b -3.1502 429.0 1.65e-29 0.0244 Wilcoxon
b_b/b_f -4.0729 258.0 4.25e-42 0.008 Wilcoxon
f_b/b_f -0.8602 14301.0 9.15e-13 -0.3978 Mann-Whitney
r_r/r_u -1.0516 1107.0 1.8e-06 0.2236 Wilcoxon
u_u/u_r -3.185 10.0 9.0e-58 0.0002 Wilcoxon
r_u/u_r -1.5827 6339.0 2.48e-21 -0.6256 Mann-Whitney
f_h/dish -3.6816 1348.0 4.71e-70 0.0138 Wilcoxon
r_h/dish -2.7061 3473.0 4.5e-64 0.0356 Wilcoxon
f/r_dish 0.8555 132794.0 5.55e-21 0.3656 Mann-Whitney

Table 9: P-values, ∆η and effect size for Manchu feature surprisal

Condition ∆η Statistic p-value Effect Size Test
f_f/f_b -2.5563 6.0 1.68e-24 0.0006 Wilcoxon
b_b/b_f -3.4993 209.0 1.16e-20 0.0253 Wilcoxon
n_f/n_b 0.354 14803.0 0.0086 0.4076 Wilcoxon
f_b/b_f 0.1359 9167.0 0.6778 0.0305 Mann-Whitney

f_n_f/f_n_b -1.3331 43.0 3.58e-05 0.0814 Wilcoxon
b_n_b/b_n_f -1.5021 259.0 1.61e-11 0.0743 Wilcoxon
n_n_f/n_n_b 0.1291 3941.0 0.7673 0.4849 Wilcoxon
f_n_b/b_n_f -0.0086 1273.0 0.7338 -0.0414 Mann-Whitney

Table 10: P-values, ∆η and effect size for Khalkha Mongolian feature surprisal

Condition ∆η Statistic p-value Effect Size Test
atr_atr/atr_natr -1.8211 27.0 1.55e-13 0.0095 Wilcoxon

natr_natr/natr_atr -0.6621 1819.0 2.55e-12 0.1672 Wilcoxon
n_atr/n_natr -0.6531 91.0 0.0185 0.2407 Wilcoxon

atr_natr/natr_atr -1.5526 7395.0 3.21e-05 0.3415 Mann-Whitney
r_r/r_u -1.8211 2.0 4.37e-07 0.0034 Wilcoxon
u_u/u_r -0.6621 2.0 8.35e-13 0.0009 Wilcoxon
n_r/n_u -0.6531 371.0 0.148 0.3747 Wilcoxon
r_u/u_r -1.5526 170.0 2.64e-12 -0.8529 Mann-Whitney

atr_h/dish -1.0537 2337.5 1.09e-25 0.0944 Wilcoxon
r_h/dish -1.6815 6.0 2.18e-18 0.0011 Wilcoxon

atr/r_dish -0.3697 8941.0 0.0024 -0.2103 Mann-Whitney
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D Vowel Counts in Test Set

Figure 3: Number of items with 2 vowels (x-axis) and 3 or more vowels (y-axis) in all languages in NorthEuraLex.
Hungarian and Khalkha Mongolian in red circles. Languages were coded for language family (see legend)
and identified by ISO codes. For a mapping of ISO codes to language see the NorthEuraLex website http:
//www.northeuralex.org/languages.
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Abstract

In this replication study of previous research
into dependency length minimisation (DLM),
we pilot a new parallel multilingual parsed cor-
pus to examine whether previous findings are
upheld when controlling for variation in do-
main and sentence content between languages.
We follow the approach of previous research in
comparing the dependency lengths of observed
sentences in a multilingual corpus to a variety
of baselines: permutations of the sentences, ei-
ther random or according to some fixed schema.
We go on to compare DLM with intervener
complexity measure (ICM), an alternative mea-
sure of syntactic complexity. Our findings up-
hold both dependency length and intervener
complexity minimisation in all languages under
investigation. We also find a markedly lesser ex-
tent of dependency length minimisation in verb-
final languages, and the same for intervener
complexity measure. We conclude that depen-
dency length and intervener complexity min-
imisation as universals are upheld when con-
trolling for domain and content variation, but
that further research is needed into the asym-
metry between verb-final and other languages
in this regard.

1 Introduction

Efficiency in language production and processing
is widely held as a universal, underpinning vari-
ous aspects of human language evolution and use.
(Levshina and Moran, 2021). Within syntax, an
expression of this is found in the theory of Depen-
dency Locality (Gibson, 1998): the principle that
syntactically related information should appear in
close proximity in a sentence, so as to minimise the
memory load required to parse it. Its observable
effect is dependency length minimisation (DLM):
the ordering of a sentence such that the sum dis-
tance of dependencies in sentences is minimised
(Gibson). This effect has been well studied cross-
lingually (Gildea and Temperley, 2010; Liu, 2008),

and is widely held to be a universal of syntax, with
the study of Futrell et al. (2015) finding evidence
of the effect in all languages in a sample of 37
languages in Universal Dependencies (Nivre et al.,
2016), among other such cross-lingual studies.1

There remain, however, inconsistencies and
asymmetries in how and where DLM is applied,
within languages and within sentence structures.
For example, a common finding is that DLM is
less pronounced or even absent in head-final lan-
guages when controlling for various factors such
as sentence type, and when looking only at lexical
tokens. Jing et al. (2022) find a negative associa-
tion between head-finality and dependency length
when controlling for harmony and considering only
lexical dependencies, an effect that they find to
be robust against multiple random baselines. Liu
(2021) also finds mixed evidence for the correlation
between dependency length and ordering choices
for pre-verbal arguments in head-final languages;
whereas argument ordering choice is more clearly
associated with dependency length in languages
with post-verbal arguments. These findings point
to a more nuanced picture of DLM, where the effect
is asymmetric in terms of word order, more clearly
pronounced in head-initial languages (Yadav et al.,
2020).

Another question is the extent to which DLM
exists as an independent effect, as opposed to be-
ing a function of other constraints. Yadav et al.
(2022) propose the alternative measure of sentence
complexity, Intervener Complexity Measure (ICM),
which measures not the number of tokens between
dependants and their heads, but the number of syn-
tactic heads between them, suggesting optimisation
for ICM underlies the observed DLM effect.

As a first step in investigating these questions,
our replication study revisits the work of Futrell
and Gibson (2015) to broadly replicate this study
on a new corpus, with some additions in light of

1https://universaldependencies.org/
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subsequent research. We seek to reevaluate the
following questions:

1. Does the observation of DLM in all languages
hold when languages contain loosely parallel
data?

2. To what extent is DLM achieved by word or-
der variation, as opposed to canonical word
order constraints?

3. Do we see the same asymmetry between verb-
final and non-final languages as in previous
works?

4. How does DLM compare to ICM minimiza-
tion across languages?

Our study pilots a new corpus: the Corpus of
Indo-European Prose Plus, or CIEP+ (Talamo and
Verkerk, 2022). CIEP+ is a parallel corpus of trans-
lated works of modern prose in several languages,
syntactically annotated under the Universal Depen-
dencies2 framework. The translated texts are drawn
from the most widely translated works of prose in
the world. While the corpus originated as a means
of comparative study of Indo-European languages,
and these languages make up the majority of its
data, it also contains translations in some non-Indo-
European languages.

The use of parallel corpora is beneficial in mak-
ing language data more comparable between lan-
guages, controlling for domain differences and the
natural variation of communicative intent in sen-
tences (Dahl, 2007). However, most currently avail-
able parallel corpora suffer either from limited size
and language coverage (e.g. Parallel Universal De-
pendencies), or from being drawn from highly spe-
cific lects that do not reflect common language use
(e.g. parallel Bible corpora, UN Declaration of
Human Rights).

A related problem in parallel corpora is the phe-
nomenon of Translationese (Gellerstam, 1986): the
effect whereby translated texts are identifiable by
certain characteristics that are atypical in the target
language, caused by language-specific or univer-
sal effects of the translation process (Koppel and
Ordan, 2011).

Fictional and non-fictional prose are not immune
to the effects of Translationese (Puurtinen, 2003;
Popescu, 2011). Nevertheless, since the goal of
translated prose is entertainment rather than exac-
titude, we expect that translators will use stylistic
translations that may be closer to the conventions of

2https://universaldependencies.org

the target language, thus mitigating this concern.3

The books that we use are large, containing thou-
sands of sentences. And, though we do not escape
the bias of translations mostly being available in
a small set of languages, we nevertheless manage
a decent coverage of 35 languages, with at least
20,000 sentences in each.

Our use of this corpus addresses a potentially
confounding issue in Futrell et al. (2015) and other
corpus-based studies: the variation in domain cov-
erage across the UD corpora. With a parallel cor-
pus, we once again put these findings to the test.

2 Background

Word ordering with respect to phrase heaviness
has long been a topic of interest in constituency-
based syntax (Arnold et al., 2000), and has been
adapted to a dependency grammar framework as
dependency length (Gildea and Temperley, 2010).

Since the inception of Universal Dependencies
(Nivre et al., 2016) and other consistently annotated
multilingual corpora, more multilingual studies of
DLM have been carried out. Futrell and Gibson
(2015) compare the sum dependency lengths of
observed sentences in 37 languages in Universal
Dependencies to random baselines of sentences
permuted to random orders. They find that in all 37
languages, dependency length as a function of sen-
tence length shows a consistently slower increase
than would be expected in random word order base-
lines, whether free or fixed.

Yu et al. (2019) extend this study to probe the
impacts of canonical word order constraints ver-
sus variability on DLM. Building on the setup of
Futrell and Gibson (2015), they use randomly per-
muted baselines with same valency (i.e. all heads
in the permuted sentence must have the same num-
ber of dependants on each side) and same side (i.e.
dependants must be on the same side of their head)
constraints, and find that each baseline shows a
reduction in dependency length, and that atypical
orderings in a language usually contribute to this.

In several studies, Liu (2020, 2021, 2022) probes
the DLM effect with regard to ordering flexibility
and pre- and postverbal argument domains. Among
her findings is that while dependency length min-
imisation is well-correlated with phrase ordering

3We are unaware of any quantitative evaluation of the
prevalence of Translationese in prose compared to other genres
of translation, such as legal, technical and political translations.
Such research would be very valuable.
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choices in postverbal languages (e.g. English, Bul-
garian, Dutch), this effect is much weaker or non-
existent in preverbal languages (e.g. Japanese, Per-
sian), suggesting that the relevance of DLM de-
pends greatly on word ordering constraints, among
other pressures.

Intervener Complexity Measure is introduced by
Yadav et al. (2022). They operationalise the com-
plexity of intervening information in long depen-
dencies as Intervener Complexity Measure, which
counts the number of syntactic heads between a
dependant and its head. By comparing random
permutations of trees alternately matched for de-
pendency length or intervener complexity, they find
that random linear arrangements matched for de-
pendency length tend to have very close ICM to
the original sentence, but that the inverse effect is
not as strong. Though Yadav et al. (2022) perform
their experiments using several languages in Sur-
face Universal Dependencies (Gerdes et al., 2018),
accounting for language as a random effect, we are
unaware of any multilingual study so far that has di-
rectly measured the extent of intervener complexity
minimisation per language.

Most prior large cross-lingual studies of depen-
dency length minimisation have used Universal
Dependencies or Surface Universal Dependencies
corpora, or other dependency corpora pre-dating
UD (Liu, 2008), without control for domain and
sentence variation. However, there are some that
have used parallel corpora. For example, Jiang and
Liu (2015) compare effects of sentence length and
dependency direction in a parallel English-Chinese
corpus; and Ferrer-i Cancho (2017) use the Parallel
Universal Dependencies (PUD) corpora. We are
unaware of any previous work with parallel corpora
of the same size as CIEP+.

3 Method

In our investigation, we broadly replicate the exper-
imental setup of Futrell and Gibson (2015).

The dependency length of a token in a sentence
is defined as the number of tokens between it and
its head in the linear surface order, including itself
(i.e. a minimum of 1). The dependency length of a
sentence is then the sum of dependency lengths for
each token, excluding the root.

We compare the dependency lengths of observed
sentences to a set of random baselines: reorderings
of the sentences in the corpora with the same un-
derlying tree structure but a different linear surface

order of tokens. These baselines are:
1. RandomFree Random projective permuta-

tions of the sentence retaining the same struc-
ture.

2. RandomFixed Permutations according to a
randomly generated grammar.

3. FittedGrammar Permutations of each sen-
tence to strictly follow an approximation of
the language’s canonical word order.

4. OptimalOrder Permutation of each sentence
to optimise for minimum dependency length.

Of these, FittedGrammar is introduced by our
study, while the others are also used by Futrell and
Gibson (2015). We briefly describe and motivate
each permutation method in Section 3.1.

After creating permutations of each sentence in
each book in each language, we use a linear mixed-
effects model to estimate the rate at which depen-
dency lengths increase as a function of sentence
length. The response variable of the model is sen-
tence dependency length, while the fixed variables
are the interaction between sentence length (in num-
ber of tokens) and permutation mode: the baseline
that produced the sentence (including the unaltered
original sentence).

We use sentence ID as a random effect in the
model. Sentence ID is shared across all permuta-
tions of a sentence, and including it accounts for
the effect of the variance in sentence structure. This
random effect is simplified compared to Futrell and
Gibson’s, which groups permutations by sentence
ID. We found that doing this caused singular fits in
the model.

Performing this separately for each language in
the corpus, we use the coefficient of the model fit
as the measure of a language’s rate of dependency
length increase. The higher the coefficient, the
greater the dependency lengths we can expect to
see as sentence length increases. The model gives
us a separate fit for each of the baselines, and so
we are able to compare the true rate of increase to
what we could expect to see in each of the baseline
conditions. If the true rate of increase is not lower
from the random baseline, for example, then we do
not see DLM in the language.

We use the same approach to measure intervener
complexity minimisation. The intervener complex-
ity of a token is defined by Yadav et al. (2022) as
the number of syntactic heads that come between
it and its own head; including the token’s head
itself, meaning that for each token the minimum
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intervener complexity is one. The Intervener Com-
plexity Measure of a sentence is then the sum of
tokenwise intervener complexities in the sentence.
Fig. 1 shows an example of Intervener Complexity
Measure for a sentence in contrast to dependency
length.

Man wearing a red hat with glasses waves
7 1 2 1 3 1 6 Ø
4 1 1 1 1 1 3 Ø

Figure 1: A demonstration of the difference between
dependency length and intervener complexity. The top
layer of numbers is dependency length; the bottom layer
is intervener complexity.
For example. there are seven tokens between waves and
its syntactic head Man, but only three heads between
them (wearing, hat and glasses).
The ICM of this sentence is 12, compared to 21 for
dependency length.

3.1 Permutation baselines
RandomFree
In the RandomFree baseline, we recursively per-
mute each subtree within a sentence tree such that
the children of any head may appear in any order
before or after the head. The same underlying tree
structure is retained, but the linear surface order is
random with the sole constraint that the resulting
tree is projective. We perform this procedure 10
times for each sentence in the corpus.4

If DLM holds, then the observed dependency
lengths should be consistently below what we
would expect to see in random linear arrangements
of the same sentence.

RandomFixed
We use the term grammar throughout this paper to
refer to a lookup table for a determinate position of
each dependency relation with respect to its head.

For each dependency relation, we assign a
lookup value in the range [-1,1]. For each recursive

4Futrell and Gibson’s setup calls for 100 random permuta-
tions. We find that this number quickly becomes intractable
for storage and processing with our larger corpus size.

subtree in the corpus, the dependants are rearranged
according to the lookup value of their dependency
relation. Dependencies whose label has a negative
lookup value go to the left of their head; those with
a positive value go to the right. The higher the
absolute value, the further the sentence is from the
head in the new sentence permutation.

As in the RandomFixed baseline, we produce
10 random grammars in total, and permute each
sentence according to each of these grammars.

This baseline is a more conservative variant of
the random free baseline, taking into account that
all languages have at least some degree of fixed-
ness in their word order, the regularity of which
is hypothesised to reduce dependency length on
average.

FittedGrammar
The fitted grammar for each language is a count-
based estimation of the majority position for each
dependency relation. For each dependency relation,
we assign two parameters: sign - an integer −1 or
1, depending on whether the dependency relation
most often appears on the left (-1) or the right (1)
of its head; and distance′ - a float of the mean log
distance of the dependency relation from its head
(relative to other dependants) when on the side
indicated by sign. The final parameter position is
then the product of sign × distance′: a positive
or negative real number. As in the random fixed
baseline, all dependants are then ordered according
to this lookup value. Fig. 2 shows an example
of how such a grammar would assign the order of
dependants.

I ate lunch yesterday in the park
-0.42 Ø 0.07 0.42 -0.53 -0.34 0.42

nsubj obj

obl

obl

det

case

root

Figure 2: An example of how a grammar might assign
the positions of dependants. Below each word is the
position lookup value for its dependency relation. For
example, nsubj has a position value of -0.42. When
two dependants have the same lookup value (as in yester-
day and park here) the ordering of the two is arbitrary.
The lookup values in this example are taken from the
fitted grammar for English.

The fitted grammar is used as a rough measure
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of the extent to which DLM is achieved through
language users’ choice of sentence orderings as
opposed to the canonical word order constraints of
the language. We find that the lookup values ob-
tained by this method generally match with canoni-
cal word order classifications.

For example, Table 1 shows some lookup val-
ues for nsubj, obj and obl relations in four lan-
guages. In each of these languages, the relative
lookup values correspond with the orderings of
subject, object, and verb (SOV) (Dryer, 2013) and
oblique, object and verb (XOV) (Dryer and Gensler,
2013) in WALS. Though we cannot fully model
the canonical word order rules of a language with
only the basic relations of UD, we can at least pro-
vide an approximation that is comparable between
languages.

WALSnsubj obj obl Ch. 81 Ch. 84

eng -0.42 0.07 0.42 SVO VOX
jpn -0.60 -0.14 -0.52 SOV XOV
ara 0.18 0.59 0.55 VSO VOX
zho -0.77 0.39 -0.51 SVO XVO

Table 1: The position values for nsubj, obj and obl
in four languages. For example, in Japanese the obl
relation has a lower value than obj, meaning that it will
be placed before it; and both have a negative value, so
they will both be placed to before their head. Assuming
that the head is a verb, this follows the canonical XOV
word order in Japanese.

OptimalOrder
Our algorithm for finding the optimal linear or-
der that minimises dependency length is based on
that of Gildea and Temperley. For each recursive
subtree, we sort dependants by their weight: the
number of words in their recursive subtree. Depen-
dants are then placed inside-out on alternating sides
of their head. Whether the alternation starts from
left or right depends on the direction of the head:
left-branching heads will start left-to-right; right-
branching heads, right-to-left. This order will be
reversed if the number of dependants is even, such
that the heaviest dependant will branch in the same
direction as its head. Fig. 3 shows an example of
the output of this algorithm.

The optimal ordering gives an idea of the upper
bound of DLM that we could expect under com-
plete word order freedom with DLM as the only
objective. In the case of languages with a high

Original

He worked all day without taking a break
1 Ø 1 2 1 4 1 2

subj

obl

det

advcl

mark

obj

det

root

Permuted

a break taking without He worked day all
1 1 3 1 1 Ø 1 1

det obj mark nsubj obl det

advcl
root

Figure 3: An example of how the OptimalOrder algo-
rithm permutes a sentence. The colour of the edges
indicates the order in which they are attached to their
head: orange first; green second; blue third. Depen-
dency lengths are shown on the bottom row of text. The
permuted sentence has lower dependency lengths than
the original due to the flattening effect of the algoithm.

dependency length rate, the comparison with the
optimal baseline tells us to what extent this can be
explained by the inherent complexity of the sen-
tence structure.

3.2 Data

We use the CIEP+ corpus for our analysis (Talamo
and Verkerk, 2022).5 CIEP+ is a parallel corpus
of translated works of modern prose in several lan-
guages, comprised of a set of some of the world’s
most widely translated works. The source lan-
guages of the texts varies between English, French,
Portuguese, Spanish, German, and Dutch. The cor-
pus is parsed predictively using the Stanza NLP
pipeline (Qi et al., 2020), which has pretrained
models in UD format with Labeled Attachment
Score of at least 70% for all languages under con-
sideration. The languages that we use, their fami-
lies, and their canonical word order are shown in
Table 2. These languages are not subset to those
used by Futrell et al. (2015) and thus cannot be
directly compared, but are the languages for which
we have data in CIEP+.

We remove all punctuation tokens from the cor-
pus, as these carry no semantic information and
cause artificially long dependency lengths. In or-

5https://www.uni-saarland.de/fileadmin/upload/
lehrstuhl/verkerk/CIEP_outline.pdf
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Family Language
(code)

Basic
order

IE
Germanic

Danish (dan) SVO
Dutch (nld) SVO*
English (eng) SVO
German (deu) SVO*
Norwegian (nor) SVO
Swedish (swe) SVO

IE
Celtic

Irish (gle) VSO
Welsh (cym) VSO

IE
Romance

French (fra) SVO
Italian (ita) SVO
Latin (lat) SVO
Portuguese (por) SVO
Romanian (ron) SVO
Spanish (spa) SVO

IE
Baltic

Latvian (lav) SVO
Lithuanian (lit) SVO

IE
Slavic

Bulgarian (bul) SVO
Croatian (hrv) SVO
Czech (ces) SVO
Polish (pol) SVO
Russian (rus) SVO
Slovak (slk) SVO
Slovenian (slv) SVO
Ukrainian (ukr) SVO

IE
Indo-Iranian

Hindi (hin) SOV
Persian (fas) SOV
Urdu (urd) SOV

IE
Other

Armenian (hye) SOV*
Greek (ell) SVO*

non-IE
Finno-Ugric

Finnish (fin) SVO
Hungarian (hun) SVO

non-IE
Other

Arabic (ara) VSO
Chinese (zho) SVO
Indonesian (ind) SVO
Japanese (jpn) SOV
Turkish (tur) SOV*

Table 2: Languages in CIEP+ tbat we use for our exper-
iments. All languages have at least 20k sentences and
are parsed using models with >70% LAS. Basic word
order is according to WALS (Dryer, 2013). Asterisks *
indicate that the language has more than one dominant
word order.

der to reduce the number of parameters needed for
the FittedGrammar and RandomFixed baselines,
we simplify subtyped relations to their main type
(e.g. aux:pass → aux). For ease of processing,
we exclude non-standard tokens that are not part
of the tree structure in the conllu format, such
as enhanced dependencies and multiword tokens.6

Finally, we exclude all sentences that, after these
cleaning steps, have more than 50 tokens.

6The reason for this is simply that such tokens are incom-
patible with our permutation algorithms. We leave examina-
tion of the impact of enhanced dependencies and multiword
tokens on dependency lengths for future research.

4 Results

4.1 Dependency length minimisation
We show the coefficients for the mixed-effects re-
gression for each baseline in each language in Fig.
5. These coefficients represent the rate at which
dependency length can be expected to increase as
a function of sentence length for each baseline and
language in the corpus. We also show an example
of the regression fit in English in Fig. 4.

Figure 4: Dependency lengths as a function of sentence
length in English. The coloured lines show the fit from
the linear mixed-effects model for each baseline. Grey
dots show the true (observed) dependency lengths.

Figure 5: The coefficients of dependency length in-
crease for all baselines in all languages. Languages are
sorted in descending order by the coefficient of the Orig-
inalOrder sentence.

Overall, we see clear evidence of DLM in all
languages compared to both random baselines. We
also find the same asymmetry as Futrell and Gibson
(2015) and others whereby verb-final languages
such as Hindi, Turkish and Japanese - and lan-
guages with frequent verb-final constructions such
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as German, Dutch and Chinese - show faster rates
of dependency length increase. We can see this
as the rising tail on the left of the OriginalOrder
coefficients in Fig. 5. The same tendency is not ap-
parent in predominantly SVO languages with free
word order and rich inflectional morphology, such
as Baltic and Slavic languages.

Interestingly, we find the lowest rate of increase
in Welsh, a VSO-preferring language (Williams,
1980), which we might expect to generate longer
dependencies because of the increased distance
from the predicate to its arguments. Irish, another
Celtic language that prefers VSO word order, has a
coefficient more in line with the SVO languages in
the corpus. We should note that Welsh has one of
the lower number of sentences in CIEP+, and the
LAS of the Welsh parsing model in Stanza is low
compared to other languages in our corpus, so we
do not make any conclusions regarding this.

OptimalOrder is consistent across languages,
showing that a consistent rate of increase is possible
across all the languages sampled. This optimum
would not be realistic in any of the languages as it
would require no word order constraints, but it does
show that where some languages show a faster rate
of dependency length increase, this is not likely
to be the result of the underlying tree structure
of sentences being inherently more complex than
other languages.

Regarding the RandomFixed baseline, we do
not find that this operates differently from Ran-
domFree, and intuitively this would be explained
by the outputs of all random grammars being
pooled together; with the resulting data being not
much different to what we would see if we simply
randomized all sentences. This can and should be
fixed in future research.

The FittedGrammar baseline is more chaotic
than we anticipated. In most languages towards the
right of the graph, we see a small gap between the
original sentences and the FittedGrammar output,
though in some languages this gap is greater than
in others. Many of these seem to be languages with
flexible word order, such as as the Baltic languages
and Greek, but also, for some reason, Danish. This
could be cautious evidence of languages using their
available word order flexibility to reduce depen-
dency lengths.

However, as we reach the SOV and mixed lan-
guages on the left side of the graph, the picture
is more incoherent. In Hindi and Urdu, the fitted

grammar results in a higher dependency length in-
crease even than both random baselines. We are
unsure how to interpret this, and further linguistic
analysis of the permutations produced by the fitted
grammar is in order.

4.2 Intevener Complexity Measure
Fig. 6 shows the coefficients of the linear mixed-
effects model, this time using Intervener Complex-
ity Measure of each sentence as the response vari-
able.

As with dependency length, we find a clear pat-
tern whereby SOV languages, or languages with
frequent verb-final constructions, show a faster rate
of increase in ICM compared with SVO languages.
For other languages, however, a very similar pat-
tern of minimisation is observed, though in this
case the gap between coefficients is much smaller.

Welsh once again shows the slowest rate of in-
crease, though in this case the effect is less pro-
nounced. Again, Irish is not among the languages
with the lowest coefficients, which indicates that
this is probably not due to typological properties
of VSO or Celtic languages.

The observed ICM is almost colinear with Op-
timalOrder for several of the languages (mainly
those with SVO word order), and in some cases is
lower. The OptimalOrder algorithm was developed
to minimise dependency lengths, not ICM, so this
is unlikely to represent the true optimum. However,
this finding is compelling because it suggests that
observed sentences are close to an optimal ICM,
while also being clearly separated from the random
baselines.

Figure 6: The coefficients of intervener complexity mea-
sure increase for all baselines in all languages. Lan-
guages are sorted in descending order by OriginalOrder
coefficient.
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5 Discussion

Overall, our results seem to uphold DLM as a uni-
versal, though with the ame asymmetry between
verb-final and verb-initial or -medial languages.
We also find this same asymmetry in intervener
complexity, with the same languages showing a
faster rate of increase in ICM, showing that the
antilocality effect extends to this measure as well.

The next step is to turn our attention to ex-
planations of this tendency for reduced DLM in
SOV/verb-final languages. There is already work
underway to explain these tendencies (Yadav et al.,
2020; Jing et al., 2022).

The use of a parallel corpus has supported the
results of previous research in this area. In other
words, we do not see a very different picture when
using a parallel corpus. An interpretation of this
that dependency length and intervener complexity
minimisation effects are strong enough that they
show through the noise of domain and sentence
variation.

However, we still maintain that parallel corpora
should be used wherever possible in such studies.
Our study has applied to languages as a whole, us-
ing the full range of sentences each language in
the corpus. On the other hand, we hypothesise
that the more focused the linguistic structures un-
der investigation - for example, verb phrases with
single object and oblique arguments (Liu, 2020),
or verb phrases with two oblique arguments (Liu,
2022) - the more the noise of differing domains
and sentence content will affect the results. It is
particularly these kinds of studies that we believe
will benefit from large parallel corpora.

A meta-study of dependency length and related
experiments using both Universal Dependencies
and parallel corpora would be useful to measure the
extent to which such noise affects different kinds
of experiments. We leave this for future research.

There are also some improvements that could be
made to this study in particular.

We would like to find an algorithm for finding
the linear ordering that truly optimises intervener
complexity measure, so that we can properly assess
how close observed orderings are to this baseline.
We are unaware of such an algorithm as of yet, and
Gildea and Temperley’s algorithm is an imperfect
stand-in. This would be particularly valuable be-
cause of the tentative evidence we find for observed
word order reflecting optimised ICM.

Some previous studies have used Surface Uni-

versal Dependencies (SUD) annotated corpora
(Gerdes et al., 2018) instead of Universal Depen-
dencies. While we do not expect vastly different re-
sults, there is some contention that SUD is more ap-
propriate for modelling syntactic difficulty and cog-
nitive demand (Yan and Liu, 2019), and it would
be beneficial to compare experiments on corpora
using each of the two formalisms.

Finally, as more languages are added to CIEP+,
we hope to be able to expand our analyses to
more languages, particularly non-Indo-European
languages.

6 Conclusion

Our replication of a keystone study on dependency
length minimisation as a language universal on a
much larger, parallel parsed corpus has corrobo-
rated previous findings that show evidence of sys-
tematic dependency length minimisation in a va-
riety of the world’s languages, controlling for the
effect of sentence and domain variation. We find a
similar effect for intervener complexity measure.

We make available our code for permuting
parsed corpora according to different permutation
baselines, and for analysing them in terms of de-
pendency length, intervener complexity and other
properties.7

We plan to use this corpus in further replica-
tions and original studies on syntactic complexity
and word order constraints. Among our topics of
interest are research into why dependency length
minimisation is less of a pressure in verb-final lan-
guages; and the extent to which other constraints
such as information locality (Futrell, 2019; Liu,
2022) and memory-surprisal tradeoff (Hahn et al.,
2020, 2021) subsume dependency length as an ex-
planatory factor for word order.

Limitations

While the design of the CIEP+ corpus is parallel
in the sense that the same collection of books is to
be added for each language, not all languages have
the full collection. This also means that languages
will have different data sizes and different book
coverage. While in data exploration we did not
find that the book that sentences came from was a
strong random effect, it is possible that these differ-
ences may nevertheless confound the results. Book
translations are continually added to the corpus, so

7https://github.com/andidyer/
DependencyLengthSurvey
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this problem will hopefully become lesser in future
studies.

In contrast to the gold Universal Dependencies
data used in many other studies, CIEP+ is predic-
tively parsed, and parser error may propagate to
give erroneous results. Interesting findings for any
particular language should therefore be looked at
with the performance of that language’s Stanza
model in mind.8 CIEP+ does not currently have
gold evaluation sets, so it is unfortunately not pos-
sible to get LAS scores for the models on CIEP+;
we rely on the models’ evaluation scores on the test
sets of the UD corpora on which they are trained.

The use of a linear mixed effects model for plot-
ting the increase in dependency length is not ideal
due to the heteroscedacity of sentence dependency
length relative to sentence length; variance of de-
pendency length increases with sentence length,
and means do not increase linearly. This is contrary
to the assumptions of linear models, and may affect
the reliability of the results. (van den Berg, 2021)
We experimented with generalised mixed effects
models with a Poisson link function, but found that
this caused unacceptably long training times with
the size of our data. We might overcome this with
bootstrap sampling, or an alternative regression
algorithm or software.
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Abstract
Generalization to novel forms and feature com-
binations is the key to efficient learning. Re-
cently, Goldman et al. (2022) demonstrated that
contemporary neural approaches to morpho-
logical inflection still struggle to generalize to
unseen words and feature combinations, even
in agglutinative languages. In this paper, we
argue that the use of morphological segmenta-
tion in inflection modeling allows decompos-
ing the problem into sub-problems of substan-
tially smaller search space. We suggest that
morphological segments may be globally topo-
logically sorted according to their grammatical
categories within a given language. Our ex-
periments demonstrate that such segmentation
provides all the necessary information for bet-
ter generalization, especially in agglutinative
languages.

1 Introduction

Generalization is a form of abstraction where com-
mon patterns, or properties, that are observed
across specific instances are then extended to a
wider class of instances. This form of deductive
inference allows humans to learn language more
efficiently, form sophisticated concepts, and intro-
duce semantic relations such as hypernymy. Still,
computer systems are considered to be less suc-
cessful in making generalizations from data (Lake
and Baroni, 2018). Morphological inflection task
is a popular playground to compare and evaluate
systems’ ability to generalize. The morphologi-
cal inflection task is a type of language modelling
that focuses on producing inflected forms from a
given dictionary form (a lemma) and a set of mor-
phosyntactic features (a tagset) that describes the
word form to be produced, as in “spider, (N ;PL)
→ spiders”. Table 1 provides a sample paradigm
table for Czech and Turkish nouns for “cat”. An-
nual contests on morphological inflection predic-
tion were held since 2016, covering a variety of ty-
pologically diverse languages (Cotterell et al., 2016,

2017, 2018; McCarthy et al., 2019; Vylomova et al.,
2020; Pimentel et al., 2021). With the introduc-
tion of neural systems and the availability of large
datasets, the task deemed to be solved with top
performing systems achieving over 90% accuracy
on most languages, even morphologically complex
ones such as Uralic or Turkic. Most challenging
cases were associated with under-resourced lan-
guages such as Chukchi or Evenki where majority
of morphological paradigms were incomplete and
sparse (Vylomova et al., 2020). However, a more
fine-grained analysis from Pimentel et al. (2021)
and Goldman et al. (2022) revealed that accuracy
dropped substantially on unseen lemmas (i.e. in
the condition where train, development, and test
sets did not overlap lexically).

Czech Turkish
Case Singular Plural Singular Plural
Nom kočka kočky kedi kediler
Gen kočky koček kedinin kedilerin
Dat kočce kočkám kediye kedilere
Acc kočku kočky kediyi kedileri
Ins kočkou kočkami – –
Ess kočce kočkách kedide kedilerde
Voc kočko kočky – –
Abl kočko kočky kediden kedilerden

Table 1: Sample paradigm tables for Czech and Turk-
ish “cat” (its lemma form is in bold). The tags fol-
low the UniMorph annotation schema (Sylak-Glassman,
2016). Turkish paradigm omits possessive and predica-
tive forms.

This observation led to a significant reconsid-
eration of the shared task design in 2022. The
2022 shared task (Kodner et al., 2022) focused on
controlling the training, development, and test sets
with respect to observed lemmas and tagsets. More
specifically, the task organizers provided four con-
ditions in which: 1) both the test lemma and tagset
were observed in the training set (but separately!);
2) the test lemma was presented in the training set
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but the test tagset was not included in the training
set; 3) the test tagset was observed in the training
set while the lemma was not; 4) (the most challeng-
ing where) both the lemma and the tagset appeared
exclusively in the test set. The performance as-
sessment and analysis were carried out separately
for each of the four categories and revealed a no-
table lack of generalization ability in all submitted
systems, the vast majority of which were neural
sequence-to-sequence models. It is particularly
striking that systems failed at modelling agglutina-
tivity, the ability to compose novel combinations
of morphemes that were previously observed in
other combinations. Or, the opposite, deducing
morphemes for a subset of a previously observed
tagset. Many agglutination rules that seem to be
simple to human learners, appear to be challeng-
ing when it comes to machines. This fact tells us
that sequence-to-sequence models do not gener-
alise well, and current approaches to morphology
modelling should be reconsidered.

In this paper, we suggest that annotated morpho-
logical segmentation can significantly improve the
generalization ability. We propose augmenting the
inflection model with segmentation as an interme-
diate step. We aim to evaluate the claim that such
task is easier to solve than the reinflection task in
its classical setting, especially in agglutinative lan-
guages. We suggest that the reinflection task can
be formalized as a classification task rather than a
string-to-string transduction task. This approach
dramatically reduces the search space during the
inference phase as well as enhances the model’s
robustness to data sparsity.

2 The Dataset

In our experiments we used datasets for inflectional
paradigms and segmentation for Catalan (cat),
Czech (ces), German (deu), English (eng), Finnish
(fin), French (fra), Hungarian (hun), Italian (ita),
Mongolian (mon), Portuguese (por), Russian (rus),
Spanish (spa), and Swedish (swe) provided in Mor-
phyNet resource (Batsuren et al., 2021).

3 Learning the Order of Segments

We hypothesise that the order of morphological seg-
ments1 within a language is defined by the order of
their corresponding grammatical categories (such
as grammatical number, person, case). For instance,

1We will use morphological segments and morphemes
interchangeably.

Turkish nouns would first specify the number and
then the case (as shown on Table 1).

In the dataset described above, each word form
wj stands for a sequence of [(si, ti)]

j , where si
is i-segment in word form j, ti is a tagset de-
scribing the segment (segmental tagset; such as
“GEN ;PL” for fusional or “GEN” for agglunita-
tive languages). Let us illustrate this notation by
the following example from Catalan, taken from
MorphyNet dataset.

ossificar ossificaven
V|IND;PST;IPFV|3;PL ossificar|ava|en

Here, an inflected form is expressed as a se-
quence of three segments: s0 = “ossificar”, s1 =
“ava” and s2 = “en”. Each segment bears its re-
spective tagset. In such a way, a whole word’s
Unimorph tagset “V ; IND;PST ; IPFV ; 3;PL”
associated with the word form is represented as a
sequence of three segmental tagsets t0 . . . t2, where
t0 = V, t1 = IND;PST;IPFV and t2 = 3;PL.

As we mentioned, we suggest that segment
tagsets are strictly ordered globally withing a
given language. More formally, we claim that
it is possible to sort all unique tag combinations
t = (ti)i=0...imax(j)

topologically, i.e. to associate
each unique t with a number ord(tj) in such a way
that for each wj we have:

k > i ⇒ ord(tjk) > ord(tji ) (1)

To test the hypothesis, we propose the following
learning algorithm. First, we initialize ord(tji ) :=

0 for all segment-wise tag combinations tji . Then,
in each epoch, for each wj observed in the dataset
we check whether the equation 1 has already been
satisfied for all i, k. If not, we add (i− ĩ) to ord(tji )
for each i, where ĩ is mean i value (half the num-
ber of segments in wj). This way, we attempt to
either learn the global segmental tagset order or
disprove existence of it. We repeat the procedure
until the number of forms in which segmentation
was compliant to equation (1), stops to increase. A
simplified pseudocode which implements such a
process is given below.

RATE = 0.01 ▷ A tunable hyperparameter
function FITTAGORDER(tagsets, update)

mixed := false
last := LEFTPAD ▷ A dummy tagset
S = |tagsets|
for i ∈ 0 . . . S − 1 do

if update then
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increment L[tagsets[i]] by RATE

×(2i− S + 1), default = 0

if L[tagsets[i]] ≤ L[last] then
mixed = true

last := max
set→L[set]

(last, tagset)

return mixed

procedure EPOCH(samples)
for sample ∈ samples do

ts = segment tagsets in sample
if FITTAGORDER(ts, false) then

FITTAGORDER(ts, true)
report sample as outlier

Indeed, we find that the global order of segmen-
tal tagsets does exist in all languages represented in
MorphyNet. Swedish is the only language where
a few (only two) exceptions were found; however,
even those exceptions may be attributed to fuzzi-
ness of segment tagging rules. This result suggests
that for a morphological inflection system it should
be sufficient to produce a set of segments and use
their global topological order to properly sort them
rather than deal with segmentation order for ev-
ery sample individually. Therefore, a “full scale”
character-level sequence-to-sequence model can be
replaced by a simpler classifier model to carry out
the segmentation process. This important finding
allows to reduce the model decision space without
any loss in accuracy while enabling better general-
ization, especially in agglutinative languages (and
higher robustness to training data sparsity).

4 Decomposing Tagsets

As grammatical feature combinations are often
complex, one might expect that there should be
numerous ways to decompose those corresponding
to morphological segments, thus, making decompo-
sition a separate complex subtask. In this section,
we refute it by demonstrating the statistics on de-
composition variety per distinct segmental tagset.

As both segments and their corresponding
tagsets are listed for each word form in Mor-
phyNet, it may appear that a “natural” way of
segmentation modelling would look as follows.
First, decompose the initial tagset into segment-
wise sub-combinations and, second, map each sub-
combination into a distinct morphological segment.
However, as we discovered, this technique does not
work well because the assignment of tag combina-
tions to segments appears to be highly ambiguous
in MorphyNet. In many cases, it is due to the

tags that represent an inherent property of a lemma.
These tags, therefore, are not realized as a segment
(e.g., animacy in nouns). The lack of consistent
rules governing tag-to-segment annotation is an-
other source of ambiguity as it frequently leads
to different tagging across similar samples. Fortu-
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Figure 1: A frequency distribution for the number of
different morphological segments per tagset. Here we
consider distinct (language, tagset) pairs.

nately, there is an alternative technique that works
better. Namely, we should consider unique combi-
nations of resulting moprhological segments rather
than focus on the variants of tagset decomposi-
tion. Our experiments demonstrate that the number
of distinct morphological segments per tagset is
less than 4 for the majority of tag combinations,
and only in 5% cases reaches 15 (in total, approxi-
mately 2,400 tag combinations were considered, as
counted separately for each language). The stem
segment of any word was replaced by a wildcard
symbol matching with other word stem segments.2

Figure 1 shows the distribution of the number of
segment variants per a distinct tag combination. It
is worth mentioning that more than a half of tag
combinations that are realized by “15 or more seg-
ment sequences” each were Russian verb forms.
The first letter of suffixes in those verbs may de-
pend on the adjacent ending of the verb’s stem.
This dependency results in either copying of a stem
trailing consonant or a consonant mutation. Thus,
it is necessary to take adjacent letter into account
in order to predict the segment correctly.

2To keep the setting simple, we excluded inflected forms
of German compounds, in which the order of two stems was
swapping.
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5 Segment Composability

In Section 3 we have demonstrated that the order
of segments is deterministic. Still, in the condition
when the data is sparse an inflection system should
be able to retrieve relevant segments from train-
ing samples, especially in agglutinative languages.
Typically, the observed tagsets are different from
the one that needs to be predicted. We define a

“segment composability” measure over a segmenta-
tion dataset as a percentage of tagsets T with the
following property: The segment has ever been
seen in at least two data samples, one with tagset t
and one, with tagset t′ ̸= t. While evaluating this
percentage, we prune all tagsets that contain tags
that only occur once, i.e. in that particular tagset
(which means the tagset cannot be reconstructed
from the rest of the data). A “segment composabil-
ity” is a probability for a segmentation correspond-
ing to the tagset to be reconstructed from segments
observed in other tagsets, given that the predictor
uses a “perfect” oracle over segments observed in
a training set. The composability values measured
over MorphyNet are provided in Table 2. They
appear to be close to 100% for languages with high
agglutinativity,3 demonstrating a notable usability
of MorphyNet segmentation datasets for the infer-
ence of unseen word forms. Here is a pseudocode
explaining our approach to computation of com-
posability.

function COMPOSABILITYRATE

for sample ∈ samples do
(segments, tagsets) = sample
T = {∀tag ∈ ∀set ∈ tagsets}
for (seg, set) ∈ sampleT do

for τ ∈ set do ▷ single tags
usest[τ ] := usest[τ ] ∪ {T}

usess[seg] := usess[seg] ∪ {T}

combined =





T :
∃τ : {T} ⊂ usest[τ ]
¬∃τ : {T} = usest[τ ]





▷ Word tag sets without exclusive tags

3High composability figures, besides a language’s agglu-
tinativity, may result from a large size of the corresponding
dataset or high variety of word forms presented there. As
shown in Table 2, values for closely related language may
differ significantly. A high composability is particularly im-
portant for agglutinative morphology modelling. However, it
shouldn’t be preceived as a measure of a language’s agglutina-
tivity.

compos =





T ∈ combined :
¬ISSTEM(seg)∧

¬∃s : {T} = usess[seg]





▷ "Composable" word tag sets that share all rep-
resenting segments to some other tag sets

return |compos|/|combined|

L Interc., %
cat 85
ces 100
deu 96
eng 50
fin 100
fra 52

L Interc., %
hun 88
ita 55
por 55
rus 98
spa 96
swe 97

Table 2: "Segment composability" as measured over
MorphyNet datasets.

6 From Segments to Surface Forms

Even when all morphological segments are pre-
dicted, a conversion into a surface form is yet to
be done. Luckily, in most cases, such a conver-
sion only requires to remove segment separators
and concatenate the substrings. However, to ac-
count for phonotactics, additional string edit oper-
ations may be necessary. Our analysis discovered
the following major cases when they are needed:
(1) removal or modification of affixes that are rel-
evant only to the lemma form and are not sepa-
rated from the stem into a different segment. This
mostly concerns verbs. For example, deletion of
-ar and insertion of -u- in Spanish (catalogar →
cataloguem V|IND;PRS;1;PL catalogar|em);
(2) removal of adjacent duplicate letters in some
languages; (3) replacement of certain adjacent let-
ter combinations at segment boundaries as in the
following Czech example: čtverec → čtvercem
N;SG|INST;MASC;INAN čtverec|em.

Predicting such transformations is generally a
sequence-to-sequence task. Still, it is rather spe-
cific sub-task in which source and target sequences
are aligned, and only local character modifications
are to be learnt. In our experiments, a hard atten-
tion model (Aharoni and Goldberg, 2017) yields
nearly perfect prediction of segments “gluing” into
a word.4 German was the only exception due to
compounding.

4Grammatical tags were ignored (set to some constant
value).
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L Accuracy
cat 0.99
ces 0.98
deu 0.89
eng 0.99
fra 0.99

L Accuracy
hun 0.98
ita 0.99
mon 1.00
por 1.00
swe 0.98

Table 3: Segments-to-form conversion accuracy
achieved with a hard attention model

7 Discussion

The experiment results suggest that the usage of
morphological segmentation dataset enables prin-
cipal reduction of the complexity of the morpho-
logical inflection task. This allows breaking the
inflection task into two consecutive stages, (1) pro-
ducing segments for a given (lemma, tagset) pair,
and (2) concatenating segments into a surface word
form. As our experiments suggest, prediction of
segments in stage (1) is a classification task with a
relatively limited feature set, while stage (2) trans-
lates into a (minor) string edit task. Here, we have
just outlined this perspective direction; a detailed
performance exploration is yet to be done. Still, the
statistics we collected in our experiments allows
us to be optimistic about filling two major gaps in
the state-of-the-art systems’ performance on these
tasks: (1) the ability to generalize to unseen gram-
matical tag combinations (Kodner et al., 2022), and
(2) to better account for phonotactics, as described
in Section 6. Also, the proposed reduction of search
space should be beneficial for smaller training sets
and is crucial for under-resourced languages.

Although morphological segmentation allows a
decent amount of fuzziness, it facilitates the discov-
ery of important latent variables that participate in
inflection processes. We hypothesize that it would
be sufficient to allow an inflection system consider
the latent variables within its architecture and fit
them during the training process. While the above
is the only option for the languages not yet rep-
resented in MorphyNet and similar resources, the
usage of annotated segmentation datasets should
significantly increase generalization ability in the
inflection task.

8 Conclusion

We conducted a series of experiments with morpho-
logical segmentation and demonstrated that anno-
tated segment sequences may significantly simplify
the prediction of inflected forms. We outlined that

inflection task can be transformed from sequence-
to-sequence into a classification task, with better
capacities to address language agglutinativity chal-
lenges.
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Abstract

This paper describes the structure and findings
of the SIGTYP 2023 shared task on cognate
and derivative detection for low-resourced lan-
guages, broken down into a supervised and
unsupervised sub-task. The participants were
asked to submit the test data’s final prediction.
A total of nine teams registered for the shared
task where seven teams registered for both sub-
tasks. Only two participants ended up submit-
ting system descriptions, with only one submit-
ting systems for both sub-tasks. While all sys-
tems show a rather promising performance, all
could be within the baseline score for the super-
vised sub-task. However, the system submitted
for the unsupervised sub-task outperforms the
baseline score.

1 Introduction

Cognates and derivatives have been studied in var-
ious fields of linguistics with different purposes
(Labat and Lefever, 2019). In historical linguis-
tics, cognates are useful in the reconstruction of
proto-languages and can aid in establishing the
relationship between languages; in lexicography,
cognates are helpful in the development of mul-
tilingual dictionaries. Moreover, in recent years,
NLP researchers have shown interest in using cog-
nates to enhance the performance of multilingual
tasks such as machine translation, lexical induction,
word embeddings and many more (Kondrak, 2005;
Kondrak et al., 2003).

As there has been little work on automatic cog-
nate identification, it is still a challenging task, es-
pecially for less-resourced languages (Jäger et al.,
2017; Rama, 2016). Supervised identification of
cognates and derivatives is requires a substantial
amount of annotated linguistic data, which may
need to be manually annotated (Kanojia et al.,
2021). At the same time, finding linguists and
annotators for less-resourced languages is imprac-
tical. Thus we propose a shared task which aims

to provide a new benchmark for differentiating be-
tween cognates and derivatives and introduce new
unsupervised approaches for cognate and derivative
detection in less-resourced languages.

Cognates are etymologically related word pairs
across languages which may or may not have simi-
lar spelling, pronunciation and meaning (Crystal,
2011). Cognates can be traced back to a single
ancestral word form in a common earlier language
stage. On the other hand, derivatives are words
which have been adopted into a language either
from an earlier stage of the same language, or as a
borrowing from a different language. To give an ex-
ample, the Spanish libro and French livre, are each
derived from Latin liber "book", and are cognates
with each other because they share this common
ancestor. By contrast, the Irish word leabhar is
derived from Latin liber because it was borrowed
into Irish from Latin, but leabhar is a cognate with
Spanish libro because libro has been derived from
an earlier developmental language stage, i.e. leab-
har was not borrowed from Spanish, but from Latin,
a precursor to Spanish. Where multiple stages of
direct derivation occur, each successive stage is
considered a derivation from the last, but also from
any earlier stages. For example, leabhar in Modern
Irish is derived from Old Irish lebor, but also from
Latin liber.

As will be discussed in section 3, data used
in this shared task has been drawn from Wik-
tionary. Apart from cognates (cog), Wiktionary dis-
tinguishes between derived (der), inherited (inh),
and borrowed (bor). This distinction is not main-
tained in this shared task, and all three are treated
broadly as derivation. Languages are distinguished
from one another in the shared task based on ISO-
639 codes. Anything which has a discrete ISO-639
code is considered a separate language. Therefore,
Irish with the code ga is a completely separate lan-
guage from Old Irish as this has a separate code,
sga. This prevents any confusion as to the point
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at which something ceases to be a derivative and
becomes a cognate. Such confusion may occur
in speech, for example, where one may say that
a term was borrowed into English from French.
Such a statement could lead to the supposition that
a Modern English (en) word is derived from the
Modern French (fr) term, however, if the borrow-
ing took place between earlier language stages, say
into Middle English (enm) from Old French (fro),
the Modern English term is only derived from Old
French and precursors to it, like Latin (la), not
from Modern French. This is the case with the
English word liberal. It was borrowed into Mid-
dle English from Old French, and is ultimately
derived from Latin liber "free". Hence, the Modern
English, liberal, would be considered a derivative
from both Old French and Latin in our data, how-
ever, it would be a cognate with Modern French
libéral because liberal is not derived directly from
Modern French.

The rest of this paper is organised as follows.
Section 2 describes the setup and schedule of the
shared task. Section 3 presents the dataset used for
the competition. Section 4 describes the evaluation
methods and the baselines. Section 5 describes the
systems submitted by the teams in the competition,
and Section 6 presents and analyses the results
obtained by the competitors. Lastly, in Section 7,
we conclude the whole findings of the shared task.

2 Shared task setup and schedule

The section describes how the shared task was or-
ganized. The shared tasks involve two sub-tasks
to perform multiclass classification tasks, which
require that the relationship between pairs of words
be identified as either a cognate relationship, a
derivative relationship, or no relationship. The sub-
tasks are:

• Supervised: Cognate and Derivative Detec-
tion

• Unsupervised: Cognate and Derivative Detec-
tion

The shared task started with the registration pro-
cess through Google Forms. The participants were
asked to register their team along with their affilia-
tion, team member and the sub-tasks they wanted
to participate in. Registered participants were sent
a link to access the training and development data.
The participants were allowed to use additional
data to train their system with the condition that

any additional data used should be made publicly
available and to provide a proper citation of the
data used to develop their model. The schedule for
the release of training data and release of test data,
along with notification and submission, are given
in Table 1.

Date Event
9 January 2023 Release of training data
27 Feburary 2023 Release of test data
15 March 2023 Submission of the systems
27 March 2023 Submission of system de-

scription paper
31 March 2023 Camera-ready

Table 1: SIGTYP 2023 Shared Task schedule

3 Cognate Datasets

In this section, we present the characteristics and
the statistics of the dataset used for the task of
cognate and derivative prediction.

3.1 Training Data

We provide annotated word pairs for cognate and
derivative prediction in a format given in Table 2
in which the first column represents the first word
of the word pair and the second column represents
the language of the given word through the ISO
code. The third and the fourth column represent
the second word and its language code, respectively.
Lastly, the fifth column represents the relation be-
tween the two words in each pair; cognate, deriva-
tive or none. The detailed statistics of the words
pairs according to the labels are given in Table 3.

Word_1 ISO Word_2 ISO Label
Yannick en Yannig br der
creta ca creta la der
roh de raw en cog
gnit en gnit is cog
erudit oc ergueito gl none

Table 2: Format of the dataset

The data consists of word pairs from 34 lan-
guages including both high-resourced and less-
resourced languages. Table 4 gives an overview
of the languages involved and statistics of each lan-
guage. This data was collected and annotated using
Wiktionary.
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Labels Train Test
Cognate 11869 98
Derivatives 39205 340
None 181408 438
Total 232482 876

Table 3: Statistics of the dataset in each category.

In the later stages of the shared task we came
across a number of false negatives in the training
data. Specifically, some word pairs were labelled
none, indicating that they shared no relationship,
however, upon investigation they were found to be
either cognates or derivatives. As we were close
to releasing the test data, we decided not to make
any changes in the training data, but instead to
simply inform the participants. This was expected
to cause the least disruption to participants for a
couple of reasons. Firstly, participants had already
been given the freedom to manipulate the data as
they saw fit, in order for them to optimise their sys-
tems. Secondly, as discussed in section 2, the partic-
ipants were allowed to use datasets other than those
provided. If participants had already attempted to
overcome the problem by editing or removing er-
roneous entries from the provided training data, it
was perceived that providing all participants with
cleaned training data at such a late stage would
have unfairly benefited those who had not adapted
the training data.

3.2 Test Dataset

Similar to training data, test data for the given task
consists of word pairs from 34 languages, includ-
ing high-resourced and less-resourced. Table 5
provides an overview of the languages involved
and statistics of each language. Though the test
data was collected using Wiktionary, it was anno-
tated manually by the experts using the Wiktionary
template.

4 Methods

4.1 Evaluations

The standard evaluation metrics for evaluating and
ranking the teams was F1-Score for supervised clas-
sification. For unsupervised methods, we followed
the standard cluster performance evaluation pro-
cess. The number of clusters will be same as the
number of original classes and evaluated with the
cluster accuracy using the equation shown in Equa-
tion 1,

Languages Count in word_1 Count in word_2
en 22883 13414
es 14921 11996
it 12528 9804
nb 12473 9390
nn 12139 9415
pt 12118 9759
ca 11946 9434
fr 10944 12573
nl 10895 9670
gl 10437 9026
da 10280 9048
oc 8119 7904
sv 7823 7588
la 7757 37217
de 7340 9105
ro 7063 6664
pl 6346 5744
af 5465 5205
ga 4384 3872
cs 4342 4058
is 4136 4237
lb 3230 2754
no 2833 2904
gd 2833 2710
cy 2684 2742
sk 2680 2487
lv 2576 2549
sl 2481 2448
gv 1764 1651
fy 1759 1797
wa 1584 1562
br 1259 1255
kw 1244 1220
lt 1216 1280

Table 4: Statistics of the languages in the training data

ACC =maxm
∑n

i=1 1(li =m(ci))
n

(1)

where li is the ground truth label, ci is the clus-
ter assignment produced by the algorithm and m
ranges over all possible one-to-one mappings be-
tween clusters and labels.

4.2 Baselines

This section gives a short description of the base-
lines used to compare the submitted systems.

Supervised: The system was a multi-layer
LSTM-based network. The framework has two
major stages, they are:

• Data preparation: In this stage pre-processing
was carried out to remove punctuation, un-
desirable Unicode, conversion of cases and
building one-hot vectors of both word and lan-
guage information.
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Languages Count in word_1 Count in word_2
en 120 44
pt 55 17
nn 50 14
es 49 28
it 46 35
ca 44 16
nb 40 20
fr 29 38
da 27 23
ro 25 14
gl 25 21
nl 25 29
oc 25 22
de 23 42
fy 19 13
sv 18 24
pl 17 17
lb 17 06
af 17 07
is 17 18
lt 16 09
cy 16 12
no 16 17
cs 15 07
wa 15 15
sk 14 07
gv 14 08
kw 13 13
sl 13 18
lv 13 12
gd 12 10
la 12 276
br 11 09
ga 8 15

Table 5: Statistics of the languages in the test data

• Model training: After converting the data
to one-hot vector various RNN model were
trained. However, the best model was chose
to be the baseline of the shared task. This
model consisted of two hidden layers of 100
LSTM cells with only a single dense layer
and softmax activation function. It uses Adam
optimisation and categorical cross-entropy to
calculate loss. The model was set to train
for 250 epochs on a randomised selection of
90% of the training data. The other 10% was
set aside for validation during training. Early
stopping was applied to ensure overfitting did
not occur, with the result that the actual num-
ber of epochs during training was less than
100. The input format for the model was a
34x50 matrix where 34 represents the number
of languages (this was higher than the total
number of unique characters), and 50 repre-
sents the buffered word-size (24) doubled as
words were fed in in pairs, plus 2 as the lan-

guage of each word also took up a vector each.

Unsupervised: A simple Levenshtein edit dis-
tance (Levenshtein, 1965) model was trained to
perform the clustering task with the cluster set of
3.

5 Systems

A total of 9 teams registered for the shared task:
7 teams registered to participate in both the super-
vised and unsupervised tasks while 2 teams regis-
tered for only the supervised task. Out of these,
only two teams submitted systems. Both teams
submitted for the supervised task and one team sub-
mitted for both the supervised and unsupervised
task. The teams who submitted their systems were
invited to submit system description papers describ-
ing their experiments in the proceedings of the
workshop (Beinborn et al., 2023). Since these sys-
tems are described in individual papers, we will
only briefly present the main features here.

ÚFAL_supervised: The system submitted by
team ÚFAL, represented by Tomasz Limisiewicz
from Charles University, provided gradient boosted
tree classifier trained on linguistic and statistical
features. The features used by the team to train the
classifiers were language model embeddings, typo-
logical information which included language iden-
tity and language group identity and orthographical
information (Limisiewicz, 2023).

CoToHiLi_supervised: Team CoToHiLi, repre-
sented by Liviu Dinu from University of Bucharest,
experimented with a few different multi-class clas-
sification algorithms such as Support Vector Ma-
chine, Naive Bayes, and SGD with the combination
of three features graphic features, phonetic features
and language features. At the end they selected
the best performing classifiers to train a stackable
ensemble classifier (Liviu P. Dinu, 2023).

CoToHiLi_unsupervised: The unsupervised
system submitted by team CotoHiLi employed a
set of features including graphic, phonetic and
language encoding to KMeans algorithms (Liviu
P. Dinu, 2023).

6 Results

The participants were asked to submit the final
test results in the format of the training data files,
with comma-separated fields for word pairs, lan-
guage codes, and relationship labels. Files had to
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be named team name_unsupervised/supervised
to indicate both the team’s name and the sub-task
in question.

Teams F1-Score Precision Recall
Baseline 0.91 0.99 0.84
ÚFAL 0.87 0.89 0.86
CoToHiLi 0.83 0.87 0.81

Table 6: Results of submitted supervised systems for
the SIGTYP 2023 Shared Task.

Teams Accuracy
Baseline 0.38
CoToHiLi 0.49

Table 7: Results of submitted unsupervised systems for
the SIGTYP 2023 Shared Task.

7 Conclusion

We have reported the findings of the SIGTYP 2023
Shared Task on cognate and derivative detection
for less-resourced languages as part of the fifth edi-
tion of SIGTYP workshop. With the two teams
that participated, we have seen different and in-
teresting non-neural and neural systems that deal
with cognate and derivative prediction task. While
the baseline for supervised sub-task were based
on neural networks, team ÚFAL used a gradient
boosted tree classifier and team CoToHiLi came up
with an ensemble classifier. However, neither team
could beat the baseline set for the supervised task:
the difference in the F1-Score was -0.04 for team
ÚFAL and -0.08 for team CoToHiLi. Although,
team ÚFAL’s entry ranked first among the two su-
pervised systems submitted, with an F1-Score of
0.87, the unsupervised system submitted by team
CoToHiLi based on a KMeans algorithm beat the
baseline for the unsupervised task with with an
improvememt of 0.11 in accuracy.

Acknowledgements

This Shared Task was supported by the Irish Re-
search Council as part of grant IRCLA/2017/129
(CARDAMOM-Comparative Deep Models of Lan-
guage for Minority and Historical Languages) and
co-funded by Science Foundation Ireland (SFI) as
part of grant SFI/18/CRT/6223 (CRT-Centre for
Research Training in Artificial Intelligence) and
grant SFI/12/RC/2289_P2 (Insight_2).

References
Lisa Beinborn, Koustava Goswami, Saliha Muradoğlu,
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Abstract

In this work, I present ÚFAL submission for
the supervised task of detecting cognates and
derivatives. Cognates are word pairs in differ-
ent languages sharing the origin in earlier at-
tested forms in ancestral language, while deriva-
tives come directly from another language. For
the task, I developed gradient boosted tree clas-
sifier trained on linguistic and statistical fea-
tures. The solution came first from two deliv-
ered systems with an 87% F1 score on the test
split. This write-up gives an insight into the
system and shows the importance of using lin-
guistic features and character-level statistics for
the task.

1 Introduction

The described system is a supervised model trained
for three-way classifications aimed to distinguish
cognate and cross-lingual derivatives or no rela-
tionship for pairs of words in different languages.
Cognates are pairs with similar meanings and come
from the same root in an ancestral language. For
instance, the German “vater” is cognate with the
English “father” coming from the same Proto-Indo-
European root. In contrast, multilingual deriva-
tives are words borrowed from another language
potentially with some modification, e.g., the word
“restaurant” in English comes from a French word
with the same spelling (Crystal, 2008).

The solution used only the data provided by the
organizers, i.e., 232,482 bilingual pairs in 34 Eu-
ropean languages. The data came with the rela-
tionship labels (cognate, derivative, or no relation)
scraped from Wiktionary.1 In the examples con-
taining derivative pairs, the order of words did not
indicate the source and recipient language.

The proposed system was evaluated on the test
data with 876 bilingual word pairs with hidden
target labels. The evaluation metric was a macro-
averaged F1 score. For development purposes, I

1https://www.wiktionary.org/

sampled 10% of the provided training data to create
a validation set not used in the model fitting.

My solution is based on gradient boosted tree
classifier trained on the set of language features
comprising multilingual language model embed-
dings, language and language group id, character-
level Levenshtein distance, and a binary variable
marking capitalized words.

The system obtained the F1 score of 87% on the
test set and came first out of two submitted to the
shared task. The source code for the submission
is publicly available at GitHub: https://github.
com/tomlimi/cognate_detection.

The system description is organized in the fol-
lowing way: in Section 2, I describe the classifica-
tion model and the hyperparameter search method;
in Section 3, I introduce the features selected as
input for the classifier; lastly, in Section 4, I present
the results of the method together with the accumu-
lation study and the analysis of feature importance.

2 Classification

For classification tasks, I used a gradient-boosted
tree implemented in the XGBoost library (Chen and
Guestrin, 2016).2 The boosting tree is the method
that enables the predictions of a large set of deci-
sion trees obtained with a gradient search. This
section describes the hyperparameters used for the
classifier and the method used to select them.

I chose XGBoost because it performs well for
data containing real and discrete variables, and the
set of input variables can be easily extended. More-
over, XGBoost can be interpreted through feature
importance analysis.

2.1 Class Weighting

The cognate data were significantly skewed toward
no relation class (78.0%), followed by derived pairs
(16.9%) and cognates (5.1%). The task organizers

2https://xgboost.readthedocs.io/
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Figure 1: The visualization of features selected as an input to XGBoost classifier. For each word from the test
cases, I obtained embeddings from two models, XLM-V and CANINE-C. The embeddings were compressed to 16
dimensions for each model by selecting the first principal components. The language and language group labels
were fed to the classifier as one-hot vectors. Levenshtein distance between words in each pair was inputted as a
real-valued variable. The last component of the classifier input were binary variables denoting if each word of the
pair is capitalized.

notified contestants that the training data contains
a significant share of false positives, i.e., unmarked
cognates pairs. For those reasons, I weighted test
examples in order to counter the imbalance, assign-
ing higher weights to examples containing cognate
and derived forms.

2.2 XGBoost Hyperparameters

The boosting algorithm was trained to maximize
the area under the classification curve with gradient
descent performed for 100 steps. In the parameter
search, I considered the following ones:

• eta shrinks the weights of features.

• gamma minimum loss reduction needed to
make a partition of the node

• maximum depth maximum depth of the tree.

• minimum child weight minimum sum of the
instance weights in a leaf.

• maximum delta step the cap of the output in
the leaf helps to counter data imbalance

• subsample sampling training instances for
each boosting iteration.

• column sample family of arguments: sam-
pling columns (features) before adding a new
tree, level, or node.

• lambda L2 regularization on the model’s
weights.

• alpha L1 regularization on the model’s
weights.

2.3 Bayesian Paremeter Search
The hyperparameters are searched by Bayesian op-
timization (Bergstra et al., 2013) based on the Hy-
peropt library.3 In this algorithm, the hyperparame-
ter space is searched by sampling the configuration
with a high probability of increasing the objective
function. The search is performed iteratively, updat-
ing hyperparameter distributions after each epoch.
I ran a Bayesian search for 50 epochs (in each
epoch, the XGBoost was run for 100 steps).

3https://hyperopt.github.io/hyperopt
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Parameter Search Range Selected

eta 0.01 - 0.3 0.275
gamma 0 - 5.0 0.642
maximum depth 3 - 20 12
minimum child weight 1 - 6 4
subsample 0.6 - 1.0 0.723
column sample (tree) 0.6 - 1.0 0.919
column sample (node) 0.6 - 1.0 0.749
column sample (level) 0.6 - 1.0 0.998
lambda 0 - 5.0 1.507
alpha 0 - 5.0 1.138

Table 1: Hyperparameter search spaces: uniform dis-
tributions in the given ranges. The value was selected
with Bayesian optimization. Distributions of maximum
depth and minimum child weight are discrete.

Table 1 shows the search spaces and selected
parameters.

3 Feature Selection

I used an ensemble of word embeddings, typologi-
cal and orthographical information as input to the
XGBoost classifier. This Section describes how
those features were selected and pre-processed.
The visualization of all the picked features is pre-
sented in Figure 1.

3.1 Language Model Embeddings

I computed the embedding representation of the
words in each test pair. I took the final layer repre-
sentation of two recent multilingual Transformer-
based models available through the HuggigFace in-
terface (Wolf et al., 2020):4 XLM-V (Liang et al.,
2023) and CANINE (Clark et al., 2022). The former
model tokenizes the input with a large (1 million
entries) subword vocabulary. The latter splits the
input into character sequences and applies a convo-
lution layer before the proper Transformer. I used
these two models aiming to merge character and
subword signals.

The resulting word embeddings have high di-
mensionality, i.e., 1024 for each model. I decided
to decrease the dimensionality of the embeddings
in order to balance out the composition of the clas-
sifier input vector. For that purpose, I applied SVD
decomposition on the embeddings obtained for the
training set and sorted the principal components in
the order of the variance explained. Subsequently,

4https://huggingface.co/

Features Train Validation
Acc F1 Acc F1

1 Language ID 75.9 64.2 76.1 64.2
2 1 + Group ID 76.6 64.7 76.7 64.6

3 2 + Capitalized 78.4 66.3 78.6 66.4

4 3 + Levenshtein 83.1 70.6 83.0 69.8

5 3 + Embeddings 97.2 94.2 92.6 80.3

6 4 + Embeddings
No weighting

98.4 95.8 93.8 79.6

7 4 + Embeddings 97.8 95.3 93.7 82.7

Table 2: The feature accumulation analysis results from
the XGBoost classifier. Each row presents the results
for the model trained on a different set of features.

I picked the first 16 principal components for each
model and used the projection matrix to obtain the
representation for the development and test sets.

3.2 Typology

I encoded language information as two class vari-
ables: the first is language identity (34 classes),
and the second is language group identity (7
classes: Romance, Slavic, Germanic, Celtic, Hel-
lenic, Baltic).

Both variables were encoded in a one-hot vector,
with 34 dimensions for language and 7 dimensions
for language family.

3.3 Orthography

I used Levensthein distance (Levenshtein, 1966)
on character level as the measure of similarity be-
tween words. The second feature based on ortho-
graphical forms was the binary variable denoting
for each word whether it is capitalized. I added this
feature because I have observed that proper names
are often borrowed in other languages. Therefore,
the capitalized word’s appearance increased the
derivative class’s probability.

Admittedly, the adequate way to utilize Lev-
enshtein distance would be to compute it on the
phoneme level. However, the text-to-phonemes
models were not publicly available for many low-
resource languages included in the shared task.

4 Results

I trained the classifier on top of input vectors con-
structed from the features described in Section 3
and using the hyperparameters picked by Bayesian
search described in Section 2.3. I split the training
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Figure 2: The sum of objective gains for when a given feature was used for a tree split. Features la, fr, nb are ones
of 34 language ID features indicating if one of the languages in the pair is Latin, French, or Bokmål (Norwegian).
canine_x and xlm-v_x denote the main principal component of language models CANINE and XLM-V, where x
indicates the rank of the component according to the proportion of explained variance. The figure presents only 20
features with the highest total gain.

set provided by the organizers into train and val-
idation splits containing 90% and 10% randomly
selected data examples.

The submitted solution obtained 95.3% macro
F1 score on the train set and 82.7% on the vali-
dation set. On the held-out test split, the system
achieved 87% F1 score, as reported by the organiz-
ers. This section presents the results of the accu-
mulation study and feature importance analysis.

4.1 Accumulation Analysis

Table 2 shows the accuracies obtained by the classi-
fier trained on subsets of features. Interestingly, the
classifier trained just on language labels achieves
a relatively high F1 (64.2% on the validation set).
The highest gain is observed after adding word em-
beddings (+12.9% validation F1 increase in 8 );
Levenshtein distance also visibly improves results (
+3.87% in 5 ). The model without class weighting

7 achieves better class accuracies and a lower F1
score due to class imbalance.

In summary: there is a visible impact of includ-
ing language model embeddings and Levenshtein
distance as classification features.

4.2 Feature Importance

Figure 2 presents the feature importance computed
as the total gain each feature brought in the splits.

The most important feature is a binary variable
indicating if one of the languages in a pair is Latin.
The importance of this feature can be explained by
the fact that Latin is the source language of many
borrowings throughout European languages. The
second feature is Levesnshtein distance, followed
by one of the CANINE principal components (ca-
nine_1) and binary variable marking capitalized
words. These three feature depends on the charac-
ter composition of the analyzed words, highlighting
the importance of orthographical information for
cognate detection. Furthermore, character-based
CANINE embeddings tend to be more influential
to the predictions than subword-based ones (XLM-
V).

5 Conclusions

The developed supervised system achieves com-
petitive results in cognate detection (87% on the
test set). The model was trained on a diverse set of
linguistic and statistical signals. The accumulation
and importance analysis showed the importance of
nuance aspects of the dataset, such as Latin or cap-
italization, as an indication of derivative relation.
The analysis also showed the high importance of
using character-based representation for the task in
the form of CANINE embedding and character-level
Levenshtein distance.
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Limitations

I acknowledge that the solution is limited in its
scope. For instance, I did not use phonetical rep-
resentation, which is more suitable for comparing
the potential cognates across languages. Also, the
solution could benefit from more complex histor-
ical linguistic analysis, e.g., obtained with Pyling
package (List and Forkel, 2021).5 However, the
proposed classification method can be easily ex-
tended to incorporate additional features.

The flawed annotation of the training set causes
another limitation of the method. According to
information from the organizers, the dataset con-
tained a significant number of false negatives, i.e.,
missing cognate relations.
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Abstract
The identification of cognates and derivatives is
a fundamental process in historical linguistics,
on which any further research is based. In this
paper we present our contribution to the SIG-
TYP 2023 Shared Task on cognate and deriva-
tive detection. We propose a multi-lingual solu-
tion based on features extracted from the align-
ment of the orthographic and phonetic repre-
sentations of the words.

1 Introduction and Related Work

In this paper we describe our participation in the
SIGTYP 2023 Shared Task on cognate and deriva-
tive detection.

As both the cornerstone of historical linguistics
and a starting point of historical enquiry, auto-
matic detection of cognates and derivatives pro-
vides access to a wide range of areas in social sci-
ences (Campbell, 1998; Mallory and Adams, 2006;
Mailhammer, 2015). Concrete examples of the
usefulness of accurate prediction of cognates and
cognate chains were previously mentioned in the
works of Atkinson et al. (2005), Alekseyenko et al.
(2012), and Dunn (2015) through linguistic phy-
logeny, which in turn can be applied to back tracing
linguistic relatedness (Ng et al., 2010). Linguistic
contact can also be inferred from such predictions
(Epps, 2014), and this in turn can provide a better
understanding and insight into the interaction of
ancient communities (Mallory and Adams, 2006;
Heggarty, 2015). While looking for similar patterns
that regulate the cognitive mechanisms involved
in semantic change, an extended view on cognate
chains can be used as a basis for the identifica-
tion of meaning divergence (Dworkin, 2006). The
study of language acquisition (Huckin and Coady,
1999) as well as the challenging problem of remov-
ing false friends in machine translation (Uban and
Dinu, 2020) would both benefit from an accurate
understanding on the cognate pairings between any
two related languages.

Today there is a vast volume of linguistic data
that is yet to be analysed from a historical per-
spective (List et al., 2017). This illustrates the
paramount importance of looking into automatic
methods and algorithms that can accurately detect
cognates and derivatives for both highly resourced
and lowly resourced languages.

Recent years have seen a proliferation of tech-
niques for automated detection of cognate pairs
(Frunza and Inkpen, 2008; Ciobanu and Dinu,
2014; Jäger et al., 2017; Rama et al., 2018; Fourrier
and Sagot, 2022). A lot of these techniques employ
feature extraction from various orthographic and
phonetic alignments used for training shallow ma-
chine learning algorithms in the supervised setting,
or used along with clustering methods for the un-
supervised approaches (Simard et al., 1992; Koehn
and Knight, 2000; Inkpen et al., 2005; Mulloni and
Pekar, 2006; Bergsma and Kondrak, 2007; Navlea
and Todirascu, 2011; List, 2012; Ciobanu and Dinu,
2014; Jäger et al., 2017; St Arnaud et al., 2017;
Cristea et al., 2021). Ciobanu and Dinu (2014)
reported results on cognate detection for several
Romance language pairs, in which cognate and
non-cognate pairs are distinguished via features
extracted from orthographic alignments that are
used for training Support Vector Machines, with
accuracies reaching as high as 87%.

Deep learning models for cognate detection and
other similar tasks were mentioned in fewer stud-
ies. Siamese convolutional neural networks trained
on character sequences for either the orthographic,
or the phonetic representations of the words, and
augmented with handcrafted features were shown
to perform well when tested on cognate predic-
tion for three language families, out of which the
most proeminent one being the Austronesian fam-
ily (Rama, 2016). Also, for borrowing detection
Miller et al. (2020) employed deep learning archi-
tectures based on recurrent neural networks.
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1.1 SIGTYP 2023 Task and Data
The SIGTYP 2023 competition includes two sub-
tasks: supervised and unsupervised classification
of word pairs into three different classes: cog-
nates, derivatives, and neither. The dataset in-
cluded 232,482 annotated word pairs in 34 lan-
guages, where each word pair was annotated with
a language for each word, and with one of the three
categories based on the relationship between the
pair. The data was annotated based on Wiktionary.

2 Automatic Cognate Detection
Experiments

2.1 Methodology
The models we experimented with were all multi-
lingual, in the sense that we trained them on the
whole dataset without any split with respect to the
languages of the classified word pairs. We trained
classical machine learning algorithms using various
sets of handcrafted features. In order to improve
overall performance, we also looked into training
ensemble models using the best scoring algorithms.

2.2 Features
The models were trained using combinations of
three types of features:

• graphic features, extracted from aligning the
graphic form of the words in a pair

• phonetic features, extracted from a similar
alignment, but for the phonetic transcriptions

• language features, represented as one-hot en-
codings for which pair of languages the words
in an input pair come from.

For the graphic features, we started by prepro-
cessing the input words and removing the accents.
The Needleman-Wunch algorithm for sequence
alignment (Needleman and Wunsch, 1970) was suc-
cessfully employed in previous studies (Ciobanu
and Dinu, 2019) for aligning and extracting fea-
tures from the graphic representation of word pairs,
in order to classify such pairs as cognates or non-
cognates. Using a similar approach we were able to
extract n-grams around alignment mismatches (i.e.
deletions, insertions, and substitutions). Another
aspect we borrowed from previous studies is that
for a given value of n, we extract all such i-grams
that have the length i ≤ n.

As for an example of graphic features extrac-
tion, we can look at the pair constituted of the

German word "hoch" and the Swedish word "hög",
annotated as cognates in the training dataset, and
both meaning "tall". For the preprocessed pair
(hoch, hog) we obtain the following align-
ment: ($hoch$, $hog-$), where $ marks the
start and the end of the alignments and - repre-
sents an insertion, or deletion (depending on the
direction we are considering). For a chosen value
of n = 2, the extracted features are: c>g, h>-,
oc>og, ch>g-, and h$>-$.

For phonetic features, we employ the same
method, but this time on the phonetic represen-
tation of the input words, where one could have
been identified (if we did not identify the phonetic
representation of at least one word in the input pair,
we consider no phonetic features for this pair). To
obtain the phonetic representations we used the
eSpeak library1, version 0.1.8.

All these features along with the encoding of the
input languages are vectorized using the binary bag
of words paradigm, and correspond to the input
representation for the various Machine Learning
models we trained.

2.3 Supervised classification: Ensemble
Model

Using various combinations of the features de-
scribed above, we experimented with training a
few different multi-class classification algorithms:
Support Vector Machine, Naive Bayes, and SGD
Classifier. In order to compare the performance of
the trained models (with various hyper-parameters)
and their corresponding feature combinations, we
computed F1 scores obtained from three-fold cross
validation using the whole training dataset.

Out of these models we select the top perform-
ing ones and we then train a stacking ensemble
classifier. We also experimented with the number
of models selected and assessed the enseble perfor-
mance using three-fold cross validation as well.

2.4 Unsupervised classification: Clustering
model

For the clustering approach, we employed the
whole set of features (graphic features, phonetic
features, and language encodings) and fitted a
KMeans algorithm with the number of clusters set
to 3.

1https://github.com/espeak-ng/espeak-ng

138



Model and Hyper-Parameters n graphic phonetic language F1 Acc
SGD Classifier, loss: "hinge" 3 yes yes yes 0.793 0.921
SGD Classifier, loss: "modified_huber" 3 yes yes yes 0.791 0.921
SGD Classifier, loss: "modified_huber" 2 yes yes yes 0.783 0.916
Linear SVM, C = 0.1 3 yes yes yes 0.782 0.923
SGD Classifier, loss: "modified_huber" 3 yes no yes 0.781 0.916
SGD Classifier, loss: "hinge" 2 yes yes yes 0.781 0.914
SGD Classifier, loss: "log_loss" 3 yes yes yes 0.780 0.913
SGD Classifier, loss: "perceptron" 3 yes yes yes 0.775 0.910
SGD Classifier, loss: "hinge" 3 yes no yes 0.775 0.911
Linear SVM, C = 1 3 yes yes yes 0.782 0.917

Table 1: Top ten best performing models with respect to macro F1 score for the supervised task. Best hyper-
parameters and feature combinations are also reported in this table. n represents the size of the considered alignment
n-grams for graphic and phonetic features. Evaluation was done using three-fold cross validation on the training
data

.

2.5 Hyperparameters and experimental
details

For selecting the best base models to be combined
into the stacking ensemble for the supervised ap-
proach, and also for selecting the model for the un-
supervised task, we trained various machine learn-
ing models using the scikit-learn Python library.
The list of models and their parameters is the fol-
lowing (note that if not said otherwise, all other
hyper-parameters are set to the defaults specified
in the 1.2.0 version of the library):

• Linear Support Vector Machine
(LinearSVC): C ∈ {0.1, 1, 10}

• Multinomial Naive Bayes

• SGD Classifier: loss ∈ {hinge, log_loss,
perceptron, squared_hinge,
modified_huber}.

We evaluate each such model using all combina-
tions of graphic, phonetic, and language encoding
features, and using various values for the size of
considered alignment n-grams (n ∈ {1, 2, 3}).

Lastly we select the top performing N mod-
els based on cross validation scores and train a
StackingClassifier on the whole training
set. Furthermore, we cross validate these ensem-
bles as well in order to determine the best N .

3 Results

3.1 Supervised Task
We report metrics computed via three-fold cross
validation performed using the provided training
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Figure 1: Computed macro F1 scores through three-fold
cross validation for the supervised ensemble architec-
tures trained using various numbers of base models.

dataset. We report the macro F1 score (the metric
used in the task description for evaluation purposes)
and the classification accuracy. Table 1 contains
the metrics computed for the top 10 performing
classification models, along with their choice of
hyper-parameters and features.

We also tracked the performance of the ensemble
architecture for various numbers of base models.
As can be seen in figure 1, slight improvements are
achieved when picking more models, although at
some point this process shows diminishing returns
and a longer time for training.

For the supervised submission, we chose the 25
models ensemble that displayed a 0.797 macro F1
score on the cross validation experiment, while
for the unsupervised one, our KMeans model dis-
played a clustering score of 0.816.
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4 Conclusions

In this paper we described our approaches for both
the supervised and the unsupervised subtasks from
the SIGTYP 2023 Shared Task on cognate and
derivative detection. Our methods mostly rely on
feature engineering powered by sequence align-
ments for both orthographic and phonetic transcrip-
tions.

As we have seen from the results reported on
the train labels, the combination of graphic and
phonetic features seem to provide better perfor-
mance than the models relying on one but not the
other. One disadvantage is the lack of phonetic tran-
scriptions for some of the low resource languages,
which should be an important item in the long list
of studies still needed for these type of languages.

Our submissions for the shared task yielded a
macro F1 score of 0.83 for the supervised subtask,
which was only 0.04 below the best reported result,
and a 0.49 clustering accuracy for the unsupervised
subtask, which was the best reported result and
achieved a 30% improvement over the baseline.

For future work we are considering a qualitative
analysis of the errors, in order to better understand
on which language pairs our models were regis-
tering better results and where they struggled to
provide accurate predictions.
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1 Introduction

Multilingual language models share a single set
of parameters between many languages, opening
new pathways for multilingual and low-resource
NLP. However, not all training languages have an
equal amount, or a comparable quality (Kreutzer
et al., 2022), of training data in these models. In
this paper, we investigate if the hegemonic status of
English influences other languages in multilingual
language models. We propose a novel method for
evaluation, whereby we ask if model predictions
for lower-resource languages exhibit structural fea-
tures of English. This is similar to asking if the
model has learned some languages with an “En-
glish accent”, or an English grammatical structure
bias.

We demonstrate this bias effect in Spanish and
Greek, comparing the monolingual models BETO
(Cañete et al., 2020) and GreekBERT (Koutsikakis
et al., 2020) to multilingual BERT (mBERT),
where English is the most frequent language in
the training data. We show that mBERT prefers
English-like sentence structure in Spanish and
Greek compared to the monolingual models. Our
case studies focus on Spanish pronoun drop (pro-
drop) and Greek subject-verb order, two structural
grammatical features. We show that multilingual
BERT is structurally biased towards explicit pro-
nouns rather than pro-drop in Spanish, and subject-
before-verb order in Greek: the structural forms
parallel to English.

The effect we showcase here demonstrates the
type of fluency that can be lost with multilingual
training — something that current evaluation meth-
ods miss. Our proposed method can be expanded,
without the need for manual data collection, to any
language with a syntactic treebank and a mono-
lingual model. Since our method focuses on fine-
grained linguistic features, some expert knowledge
of the target language is necessary for evaluation.

Our work builds off of a long literature on mul-
tilingual evaluation which has until now mostly
focused on downstream classification tasks (Con-
neau et al., 2018; Ebrahimi et al., 2022; Clark
et al., 2020; Liang et al., 2020; Hu et al., 2020;
Raganato et al., 2020; Li et al., 2021). With the
help of these evaluation methods, research has
pointed out the problems for both high- and low-
resource languages that come with adding many
languages to a single model (Wang et al., 2020;
Turc et al., 2021; Lauscher et al., 2020, inter alia),
and proposed methods for more equitable models
(Ansell et al., 2022; Pfeiffer et al., 2022; Ogueji
et al., 2021; Ògúnrè.mí and Manning, 2023; Virta-
nen et al., 2019; Liang et al., 2023, inter alia). We
hope that our work can add to these analyses and
methodologies by pointing out issues beyond down-
stream classification performance that can arise
with multilingual training, and aid towards building
and evaluating more equitable multilingual models.

2 Method

Our method relies on finding a variable construc-
tion in the target language which can take two struc-
tural surface forms: one which is parallel to English
(Sparallel) and one which is not (Sdifferent). Surface
forms parallel to English are those which mirror
English structure.

Once we have identified such a construction in
our target language, we can ask: are multilingual
models biased towards Sparallel? We can use syntac-
tic treebank annotations to pick out sentences that
exhibit the structures Sparallel or Sdifferent, and put
these extracted sentences into two corpora, Cparallel
and Cdifferent. We then calculate a ratio rmodel for
each model: the average probability of a sentence
in Cparallel divided by the average probability of a
sentence in Cdifferent according to the model. Our
experimental question then boils down to asking if
rmulti is significantly larger than rmono. To get an
estimation of Pmodel(x), we can extract the prob-
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Entonces ella toma la bandera de la revolución
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Figure 1: Results from our experiment on the Spanish
GSD treebank, along with two examples from the tree-
bank to illustrate Sparallel (with pronoun) and Sdifferent
(pro-drop). Error bars represent 95% bootstrap confi-
dence intervals.

ability of one word w in each sentence that best
represents the construction, and approximate the
probability of x with P (wx|x). Using a carefully
chosen word as a proxy for the probability of a con-
struction is a methodological choice also made in
reading time psycholinguistics experiments (Levy
and Keller, 2013).

2.1 Case Study: Spanish Pro-drop

For our Spanish case study, we examine the feature
of whether the subject pronoun is realized. In Span-
ish, the subject pronoun is often dropped: person
and number are mostly reflected in verb conjuga-
tion, so the pronoun is realized or dropped depend-
ing on semantic and discourse factors. English, on
the other hand, does not allow null subjects except
in rare cases, even adding expletive syntactic sub-
jects as in “it is raining”. We extract Cparallel (with
subject pronoun) and Cdifferent (dropepd subject pro-
noun) from the Spanish GSD treebank (De Marn-
effe et al., 2021). We take all sentences with a
pronoun dependent of the root verb and add them
to Cparallel (283 sentences) and all sentences where
there is no nsubj relation to root verb and add them
to Cdifferent (2,656 sentences), ignoring some con-
founder constructions. We always pick the main
root verb of the sentence as our logit word w.

2.2 Case Study: Greek Subject-Verb order

For our Greek case study, we examine the feature
of Subject-Verb order. English is a fixed word or-
der language: with few exceptions, the order of

Στις 3_Σεπτεμβρίου ξέσπασε επανάσταση

Ο πρώτος αγώνας έληξε με σκορ 3:2

Sub���t Ver�

Sub���tVer�

Subject first
 example

Verb first
 example

Figure 2: Results from our experiment on the Greek De-
pendency Treebank, along with two examples from the
treebank to illustrate Sparallel (Subject-Verb) and Sdifferent
(Verb-Subject). Error bars represent 95% bootstrap con-
fidence intervals.

a verb and its arguments is Subject-Verb-Object.
Greek, on the other hand, has mostly free word
order (Mackridge, 1985), meaning that the verb
and arguments can appear in any order that is most
appropriate given discourse context. For our ex-
periment, we define Sparallel to be cases in Greek
when the subject precedes the verb, as is the rule
in English. Sdifferent is then the cases when the verb
precedes the subject, which almost never happens
in English. We extract Cparallel (Subject-Verb order,
1,446 sentences) and Cdifferent (Verb-Subject order,
425 sentences) from the Greek Dependency Tree-
bank (Prokopidis and Papageorgiou, 2017). We
define w to be the first element of the subject and
verb: This first element is closer to the surround-
ing context, and so gives us a word-order-sensitive
measurement of how the subject-verb construction
is processed within the context.

3 Results

Results are shown in Figures 1 and 2, showing for
both of our case studies that multilingual BERT
has a greater propensity for preferring English-
like sentences which exhibit Sparallel. Multilingual
BERT significantly prefers pronoun sentences over
pro-drop compared with monolingual BETO (boot-
strap sampling, p < 0.05), and significantly prefers
subject-verb sentences over verb-subject sentences
over GreekBERT (bootstrap sampling, p < 0.05).
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Goran Glavaš. 2020. From Zero to Hero: On the
limitations of zero-shot language transfer with mul-
tilingual transformers. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 4483–4499.

Roger P. Levy and Frank Keller. 2013. Expectation
and locality effects in German verb-final structures.
Journal of Memory and Language, 68(2):199–222.

Haoran Li, Abhinav Arora, Shuohui Chen, Anchit
Gupta, Sonal Gupta, and Yashar Mehdad. 2021.
Mtop: A comprehensive multilingual task-oriented
semantic parsing benchmark. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 2950–2962.

Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Na-
man Goyal, Marjan Ghazvininejad, Luke Zettle-
moyer, and Madian Khabsa. 2023. Xlm-v: Overcom-
ing the vocabulary bottleneck in multilingual masked
language models. arXiv preprint arXiv:2301.10472.

Yaobo Liang, Nan Duan, Yeyun Gong, Ning Wu, Fenfei
Guo, Weizhen Qi, Ming Gong, Linjun Shou, Daxin
Jiang, Guihong Cao, Xiaodong Fan, Ruofei Zhang,
Rahul Agrawal, Edward Cui, Sining Wei, Taroon
Bharti, Ying Qiao, Jiun-Hung Chen, Winnie Wu,
Shuguang Liu, Fan Yang, Daniel Campos, Rangan
Majumder, and Ming Zhou. 2020. XGLUE: A new
benchmark datasetfor cross-lingual pre-training, un-
derstanding and generation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6008–6018,
Online. Association for Computational Linguistics.

P. Mackridge. 1985. The Modern Greek Language:
A Descriptive Analysis of Standard Modern Greek.
Oxford University Press.

Kelechi Ogueji, Yuxin Zhu, and Jimmy Lin. 2021.
Small Data? No Problem! Exploring the viabil-
ity of pretrained multilingual language models for
low-resourced languages. In Proceedings of the 1st
Workshop on Multilingual Representation Learning,
pages 116–126, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Tolúlo. pé. Ògúnrè.mí and Christopher D. Manning. 2023.
Mini but Mighty: Efficient multilingual pretraining
with linguistically-informed data selection.

145

https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.1162/tacl_a_00447
https://doi.org/https://doi.org/10.1016/j.jml.2012.02.005
https://doi.org/https://doi.org/10.1016/j.jml.2012.02.005
https://doi.org/10.18653/v1/2020.emnlp-main.484
https://doi.org/10.18653/v1/2020.emnlp-main.484
https://doi.org/10.18653/v1/2020.emnlp-main.484
https://books.google.com/books?id=RWViAAAAMAAJ
https://books.google.com/books?id=RWViAAAAMAAJ
https://doi.org/10.18653/v1/2021.mrl-1.11
https://doi.org/10.18653/v1/2021.mrl-1.11
https://doi.org/10.18653/v1/2021.mrl-1.11


Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James
Cross, Sebastian Riedel, and Mikel Artetxe. 2022.
Lifting the curse of multilinguality by pre-training
modular transformers. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 3479–3495, Seattle,
United States. Association for Computational Lin-
guistics.

Prokopis Prokopidis and Haris Papageorgiou. 2017.
Universal Dependencies for Greek. In Proceedings of
the NoDaLiDa 2017 Workshop on Universal Depen-
dencies (UDW 2017), pages 102–106, Gothenburg,
Sweden. Association for Computational Linguistics.

Alessandro Raganato, Tommaso Pasini, Jose Camacho-
Collados, and Mohammad Taher Pilehvar. 2020. XL-
WiC: A multilingual benchmark for evaluating se-
mantic contextualization. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). The Association for
Computational Linguistics.

Iulia Turc, Kenton Lee, Jacob Eisenstein, Ming-Wei
Chang, and Kristina Toutanova. 2021. Revisiting
the Primacy of English in Zero-shot Cross-lingual
Transfer. CoRR, abs/2106.16171.

Antti Virtanen, Jenna Kanerva, Rami Ilo, Jouni Luoma,
Juhani Luotolahti, Tapio Salakoski, Filip Ginter, and
Sampo Pyysalo. 2019. Multilingual is not enough:
BERT for Finnish. arXiv preprint arXiv:1912.07076.

Zirui Wang, Zachary C Lipton, and Yulia Tsvetkov.
2020. On negative interference in multilingual mod-
els: Findings and a meta-learning treatment. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4438–4450.

146

https://doi.org/10.18653/v1/2022.naacl-main.255
https://doi.org/10.18653/v1/2022.naacl-main.255
http://www.aclweb.org/anthology/W17-0413.pdf
https://arxiv.org/abs/2106.16171
https://arxiv.org/abs/2106.16171
https://arxiv.org/abs/2106.16171


Proceedings of the 5th Workshop on Research in Computational Linguistic Typology and Multilingual NLP (SIGTYP 2023), pages 147–149
May 6, 2023 ©2023 Association for Computational Linguistics

Grambank’s typological advances support computational research on
diverse languages

Hannah J. Haynie
University of Colorado Boulder

Boulder, Colorado, USA
hannah.haynie@colorado.edu

Damián Blasi
Harvard University

Cambridge, Massachusetts, USA
damianblasi@gmail.com

Hedvig Skirgård
Max Planck Institute for Evolutionary Anthropology

Leipzig, Germany
hedvig_skirgard@eva.mpg.de

Simon J. Greenhill
University of Auckland
Auckland, New Zealand

simon.greenhill@auckland.ac.nz

Quentin D. Atkinson
University of Auckland
Auckland, New Zealand

q.atkinson@auckland.ac.nz

Russell D. Gray
Max Planck Institute for Evolutionary Anthropology

Leipzig, Germany
russell_gray@eva.mpg.de

Abstract

In spite of increasing attention on less-
resourced languages in Natural Language Pro-
cessing (NLP), equitable access to language
technologies and inclusion of diverse languages
in the development of these technologies re-
mains a problem (Joshi et al., 2020). This dis-
parity in resources and research attention is
pronounced – only a handful of the world’s
approximately 7,000 languages receive the ma-
jority of scholarly attention (Blasi et al., 2022).
Extending the reach of language technologies
to diverse, less-resourced languages is impor-
tant for tackling the challenges of digital equity
and inclusion, and incorporating typological
information into language transfer and multilin-
gual learning is an important strategy for doing
this. Here we introduce the Grambank typolog-
ical database as a resource to support efforts
that leverage typological features to enhance
multilingual NLP.

To date, the cross-linguistic information about
morphology and syntax that has been recruited
for NLP comes primarily from datasets de-
signed for theoretical linguistics research, with
very little consideration of how this data may be
used in computational tasks (Dryer and Haspel-
math, 2013; Michaelis et al., 2013; Bickel and
Nichols, 2002). As a result these existing typo-
logical datasets suffer from several limitations,
including small numbers of adequately anno-
tated languages, excessive missing data per fea-
ture, and lack of transparency in the content
and coding of features (O’Horan et al., 2016).
Grambank is a resource designed and curated

by linguistic typologists to serve both theoreti-
cal linguistic purposes and computational uses.
Its 195 morphosyntactic features cover a sim-
ilar range of grammatical phenomena as prior
typological databases (e.g. word order, gram-
matical relation marking, constructions like in-
terrogatives and negation), but Grambank dif-
fers in its design in ways that facilitate its use
in computational research.

Each of Grambank’s features encodes some
characteristic of the morphology and/or syn-
tax of languages. The content of the feature
set balances the description of a wide range
of structures that are known to vary across lan-
guages with the availability of information for a
maximal set of languages. Feature names take
the form of a question (e.g. ‘Are there prenom-
inal articles?’), and values for a majority of
features are binary (0/‘no’, 1/‘yes’). Six word
order features have multi-state values (e.g. ‘Or-
der A’, ‘Order B’, or ‘Both Order A and Order
B’), which can easily be binarised for analyti-
cal purposes. Binary feature values avoid the
ambiguity of binned or inadequately described
categories, and the representation of Grambank
datapoints in terms of the presence or absence
of linguistic traits allows the dataset to report
all strategies identified in empirical sources for
expressing a particular meaning or function.
This contrasts with prior typological resources
that encode a single ‘dominant’ category per
meaning or function (Dryer and Haspelmath,
2013).

The typological content of Grambank is struc-
tured as a simple list of features, with no hi-
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erarchical relationships between features (e.g.
specific characteristics that are only coded if a
certain value is registered for a more general
feature). Care was also taken to avoid strict log-
ical dependencies between features (i.e. situa-
tions where a certain value for Feature A entails
a particular value for Feature B). Functional de-
pendencies may still exist between features for
a variety of reasons, such as communicative
pressures or common processes of language
change. However, the structure of the dataset
eliminates a great deal of the redundancy in
typological data that is problematic for tasks
such as measuring language distances (Ham-
marström and O’Connor, 2013).

To promote transparency (Slingerland et al.,
2020), the Grambank web interface includes
extensive documentation for each feature, in-
cluding step-by-step procedures that outline the
analytical decisions made by annotators in de-
termining feature values, illustrative examples
from languages with different feature values,
and references to relevant theoretical literature.

Grambank is annotated by linguists based on
descriptions (e.g. published grammars) of lan-
guages. It currently includes data for 2,467
languages – around a third of the world’s total
linguistic diversity – from 316 different lan-
guage families around the globe. This sam-
ple covers all continents (Antarctica excepted),
and all 24 linguistically relevant geographic ar-
eas identified in prior research (Nichols et al.,
2013). Whereas NLP research to date features
languages of continental Eurasia almost exclu-
sively, only about 20% of the Grambank sample
is drawn from this region, with the remainder
representing diverse languages from Africa, the
Americas, Australia, Papua New Guinea, and
Oceania. While Grambank is not intended to be
a perfect stratified sample of language families
or macroareas, it provides representation of ar-
eas and languages that are often under-sampled,
including minority languages, endangered lan-
guages, languages from small language fami-
lies, and isolates.

The size of the language sample in Grambank
is similar to WALS (Dryer and Haspelmath,
2013), but Grambank represents a tremendous
leap forward in terms of the overall number
of datapoints available for characterizing indi-
vidual languages, investigating language uni-
versals and tendencies, and examining the full
range of grammatical diversity. Grambank ad-
vances the field by making complete or nearly
complete sets of high quality, easily interpreted
grammatical information available for a large
and diverse set of languages. Missing data has

been repeatedly presented as the most impor-
tant limitation of typological data for use in
multilingual NLP (O’Horan et al., 2016; Ponti
et al., 2019; Bjerva et al., 2020), and this is
where Grambank most clearly exceeds the prior
benchmark. On average a WALS feature is
coded for approximately 400 languages (Dryer
and Haspelmath, 2013). In contrast, Grambank
features are coded for approximately 1,500 lan-
guages on average. This means that a typi-
cal language in WALS is coded for only ap-
proximately 30 features, while it is likely to
be coded in Grambank for approximately 145
features. In sum, approximately 17% of the po-
tential datapoints in WALS have values (Dryer
and Haspelmath, 2013; O’Horan et al., 2016),
while Grambank pushes the total completion
rate above 70%.

Typological data has been shown to be a useful
tool for improving the performance of multi-
lingual methods (Zhang et al., 2012; Ammar
et al., 2016), transfer of technologies from high
resource languages (Naseem et al., 2012), and
a variety of other tasks that enable multilin-
gual NLP and ultimately the development of
inclusive language technologies (Rama and Ko-
lachina, 2012; Östling, 2015; Takamura et al.,
2016). Grambank represents a significant ad-
vance in the typological information that can
be used to support these activities.

Limitations

The resource described herein includes information
for only approximately one third of the languages
of the world; its use for computational tasks in-
volves some risk of bias related to sampling based
on availability of grammatical descriptions and risk
of excluding understudied languages.

The evaluation of the Grambank resource pre-
sented here relies on qualitative differences be-
tween this resource and the existing state of the
art in cross-linguistic morphosyntactic data. Fur-
ther analyses are warranted to examine the impacts
of this resource on specific tasks.

Ethics Statement

This research complies with the principles of the
ACL Ethics Policy. Cross-linguistic morphosyntac-
tic resources have the potential to aid in the expan-
sion of computational resources to less-resourced
languages, but we note that the needs and inter-
ests of language communities vary and that digital
equity and inclusivity require the involvement of
those communities in research and development of
technologies.
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Language-agnostic measures discriminate inflection and derivation
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In the field of morphology, a distinction is com-
monly drawn between derivations, processes that
form “new” words, and inflections, processes that
merely create new “forms” of words (Dressler,
1989). While the theoretical nature of this distinc-
tion is a subject of ongoing debate, it is widely em-
ployed throughout linguistic theory, computational
and corpus linguistics, and even psycholinguistics.

Dictionaries and grammars roughly agree on
which morphological relationships are inflec-
tional and which are derivational within a lan-
guage. There is even a degree of cross-linguistic
consistency in the constructions which are typ-
ically/traditionally considered inflections—e.g.,
tense marking on verbs is widely considered to
be inflectional. This cross-linguistic consistency
is highlighted by the development of UniMorph
(Batsuren et al., 2022), a resource which annotates
inflections across 182 languages using a unified
feature scheme. This is despite the fact that Uni-
Morph data is extracted from the Wiktionary open
online dictionary1, which organises constructions
into inflections and derivations based on typical
traditions for a given language. This is in line with
Haspelmath’s (in press) view of these terms as tra-
ditional comparative concepts, being based on the
ways in which Western dictionaries and grammar
books are traditionally structured.

While linguists have proposed many tests or pro-
totypical properties of these categories, such as
derivations producing larger semantic changes or
occurring closer to the root of the word, difficulties
in producing a cross-linguistically consistent defini-
tion have led many researchers to conclude that the
inflection–derivation distinction is gradient rather
than categorical (e.g., Dressler, 1989) or even to
take position that the distinction carries no theoret-
ical weight (Haspelmath, in press). In particular,
Haspelmath (in press) argues that many such prop-
erties of inflection and derivation are not proven to

1https://en.wiktionary.org

apply in a consistent way across languages.
One major issue in evaluating these theoretical

claims is the lack of large-scale, cross-linguistic
evidence based on quantitative measures (rather
than subjective tests). While several studies have
also computationally operationalised linguistic in-
tuitions about the inflection–derivation distinction,
they have been limited in terms of the languages
studied, focusing on French (Bonami and Paperno,
2018; Copot et al., in press) and Czech (Rosa and
Žabokrtský, 2019). We here expand the set of mea-
sures and languages studied to evaluate whether
traditional concepts of inflection and derivation re-
late to their claimed properties cross-linguistically.

We develop a set of four quantitative measures of
morphological constructions, including measures
of both the magnitude and the variability of the
changes introduced by each construction. Crucially,
our measures can be computed directly from a lin-
guistic corpus, allowing us to consistently opera-
tionalise them across many languages and morpho-
logical constructions. That is, given a particular
morphological construction (such as “the nomi-
native plural in German”) and examples of word
pairs that illustrate that construction (e.g., ‘Frau,
Frauen’, ‘Kind, Kinder’), we compute four corpus-
based measures which quantify the idea that deriva-
tions produce larger and more variable changes
to words compared to inflections. We then ask
whether, for a given construction, knowing just
these measures is sufficient to predict its inflec-
tional versus derivational status in UniMorph.

In particular we consider for each construction:

• ∥∆form∥, the average edit distance between
the base and constructed forms,

• ∥∆distribution∥, the Euclidean distance be-
tween the distributional embeddings of the
base and constructed forms,

• var(∆form), the average edit distance be-
tween the edit sequences between base and
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Features Logistic MLP

Majority class (Inflection) 0.57 –
∥∆distribution∥ 0.67 0.68
∥∆form∥ 0.59 0.60
var(∆distribution) 0.76 0.76
var(∆form) 0.71 0.71
Form/distribution magnitude* 0.66 0.67
Form/distribution variability* 0.84 0.84
Form magnitude/variability* 0.70 0.75
Distribution magnitude/variability* 0.77 0.77
All measures* 0.86 0.90

Table 1: Accuracy in reconstructing Unimorph’s inflec-
tion–derivation distinction by various supervised classi-
fiers.

constructed forms within a construction,

• var(∆distribution), the total variance of the dif-
ference vectors between base and constructed
form in the distributional embedding space.

If, across languages belonging to different language
families and morphological typologies, the Uni-
Morph annotations can be predicted with high ac-
curacy based on our measures, this would indicate
that traditional concepts of inflection and deriva-
tion do correspond to intuitions about the different
types of changes inflection and derivation induce.

To explore this, we train a logistic regression
classifier and a multilayer perceptron (MLP). Since
we are interested in the cross-linguistic consistency
of our four predictors, the models are not given
access to the input language or any of its typologi-
cal features. In experiments on 26 languages2 (in-
cluding five from non-Indo-European families) and
2,772 constructions, we find that both models are
able to predict with high accuracy whether a held-
out construction is listed as inflection or derivation
in UniMorph (86% and 90%, respectively, for the
two models, compared to a majority-class baseline
of 57%). We additionally find that our distribu-
tional measures alone are more predictive than our
formal ones, and our variability measures alone
are more predictive than our magnitude ones; still,
combining all four features yields the best results.

We also identify how prototypical various cate-
gories of inflections are in terms of our measures.
We determine that inherent inflectional meanings

2cat, ces, dan, deu, eng, ell, fin, fra, gle, hun, hye,
ita, kaz, lat, lav, mon, nob, nld, pol, por, ron, rus, spa,
swe, tur, ukr
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Figure 1: Our two most predictive measures for in-
flectional and derivational constructions in UniMorph.
While these measures can be used to correctly classify
84% of UniMorph constructions, they display a clearly
gradient mapping onto the categories.

are particularly likely to be classified as derivation
by our model, in line with Booij’s (1996) charac-
terisation of inherent inflection as non-canonical.

We provide initial evidence about non-Indo-
European languages, obtaining 82% accuracy com-
pared to 91% for Indo-European languages. While
still indicating generalisation, this suggests that the
application of the inflection–derivation distinction
to non-Indo-European languages may be less con-
sistent as suggested by Haspelmath (in press). For
example, Turkish is a highly agglutinative language
with, in traditional descriptions, an exceptionally
rich inflectional system—reflected by an extremely
large number of inflectional constructions and rel-
atively small number of derivations in our dataset.
Our classifier over-uses the label derivation for this
language, suggesting a degree of mis-alignment
with the way linguists typically operationalise in-
flection and derivation in this language.

Nevertheless, together these results provide
large-scale cross-linguistic evidence that, despite
the apparent difficulty in designing diagnostic tests
for inflection and derivation, these concepts are nev-
ertheless associated with distinct and measurable
formal and distributional signatures that behave
consistently across a variety of languages. Fur-
ther analysis of our results does not, however, sup-
port the view of these concepts as clearly discrete
categories. While our measures largely discrimi-
nate inflection and derivation, we still find many
constructions near the model’s decision boundary
between the two categories, indicating a gradient,
rather than categorical, distinction (Figure 1).
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Brian Leonard, Garrett Nicolai, Kyle Gorman, Yusti-
nus Ghanggo Ate, Maria Ryskina, Sabrina Mielke,
Elena Budianskaya, Charbel El-Khaissi, Tiago Pi-
mentel, Michael Gasser, William Abbott Lane,
Mohit Raj, Matt Coler, Jaime Rafael Montoya
Samame, Delio Siticonatzi Camaiteri, Esaú Zu-
maeta Rojas, Didier López Francis, Arturo Once-
vay, Juan López Bautista, Gema Celeste Silva Vil-
legas, Lucas Torroba Hennigen, Adam Ek, David
Guriel, Peter Dirix, Jean-Philippe Bernardy, An-
drey Scherbakov, Aziyana Bayyr-ool, Antonios
Anastasopoulos, Roberto Zariquiey, Karina Sheifer,
Sofya Ganieva, Hilaria Cruz, Ritván Karahóǧa,
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Transformer-based language models (LMs) offer
superior performance in a wide range of NLP tasks
compared to previous paradigms. However, the
vast majority of the world’s languages do not have
adequate training data available for monolingual
LMs (Joshi et al., 2020). Multilingual LMs like
mBERT (Devlin et al., 2019) and XLM-RoBERTa
(Conneau et al., 2020) offer a solution to this state
of affairs, and their joint pretraining on data taken
from a large set of languages results in surprisingly
robust cross-lingual representations (Pires et al.,
2019; Wu and Dredze, 2019, 2020). This lends
them the ability to also carry out zero-shot transfer,
solving tasks in a target language without language-
specific supervision (Wu and Dredze, 2019; Üstün
et al., 2020, 2022).

However, multilingual LMs may struggle when
it comes to adapting to additional languages (Con-
neau et al., 2020; Pfeiffer et al., 2020; de Vries
et al., 2021). This is especially true if these lan-
guages are resource-poor (Wu and Dredze, 2020;
Rust et al., 2021; Pfeiffer et al., 2020, 2021), or
have typological characteristics unseen by the LM
during its pretraining (Üstün et al., 2020, 2022).
The performance of multilingual LMs might suffer
even on resource-rich languages due to the lack of
model capacity to adequately incorporate language-
specific parameters and vocabulary (Conneau et al.,
2020; Pfeiffer et al., 2020; Üstün et al., 2020,
2022), although some success has been achieved
with model adaptation techniques that add extra
language-specific parameters to multilingual LMs
(Houlsby et al., 2019; Pfeiffer et al., 2020; Üstün
et al., 2020, 2022).

Beyond standard training methods for multilin-
gual LMs, monolingual model adaptation tech-
niques may help to overcome the relatively low
adaptability for resource-pour languages (de Vries
et al., 2021), by adapting monolingual LMs to
closely related target languages. Ács et al. (2021)
do not find that language-relatedness is a significant

Figure 1: Gradual adaptation proceeds from the source
language to the target language through an intermediate
language in order to maximise cross-lingual transfer to
the benefit of the target language.

indicator in determining whether transfer would
work best for various Uralic languages using vari-
ous monolingual and multilingual LMs. In contrast,
de Vries et al. (2021) observe a positive correlation
between the typological similarity of the LM and
target languages and the success of transfer when
looking at Gronings and West Frisian. While these
studies reach conflicting conclusions, it is possi-
ble that differences in specific model adaptation
techniques may explain the discrepancies in their
findings; the former study fine-tunes LM weights
using training data from target languages, while the
latter retrains the lexical layer while freezing all
LM weights.

In this paper, we build upon previous work on
monolingual model adaptation, extending it in a
new, flexible, typologically-informed framework
of gradual model adaptation. Instead of directly
adapting a monolingual LM to a target language,
we propose that adaptation should take place in
multiple stages (see Figure 1), based on the insight
that cross-lingual transfer is enhanced by typologi-
cal similarity (Pires et al., 2019; Üstün et al., 2020,
2022; de Vries et al., 2021). We hypothesise that
by ensuring high typological similarity between the
languages involved throughout the gradual adapta-
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tion process, we can facilitate this transfer. Gradual
model adaptation is also informed by principles of
curriculum learning, which aims to find an ideal
ordering of training instances in order to enhance
LM learning (Bengio et al., 2009). In this case, the
instances are in fact languages, while the ordering
is based on typological similarity.

The explicit consideration of typology sets our
work apart from a majority of model adaptation
approaches that either do not consider the individ-
ual properties of languages (Pfeiffer et al., 2020,
2021; Artetxe et al., 2020; Rust et al., 2021; Bapna
and Firat, 2019), or consider solely their genealog-
ical relations (Wu and Dredze, 2020; Ács et al.,
2021; Faisal and Anastasopoulos, 2022). When it
comes to typologically informed approaches such
as Üstün et al. (2020, 2022), they typically use
features extracted from hand-crafted typological
resources such as WALS WALS (Dryer and Haspel-
math, 2013) and URIEL (Littell et al., 2017).

However, such hand-crafted typological re-
sources are typically quite coarse-grained, and fail
to represent the in-language variation in terms of
features such as word order (Ponti et al., 2019).
German, for instance, has verb-second word or-
der except for in subordinate clauses, while Hun-
garian subjects may precede or follow their verbs
depending on topicalization. While de Vries
et al. (2021) quantifies language similarity using a
lexical-phonetic measure, we opt for using struc-
tural vectors derived from counts of dependency
links (Bjerva et al., 2019). These provide a fine-
grained and data-driven measure of typology, and
we derive them from Universal Dependencies 2.11
(UD; Zeman et al., 2022).

We select our candidate languages from the Ger-
manic subset of UD, and measure pairwise cosine
similarity values between the structural vectors
of these languages (see Figure 2). We evaluate
the performance of BERT models such as English
BERT (Devlin et al., 2019), German BERT (Chan
et al., 2020), Norwegian BERT (Kummervold et al.,
2021), Danish BERT (Hvingelby et al., 2020) and
Dutch BERTje (de Vries et al., 2019) on language
modelling and POS-tagging. We use data from UD
to fine-tune LM weights on the target task, using
two languages distinct from the model language
m: besides target language t, we also use data
for an intermediate language i. Language i is se-
lected such that, in terms of cosine similarity of its
structural vector with the structural vectors of m
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Figure 2: Pairwise cosine similarities between the struc-
tural vectors of Germanic languages in UD. The struc-
tural vectors compared derive from counts of depen-
dency links following Bjerva et al. (2019).

and t, it is as close to equidistant as possible from
both. For example, if m is German (de) and t is
Norwegian (no; cosine similarity of .73), i might
be Icelandic (is; cosine similarity from German
.80 and from Norwegian 0.90) (see Figure 2). We
found the POS-tagging is close to a performance
ceiling even when fine-tuning our models on small
amounts of training data in language t. Typically
only 500 sentences are enough to reach F1-scores
of 0.85-0.95 depending on the languages involved.
This is why we aim to also evaluate our approach
on dependency parsing. Moreover, we are expand-
ing to the technique of retraining the lexical layer
as an alternative of fine-tuning LM weights.

Our main contribution is the introduction of grad-
ual model adaptation, a monolingual mdodel adap-
tation framework that is capable of incorporating
various measurements of typological similarity in
designing intermediate model adaptation steps. By
encouraging cross-lingual transfer, this approach
may lead to improved performance of LMs on
resource-poor languages. Additionally, the frame-
work of gradual model adaptation might also allow
us to assess the correlation between various – typo-
logical and non-typological – language similarity
measures, as well as the efficacy of cross-lingual
transfer.
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Matias Grioni, Loïc Grobol, Normunds Grūzı̄tis,
Bruno Guillaume, Céline Guillot-Barbance, Tunga
Güngör, Nizar Habash, Hinrik Hafsteinsson, Jan Ha-
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1 Overview and Research Question

Self-supervision has emerged as an effective
paradigm for learning representations of spoken
language from raw audio without explicit labels
or transcriptions. Self-supervised speech models,
such as wav2vec 2.0 (Baevski et al., 2020) and Hu-
BERT (Hsu et al., 2021), have shown significant
promise in improving the performance across dif-
ferent speech processing tasks. One of the main
advantages of self-supervised speech models is
that they can be pre-trained on a large sample
of languages (Conneau et al., 2020; Babu et al.,
2022), which facilitates cross-lingual transfer for
low-resource languages (San et al., 2021).

State-of-the-art self-supervised speech models
include a quantization module that transforms the
continuous acoustic input into a sequence of dis-
crete units. One of the key questions in this area
is whether the discrete representations learned via
self-supervision are language-specific or language-
universal. In other words, we ask: do the discrete
units learned by a multilingual speech model rep-
resent the same speech sounds across languages
or do they differ based on the specific language
being spoken? From the practical perspective,
this question has important implications for the
development of speech models that can general-
ize across languages, particularly for low-resource
languages. Furthermore, examining the level of
linguistic abstraction in speech models that lack
symbolic supervision is also relevant to the field of
human language acquisition (Dupoux, 2018).

2 Approach

To answer our research question, we conduct a
series of experiments with spoken language identi-
fication (SLID) as a probing task. Our intuition is
that if we can accurately predict the language of a
short speech sample (∼10 sec) from its discretized
representation, this would suggest that the model

has learned language-specific discrete units that are
unique to each language. On the other hand, a diffi-
culty in predicting the language would suggest that
the model has learned a common set of discrete
units that are shared across multiple languages.

Experimental Data. We use a balanced subset of
the Common Voice speech corpus (Ardila et al.,
2020) consisting of 16 languages that span di-
verse sub-groups within the Indo-European lan-
guage family, namely: Romance (Catalan, Por-
tuguese, French, Spanish, Italian), Germanic (Ger-
man, Dutch, Swedish, Frisian), Slavic (Ukrainian,
Russian, Polish), Celtic (Welsh, Breton), Hellenic
(Greek), and Indo-Iranian (Persian). Our language
sample exhibits a considerable degree of typolog-
ical diversity with respect to various phonologi-
cal features, including the Consonant-Vowel Ra-
tio, which is high in Russian but low in German,
French, and Swedish (Maddieson, 2013). In addi-
tion, stress location patterns are highly variable
in Russian and Spanish, but fixed in languages
such as Greek, Persian, and Welsh (Goedemans
and van der Hulst, 2013). We use ∼6.75, ∼3.75,
∼4.25 hours per each language for training, vali-
dation, and evaluation sets, respectively. A speech
sample in our study is an utterance of a few seconds
of read speech.

SLID Classifiers. For the set of languages in our
study, we obtain discrete presentations from two
pre-trained speech models: (1) monolingual En-
glish wav2vec 2.0 (W2V2), and multilingual model
XLSR-53 (XLSR) (Conneau et al., 2020). We use
the English W2V2 model to establish a comparison
with a model that did not observe the languages in
our study during pre-training.
Baseline. We use the majority class as a baseline,
which corresponds to chance performance since
our training and evaluation dataset are balanced.
Discrete Classifiers. Next, we train three different
SLID classifiers on the discretized representations
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of utterances in our study from both W2V2 and
XLSR: (1) a Naive Bayes (NB) classifier, and (2)
a linear classifier based on multi-class logistic re-
gression (LC-D), and (3) a unidirectional LSTM
(LSTM-D). NB and LC-D discard the sequential
nature of representations and view each speech
sample as a bag of discrete units. With the LSTM-
D classifier, we can examine how much we gain by
incorporating sequential information when decod-
ing the language ID from the discrete sequence.
Continuous Classifiers. To investigate the effect
of the discretization step on the extractability of
language ID information from the model represen-
tations, we need to compare to SLID classifiers
trained on continuous representations. To this end,
we train linear classifiers on the representations
from all transformer layers (after applying mean
pooling). In this abstract we focus on classifiers
trained on the output of the local convolutional en-
coder (LC-C0) and the contextualized transformer
layer that yielded highest accuracy in both model
(LC-CX). We also train a unidirectional LSTM
on the sequence of contextualized vectors (LSTM-
CX), identical to those used to train LC-CX.
Skyline. Finally, we fine-tune the pre-trained mod-
els to predict language ID to establish a reasonable
upper-bound of the performance on the SLID task.

3 Preliminary Results

Activated Discrete Units. First, we find that the
set of activated units are nearly identical across the
languages in our study, which implies that the mod-
els do not learn units that are predictable features
of the identity of the spoken language.

SLID Experiments. Table 1 shows the results of
our SLID experiments. We observe that the non-
sequential classifiers trained on discrete units (NB
and LC-D) yield only modest improvements over
the majority class baseline. This indicates that the
languages in our study exhibit similar distributions
over the discrete units. We do not observe consid-
erable differences between the monolingual W2V2
and multilingual XLSR models in this case. How-
ever, W2V2 surprisingly outperforms XLSR for the
sequential discrete classifier (LSTM-D), which in-
dicates either that the monolingual model is more
successful at approximating the languages’ phono-
tactics or that the multilingual model projects the
audio frames onto a shared discrete space where
language identity is more difficult to extract com-
pared to the monolingual model.

Classifier
Accuracy (%)

W2V2 XLSR

Baseline Majority class 6.25 6.25

Discrete
Naive Bayes 11.84 13.28

LC-D 13.89 12.78
LSTM-D 39.78 32.10

Continuous
LC-C0 22.00 22.57
LC-CX 47.04 59.54

LSTM-CX 58.70 59.80

Skyline Fine-tuned 54.96 59.72

Table 1: The performance of spoken language identifi-
cation using different classifiers.

Discrete vs. Continuous Classifiers. If we con-
sider the performance of the continuous classifiers,
we observe a higher accuracy compared to their
discrete counterparts. This demonstrates the ease
of extraction for the language ID information from
the continuous representations. Moreover, we find
that sequential models (e.g., LSTMs) trained on
the representations from a middle layers to be suc-
cessful in predicting the language ID compared to
lower and higher layers in the transformer, which
indicates the language ID information emerges as a
product of the contextualization in the transformer
block. This is evident in our results since the linear
classifier on middle layer representations (LSTM-
CX) in XLSR performs as good as the skyline fine-
tuning setting. It is worth pointing out that XLSR

has observed the languages in our study during pre-
training, which can explain the high accuracy in
predicting the language via a linear classifier from
continuous representations in the middle layers.

4 Conclusion

We summarized the findings of our experiments
whereby we investigate the nature of the discrete
units in multilingual, self-supervised speech mod-
els. We employed language identification as a prob-
ing task and demonstrated the difficulty of predict-
ing the language of an utterance from its discretized
representation. Our findings support the hypothesis
that latent, discretized speech representations in
self-supervised models correspond to sub-phonetic
events that are shared across the world’s languages,
rather than language-specific, abstract phonemic
categories.
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