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Abstract
Prior research has investigated the impact of
various linguistic features on cross-lingual
transfer performance. In this study, we inves-
tigate the manner in which this effect can be
mapped onto the representation space. While
past studies have focused on the impact on
cross-lingual alignment in multilingual lan-
guage models during fine-tuning, this study
examines the absolute evolution of the respec-
tive language representation spaces produced
by MLLMs. We place a specific emphasis on
the role of linguistic characteristics and investi-
gate their inter-correlation with the impact on
representation spaces and cross-lingual transfer
performance. Additionally, this paper provides
preliminary evidence of how these findings can
be leveraged to enhance transfer to linguisti-
cally distant languages.

1 Introduction

It has been shown that language models implicitly
encode linguistic knowledge (Jawahar et al., 2019;
Otmakhova et al., 2022). In the case of multilin-
gual language models (MLLMs), previous research
has also extensively investigated the influence of
these linguistic features on cross-lingual transfer
performance (Lauscher et al., 2020; Dolicki and
Spanakis, 2021; de Vries et al., 2022). However,
limited attention has been paid to the impact of
these factors on the language representation spaces
of MLLMs.

Despite the fact that state-of-the-art MLLMs
such as mBERT (Devlin et al., 2019) and XLM-R
(Conneau et al., 2020), use a shared vocabulary and
are intended to project text from any language into
a language-agnostic embedding space, empirical
evidence has demonstrated that these models en-
code language-specific information across all lay-
ers (Libovický et al., 2020; Gonen et al., 2020).
This leads to the possibility of identifying dis-
tinct monolingual representation spaces within the
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shared multilingual representation space (Chang
et al., 2022).

Past research has focused on the cross-linguality
of MLLMs during fine-tuning, specifically looking
at the alignment of representation spaces of dif-
ferent language pairs (Singh et al., 2019; Muller
et al., 2021). Our focus, instead, is directed towards
the absolute impact on the representation space of
each language individually, rather than the relative
impact on the representation space of a language
compared to another one. Isolating the impact for
each language enables a more in-depth study of
the inner modifications that occur within MLLMs
during fine-tuning. The main objective of our study
is to examine the role of linguistic features in this
context, as previous research has shown their im-
pact on cross-lingual transfer performance. More
specifically, we examine the relationship between
the impact on the representation space of a target
language after fine-tuning on a source language and
five different language distance metrics. We have
observed such relationships across all layers with a
trend of stronger correlations in the deeper layers
of the MLLM and significant differences between
language distance metrics.

Additionally, we observe an inter-correlation
among language distance, impact on the represen-
tation space and transfer performance. Based on
this observation, we propose a hypothesis that may
assist in enhancing cross-lingual transfer to linguis-
tically distant languages and provide preliminary
evidence to suggest that further investigation of our
hypothesis is merited.

2 Related Work

In monolingual settings, Jawahar et al. (2019)
found that, after pre-training, BERT encodes differ-
ent linguistic features in different layers. Merchant
et al. (2020) showed that language models do not
forget these linguistic structures during fine-tuning
on a downstream task. Conversely, Tanti et al.
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(2021) have shown that during fine-tuning in mul-
tilingual settings, mBERT forgets some language-
specific information, resulting in a more cross-
lingual model.

At the representation space level, Singh et al.
(2019) and Muller et al. (2021) studied the im-
pact of fine-tuning on mBERT’s cross-linguality
layer-wise. However, their research was limited
to the evaluation of the impact on cross-lingual
alignment comparing the representation space of
one language to another, rather than assessing the
evolution of a language’s representation space in
isolation.

3 Methodology

3.1 Experimental Setup
In this paper, we focus on the effect of
fine-tuning on the representation space
of the 12-layer multilingual BERT model
(bert-base-multilingual-cased). We restrict
our focus on the Natural Language Inference
(NLI) task and fine-tune on all 15 languages of the
XNLI dataset (Conneau et al., 2018) individually.
We use the test set to evaluate the zero-shot
cross-lingual transfer performance, measured
as accuracy, and to generate embeddings that
define the representation space of each language.
More details on the training process and its
reproducibility are provided in Appendix A.

3.2 Measuring the Impact on the
Representation Space

We focus on measuring the impact on a language’s
representation space in a pre-trained MLLM dur-
ing cross-lingual transfer. We accomplish this
by measuring the similarity of hidden represen-
tations of samples from different target languages
before and after fine-tuning in various source lan-
guages. For this purpose, we use the Centered
Kernel Alignment (CKA) method (Kornblith et al.,
2019)1. When using a linear kernel, the CKA score
of two representation matrices X ∈ RN×m and
Y ∈ RN×m, where N is the number of data points
and m is the representation dimension, is given by

CKA(X,Y ) = 1− ∥XY ⊺∥2F
∥XX⊺∥F ∥Y Y ⊺∥F

where ∥·∥F is the Frobenius norm.

1CKA is invariant to orthogonal transformations and thus
allows to reliably compare isotropic but language-specific
subspaces (Chang et al., 2022).

Notation We define H i
S→T ∈ RN×m as the hid-

den representation2 of N samples from a target
language T at the i-th attention layer of a model
fine-tuned in the source language S, where m is
the hidden layer output dimension. Similarly, we
denote the hidden representation of N samples
from language L at the i-th attention layer of a
pre-trained base model (i.e. before fine-tuning) as
H i

L ∈ RN×m. More specifically, the representa-
tion space of each language will be represented by
the stacked hidden states of its samples.

We define the impact on the representation space
of a target language T at the i-th attention layer
when fine-tuning in a source language S as follows:

Φ(i)(S, T ) = 1− CKA
(
H i

T , H
i
S→T

)

3.3 Measuring Language Distance

In order to quantify the distance between languages
we use three types of typological distances, namely
the syntactic (SYN), geographic (GEO) and in-
ventory (INV) distance, as well as the genetic
(GEN) and phonological (PHON) distance between
source and target language. These distances are
pre-computed and are extracted from the URIEL
Typological Database (Littell et al., 2017) using
lang2vec3. For our study, such language distances
based on aggregated linguistic features offer a more
comprehensive representation of the relevant lan-
guage distance characteristics. More information
on these five metrics is provided in Appendix B.

4 Correlation Analysis

Relationship Between the Impact on the Repre-
sentation Space and Language Distance. Given
the layer-wise differences of mBERT’s cross-
linguality (Libovický et al., 2020; Gonen et al.,
2020), we measure the correlation between the im-
pact on the representation space and the language
distances across all layers. Figure 1 shows almost
no significant correlation between representation
space impact and inventory or phonological dis-
tance. Geographic and syntactic distance mostly
show significant correlation values at the last layers.
Only the genetic distance correlates significantly
across all layers with the impact on the representa-
tion space.

2We refer here to the hidden representation of the [CLS]
token which is commonly used in BERT for classification
tasks.

3https://github.com/antonisa/lang2vec
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SYN GEO INV GEN PHON
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AVG
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r
-0.176* -0.222** 0.016 -0.19** -0.186**

-0.1 -0.104 0.021 -0.197** -0.067

-0.073 0.054 -0.03 -0.14* 0.005

0.051 -0.143* -0.055 -0.282** -0.027

0.159* -0.105 -0.028 -0.251** 0.068

0.074 -0.118 0.014 -0.202** 0.019

-0.001 -0.148* -0.002 -0.222** -0.007

-0.068 -0.093 -0.015 -0.195** -0.035

-0.107 -0.151* 0.001 -0.245** -0.051

-0.184** -0.168* 0.033 -0.279** -0.034

-0.262** -0.175* 0.032 -0.326** -0.066

-0.17* -0.167* 0.032 -0.291** -0.047

-0.091 -0.177* 0.003 -0.307** -0.045

Figure 1: Pearson correlation coefficient between the
impact on a target language’s representation space
when fine-tuning in a source language and different
types of linguistic distances between the source and
target language for each layer. Same source-target
language pair data points were excluded in order to
prevent an overestimation of effects. (∗p < 0.05, and
∗∗p < 0.01, two-tailed).

Relationship Between Language Distance and
Cross-Lingual Transfer Performance. Table 1
shows that all distance metrics correlate with cross-
lingual transfer performance, which is consistent
with the findings of Lauscher et al. (2020). Further-
more, we note that the correlation strengths align
with the previously established relationship be-
tween language distance and representation space
impact, with higher correlation values observed for
syntactic, genetic, and geographic distance than for
inventory and phonological distance. The exact
zero-shot transfer results are provided in Figure 3
in Appendix C.

Pearson Spearman
SYN −0.3193∗∗ −0.4683∗∗

GEO −0.3178∗∗ −0.3198∗∗

INV −0.1706∗ −0.1329∗

GEN −0.3364∗∗ −0.3935∗∗

PHON −0.2075∗∗ −0.2659∗∗

Table 1: Pearson and Spearman correlation coefficients
quantifying the relationship between zero-shot cross-
lingual transfer performance and different language
distance metrics. (∗p < 0.05, and ∗∗p < 0.01, two-
tailed).

Relationship Between the Impact on the Rep-
resentation Space and Cross-Lingual Transfer
Performance. In general, cross-lingual transfer
performance clearly correlates with impact on the
representation space of the target language, but this
correlation tends to be stronger in the deeper layers
of the model (Table 2).

Layer Pearson Spearman
1 0.2779∗ 0.3233∗

2 0.2456∗ 0.2639∗

3 0.5277∗ 0.5926∗

4 0.3585∗ 0.3411∗

5 −0.009 0.0669
6 0.1033 0.1969
7 0.2945∗ 0.3500∗

8 0.3004∗ 0.3517∗

9 0.4209∗ 0.4583∗

10 0.6088∗ 0.6532∗

11 0.7110∗ 0.7525∗

12 0.5731∗ 0.5901∗

All 0.4343∗ 0.5026∗

Table 2: Pearson correlation coefficients between
cross-lingual transfer performance and the impact
on the representation space of the target language.
(∗p < 0.01, two-tailed).

5 Does Selective Layer Freezing Allow to
Improve Transfer to Linguistically
Distant Languages?

In the previous section we observed an inter-
correlation between cross-lingual transfer perfor-
mance, the linguistic distance between the target
and source language, and the impact on the rep-
resentation space. Given this observation, we in-
vestigate the possibility to use this information to
improve transfer to linguistically distant languages.
More specifically, we hypothesize that it may be
possible to regulate cross-lingual transfer perfor-
mance by selectively interfering with the previ-
ously observed correlations at specific layers. A
straightforward strategy would be to selectively
freeze layers, during the fine-tuning process, where
a significant negative correlation between the im-
pact on their representation space and the distance
between source and target languages has been ob-
served. By freezing a layer, we manually set the
correlation between the impact on the representa-
tion space and language distance to zero, which
may simultaneously reduce the significance of the
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Exp. Frozen
Layers SYN GEO INV GEN PHON CLTP

-0.7354 -0.5109 -0.4907 -0.6116 -0.5776 66.70

A {2} -0.7310 -0.5109 -0.4791 -0.6009 -0.5791 66.53

B {5} -0.7438 -0.5053 -0.4897 -0.6148 -0.5896 66.77

C {1,2,6} -0.7325 -0.5000 -0,4846 -0.6065 -0.5666 66.75

Table 3: Pearson correlation coefficients quantifying the relationship between cross-lingual transfer performance
and different language distance metrics after freezing different layers during fine-tuning. The first row contains
baseline values for full-model fine-tuning. The last column provides the average cross-lingual transfer performance
(CLTP), measured as accuracy, across all target languages. English has been the only source language.

correlation between language distance and transfer
performance.

Wu and Dredze (2019) already showed that
freezing early layers of mBERT during fine-tuning
may lead to increased cross-lingual transfer per-
formance. With the same goal in mind, Xu et al.
(2021) employ meta-learning to select layer-wise
learning rates during fine-tuning. In what follows,
we will, however, not focus on pure overall trans-
fer performance. Our approach is to specifically
target transfer performance improvements for tar-
get languages that are linguistically distant from
the source language, rather than trying to achieve
equal transfer performance increases for all target
languages.

5.1 Experimental Setup

For our pilot experiments, we focus on English as
the source language. Additionally, we choose to
carry out our pilot experiments on layers 1, 2, 5,
and 6, as the representation space impact at these
layers exhibits low correlation values with transfer
performance (Table 2) and high correlations with
different language distances (Figure 2 in Appendix
C). This decision is made to mitigate the potential
impact on the overall transfer performance, which
could obscure the primary effect of interest, and
to simultaneously target layers which might be re-
sponsible for the transfer gap to distant languages.
We conduct 3 different experiments aiming to reg-
ulate correlations between specific language dis-
tances and transfer performance. In an attempt to
diversify our experiments, we aim to decrease the
transfer performance gap for both a single language
distance metric (Experiment A) and multiple dis-
tance metrics (Exp. C). Furthermore, in another
experiment we aim at deliberately increasing the
transfer gap (Exp. B).

5.2 Results
Table 3 provides results of all 3 experiments.

Experiment A. The 2nd layer shows a strong
negative correlation (-0.66) between representation
space impact and inventory distance to English.
Freezing the 2nd layer during fine-tuning has led
to a less significant correlation between inventory
distance and transfer performance (+0.0116).

Experiment B. The 5th layer shows a strong
positive correlation (0.499) between representation
space impact and phonological distance to English.
Freezing the 5th layer during fine-tuning has led to
a more significant correlation between phonologi-
cal distance and transfer performance (-0.012).

Experiment C. The 1st layer, 2nd layer and
6th layer show a strong negative correlation be-
tween the impact on the representation space
and the syntactic (-0.618), inventory (-0.66) and
phonological (-0.543) distance to English, respec-
tively. Freezing the 1st, 2nd and 6th layer during
fine-tuning has led to a less significant correlation
of transfer performance with syntactic (+0.0029)
and phonological (+0.011) distance.

6 Conclusion

In previous research, the effect of fine-tuning on a
language representation space was usually studied
in relative terms, for instance by comparing the
cross-lingual alignment between two monolingual
representation spaces before and after fine-tuning.
Our research, however, focused on the absolute im-
pact on the language-specific representation spaces
within the multilingual space and explored the re-
lationship between this impact and language dis-
tance. Our findings suggest that there is an inter-
correlation between language distance, impact on
the representation space, and transfer performance
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which varies across layers. Based on this finding,
we hypothesize that selectively freezing layers dur-
ing fine-tuning, at which specific inter-correlations
are observed, may help to reduce the transfer per-
formance gap to distant languages. Although our
hypothesis is only supported by three pilot experi-
ments, we anticipate that it may stimulate further
research to include an assessment of our hypothe-
sis.

Limitations

It is important to note that the evidence presented in
this paper is not meant to be exhaustive, but rather
to serve as a starting point for future research. Our
findings are based on a set of 15 languages and a
single downstream task and may not generalize to
other languages or settings. Additionally, the pro-
posed hypothesis has been tested through a limited
number of experiments, and more extensive stud-
ies are required to determine its practicality and
effectiveness.

Furthermore, in our study, we limited ourselves
to using traditional correlation coefficients, which
are limited in terms of the relationships they can
capture, and it is possible that there are additional
correlations that could further strengthen our re-
sults and conclusions.

Ethics Statement

This study was designed to minimize its environ-
mental impact by reducing the amount of required
computational resources to run our experiments.
We are aware of the high energy consumption and
carbon footprint associated with large-scale ma-
chine learning experiments and took steps to mini-
mize these impacts.

Additionally, in this study, our objective was to
address the performance gap in languages that are
underrepresented in comparison to high-resource
languages, rather than solely striving for perfor-
mance enhancement.
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A Technical Details

A.1 Data

We perform our experiments on the XNLI (Con-
neau et al., 2018) dataset4. The dataset contains
392.702 train, 2.490 validation and 5.010 test
samples, derived from the English-only MultiNLI
(Williams et al., 2018), which have been translated
to Arabic (ar), Bulgarian (bg), German (de), Greek
(el), Spanish (es), French (fr), Hindi (hi), Russian
(ru), Swahili (sw), Thai (th), Turkish (tr), Urdu (ur),
Vietnamese (vi) and Chinese (zh). The objective
of the dataset is to evaluate a model’s capability of
classifying the relationship between two sentences,
namely a premise and a hypothesis, as entailment,
contradiction, or neutral.

The dataset has been released under a Creative
Commons Attribution Non Commercial 4.0 Inter-
national5 license (CC BY-NC 4.0).

A.2 Model

We use the base cased multilingual BERT (Devlin
et al., 2019) model, which has 12 attention heads
and 12 transformer blocks with a hidden size of
768. The dropout probability is 0.1. The model has
110M parameters and covers 104 languages. Its
vocabulary size is about 120k.

A.3 Training

We fine-tune the models using the HuggingFace
Transformers (Wolf et al., 2020) and PyTorch
(Paszke et al., 2019) frameworks. We use AdamW
(Loshchilov and Hutter, 2019) as an optimizer, with
β1 = 0.9, β2 = 0.999, ϵ = 1e−8. We train for 3
epochs with a batch size of 32 and an initial learn-
ing rate of 2e−5 with linear decay. Full model fine-
tuning on a single language took about 2.5 hours on
a single NVIDIA® V100 GPU. Total GPU hours
for all 18 fine-tuned models (15 and 3 in Sections
4 and 5 respectively was about 45 hours.

In order to minimize computational costs and
reduce our environmental impact, we chose not to
conduct a full hyper-parameter search and instead
used the fixed values reported in Section 3.1.

For reproducibility, our code is provided
here: https://anonymous.4open.science/r/
sigtyp2023_workshop_paper-223F.

4https://github.com/facebookresearch/XNLI
5https://creativecommons.org/licenses/by-nc/4.

0/

B Additional Information on Language
Distance Metrics

We used the following lang2vec distances:

1. Syntactic Distance is the cosine distance be-
tween the syntax feature vectors of languages,
sourced from the World Atlas of Language
Structures.6 (WALS) (Dryer and Haspelmath,
2013), Syntactic Structures of World Lan-
guages7 (SSWL) (Collins and Kayne, 2011)
and Ethnologue8 (Lewis et al., 2015).

2. Geographic Distance refers to the shortest
distance between two languages on the sur-
face of the earth’s sphere, also known as the
orthodromic distance.

3. Inventory Distance is the cosine distance be-
tween the inventory feature vectors of lan-
guages, sourced from the PHOIBLE9 database
(Moran et al., 2019).

4. Genetic Distance is based on the Glottolog10

(Hammarström et al., 2015) tree of language
families and is obtained by computing the dis-
tance between two languages in the tree.

5. Phonological Distance is the cosine distance
between the phonological feature vectors of
languages, sourced from WALS and Ethno-
logue.

The values range from 0 to 1, where 0 indicates
the minimum distance and 1 indicates the maxi-
mum distance.

C Additional Figures

Figure 2 provides Pearson correlation coefficients
between the impact on the target language repre-
sentation space when fine-tuning in English and
different types of linguistic distances between
English and the target language for each layer.
English-English data points were excluded in order
to prevent an overestimation of effects.

Figure 3 contains the cross-lingual zero-shot
transfer results. The numbers illustrated in the
figure represent accuracies.

6https://wals.info
7http://sswl.railsplayground.net/
8https://www.ethnologue.com/
9https://phoible.org/

10https://glottolog.org
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-0.244 -0.116 -0.261 0.02 -0.543*

0.142 -0.109 -0.66* 0.174 0.015

-0.413 -0.148 -0.103 -0.33 0.208

-0.165 -0.254 -0.285 -0.373 0.17

0.012 0.126 0.137 -0.088 0.499

-0.618* 0.031 0.011 -0.307 -0.019

-0.719** -0.275 -0.07 -0.386 -0.32

-0.731** -0.301 0.014 -0.334 -0.338

-0.713** -0.307 0.137 -0.295 -0.366

-0.654* -0.194 0.281 -0.246 -0.269

-0.586* -0.256 0.276 -0.262 -0.285

-0.594* -0.294 0.289 -0.316 -0.37

-0.719** -0.282 0.054 -0.337 -0.306

Figure 2: Pearson correlation coefficients between the impact on the representation space and different types of
linguistic distances (with English as the only source language). (∗p < 0.05, and ∗∗p < 0.01, two-tailed).
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71.20 69.52 69.74 67.49 75.91 72.44 71.72 61.48 69.54 50.16 52.04 62.73 59.16 70.28 69.92 66.22

65.59 76.51 71.64 67.96 76.99 73.33 72.83 62.50 71.86 49.76 53.89 62.26 59.48 71.50 70.24 67.09

67.23 71.22 76.63 69.06 78.84 75.39 74.31 64.27 71.02 49.34 57.19 63.95 62.50 71.46 71.94 68.29

66.33 69.90 70.36 74.97 75.87 73.77 71.68 61.86 69.84 51.84 56.65 62.50 60.20 70.56 70.04 67.09

65.35 69.48 71.50 66.51 82.79 75.01 73.83 60.92 69.54 50.18 54.73 61.62 58.64 70.96 69.44 66.70

66.13 71.30 72.16 69.00 79.24 78.04 74.93 62.75 71.36 50.26 54.91 63.01 60.00 72.32 71.40 67.79

66.19 70.74 72.32 68.90 79.48 75.57 77.39 62.06 70.32 51.34 54.55 63.07 60.32 70.86 70.60 67.58

64.27 68.34 69.40 66.97 72.26 71.26 70.52 67.09 68.28 49.22 55.03 62.79 63.31 69.44 70.04 65.88

67.15 72.10 71.64 68.58 78.28 74.25 73.75 63.11 74.57 49.88 56.09 64.09 60.50 71.20 72.20 67.83

62.14 62.89 67.41 64.47 74.29 69.14 68.68 56.61 64.67 66.23 51.04 58.40 56.05 66.33 66.03 63.62

61.14 65.27 64.53 63.27 68.66 66.93 66.85 56.15 64.21 49.96 65.69 56.23 54.71 66.19 65.75 62.37

65.29 67.78 69.76 66.15 73.39 71.56 70.16 62.30 67.64 51.02 56.31 71.16 59.66 68.92 68.96 66.00

59.50 63.83 64.33 62.24 68.10 65.11 64.41 61.56 64.99 45.01 49.26 57.84 62.65 63.79 65.67 61.22

65.49 69.46 70.40 67.49 76.61 73.53 72.42 61.96 70.06 49.76 57.41 61.74 60.22 75.13 71.92 66.90

65.45 69.30 70.38 67.21 76.79 73.03 72.65 63.29 70.74 48.54 56.29 63.07 60.74 71.28 76.15 66.99

65.23 69.18 70.15 67.35 75.83 72.56 71.74 61.86 69.24 50.83 55.40 62.30 59.88 70.01 70.02

Figure 3: Cross-lingual zero-shot transfer results for XNLI
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