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1 Introduction

Multilingual language models share a single set
of parameters between many languages, opening
new pathways for multilingual and low-resource
NLP. However, not all training languages have an
equal amount, or a comparable quality (Kreutzer
et al., 2022), of training data in these models. In
this paper, we investigate if the hegemonic status of
English influences other languages in multilingual
language models. We propose a novel method for
evaluation, whereby we ask if model predictions
for lower-resource languages exhibit structural fea-
tures of English. This is similar to asking if the
model has learned some languages with an “En-
glish accent”, or an English grammatical structure
bias.

We demonstrate this bias effect in Spanish and
Greek, comparing the monolingual models BETO
(Cafiete et al., 2020) and GreekBERT (Koutsikakis
et al., 2020) to multilingual BERT (mBERT),
where English is the most frequent language in
the training data. We show that mBERT prefers
English-like sentence structure in Spanish and
Greek compared to the monolingual models. Our
case studies focus on Spanish pronoun drop (pro-
drop) and Greek subject-verb order, two structural
grammatical features. We show that multilingual
BERT is structurally biased towards explicit pro-
nouns rather than pro-drop in Spanish, and subject-
before-verb order in Greek: the structural forms
parallel to English.

The effect we showcase here demonstrates the
type of fluency that can be lost with multilingual
training — something that current evaluation meth-
ods miss. Our proposed method can be expanded,
without the need for manual data collection, to any
language with a syntactic treebank and a mono-
lingual model. Since our method focuses on fine-
grained linguistic features, some expert knowledge
of the target language is necessary for evaluation.

Our work builds off of a long literature on mul-
tilingual evaluation which has until now mostly
focused on downstream classification tasks (Con-
neau et al., 2018; Ebrahimi et al., 2022; Clark
et al., 2020; Liang et al., 2020; Hu et al., 2020;
Raganato et al., 2020; Li et al., 2021). With the
help of these evaluation methods, research has
pointed out the problems for both high- and low-
resource languages that come with adding many
languages to a single model (Wang et al., 2020;
Turc et al., 2021; Lauscher et al., 2020, inter alia),
and proposed methods for more equitable models
(Ansell et al., 2022; Pfeiffer et al., 2022; Ogueji
et al., 2021; Ogtnrémi and Manning, 2023; Virta-
nen et al., 2019; Liang et al., 2023, inter alia). We
hope that our work can add to these analyses and
methodologies by pointing out issues beyond down-
stream classification performance that can arise
with multilingual training, and aid towards building
and evaluating more equitable multilingual models.

2 Method

Our method relies on finding a variable construc-
tion in the target language which can take two struc-
tural surface forms: one which is parallel to English
(Sparalier) and one which is not (Sgifferen). Surface
forms parallel to English are those which mirror
English structure.

Once we have identified such a construction in
our target language, we can ask: are multilingual
models biased towards Spararie1? We can use syntac-
tic treebank annotations to pick out sentences that
exhibit the structures Sparaliel OF Sgifferent> and put
these extracted sentences into two corpora, Cparaue]
and Clifrerent. We then calculate a ratio ryege1 for
each model: the average probability of a sentence
in Cparattel divided by the average probability of a
sentence in Cgifferent according to the model. Our
experimental question then boils down to asking if
rmu1ti 1S significantly larger than ryen,. To get an
estimation of Ppoge1 (), We can extract the prob-
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Figure 1: Results from our experiment on the Spanish
GSD treebank, along with two examples from the tree-
bank to illustrate Sparaier (With pronoun) and Siitferent
(pro-drop). Error bars represent 95% bootstrap confi-
dence intervals.

ability of one word w in each sentence that best
represents the construction, and approximate the
probability of x with P(w,|z). Using a carefully
chosen word as a proxy for the probability of a con-
struction is a methodological choice also made in
reading time psycholinguistics experiments (Levy
and Keller, 2013).

2.1 Case Study: Spanish Pro-drop

For our Spanish case study, we examine the feature
of whether the subject pronoun is realized. In Span-
ish, the subject pronoun is often dropped: person
and number are mostly reflected in verb conjuga-
tion, so the pronoun is realized or dropped depend-
ing on semantic and discourse factors. English, on
the other hand, does not allow null subjects except
in rare cases, even adding expletive syntactic sub-
jects as in “it is raining”. We extract Cparayier (With
subject pronoun) and Cligferent (dropepd subject pro-
noun) from the Spanish GSD treebank (De Marn-
effe et al., 2021). We take all sentences with a
pronoun dependent of the root verb and add them
t0 Chparallel (283 sentences) and all sentences where
there is no nsubj relation to root verb and add them
to Clifferent (2,656 sentences), ignoring some con-
founder constructions. We always pick the main
root verb of the sentence as our logit word w.

2.2 Case Study: Greek Subject-Verb order

For our Greek case study, we examine the feature
of Subject-Verb order. English is a fixed word or-
der language: with few exceptions, the order of
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Figure 2: Results from our experiment on the Greek De-
pendency Treebank, along with two examples from the
treebank to illustrate Sparaner (Subject-Verb) and Sgifferent
(Verb-Subject). Error bars represent 95% bootstrap con-
fidence intervals.

a verb and its arguments is Subject-Verb-Object.
Greek, on the other hand, has mostly free word
order (Mackridge, 1985), meaning that the verb
and arguments can appear in any order that is most
appropriate given discourse context. For our ex-
periment, we define Sparaitel to be cases in Greek
when the subject precedes the verb, as is the rule
in English. Sgifferent 1S then the cases when the verb
precedes the subject, which almost never happens
in English. We extract Cparane] (Subject-Verb order,
1,446 sentences) and Cyigrerent (Verb-Subject order,
425 sentences) from the Greek Dependency Tree-
bank (Prokopidis and Papageorgiou, 2017). We
define w to be the first element of the subject and
verb: This first element is closer to the surround-
ing context, and so gives us a word-order-sensitive
measurement of how the subject-verb construction
is processed within the context.

3 Results

Results are shown in Figures 1 and 2, showing for
both of our case studies that multilingual BERT
has a greater propensity for preferring English-
like sentences which exhibit Sparaiel. Multilingual
BERT significantly prefers pronoun sentences over
pro-drop compared with monolingual BETO (boot-
strap sampling, p < 0.05), and significantly prefers
subject-verb sentences over verb-subject sentences
over GreekBERT (bootstrap sampling, p < 0.05).
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