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Abstract

While the deep learning revolution has led
to significant performance improvements in
speech recognition, accented speech remains
a challenge. Current approaches to this chal-
lenge typically do not seek to understand and
provide explanations for the variations of ac-
cented speech, whether they stem from native
regional variation or non-native error patterns.
This paper seeks to address non-native speaker
variations from both a knowledge-based and a
data-driven perspective. We propose to approx-
imate non-native accented-speech pronuncia-
tion patterns by the means of two approaches:
based on phonetic and phonological knowledge
on the one hand and inferred from a text-to-
speech system on the other. Artificial speech is
then generated with a range of variants which
have been captured in confusion matrices rep-
resenting phoneme similarities. We then show
that non-native accent confusions actually prop-
agate to the transcription from the ASR, thus
suggesting that the inference of accent specific
phoneme confusions is achievable from artifi-
cial speech.

1 Introduction

Automatic speech recognition (ASR) systems,
while achieving high levels of performance on US-
accented English, still struggle to handle accents
for which they have not been trained (Hinsvark
et al., 2021). Thus, accent robustness is an im-
portant challenge for the field of speech recogni-
tion, especially since such systems have become
widespread and are used worldwide.

Various approaches have been tried to build
accent-robust ASR systems. The most straightfor-
ward one, building accent-specific models, is lim-
ited because of the low availability of data for most
accents which are mostly not well sourced. The
lack of sourced data for training and testing makes
the task of recognising accented speech extremely
difficult. This lack of data is mainly due to the wide
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diversity of accents (native and non-native) leading
to the complexity of recording enough examples
for each, and the difficulty of accurately labelling
and transcribing speech data.

Some attempts to overcome both lack of data
and accent robustness have been proposed. These
include multi-task training (Ghorbani and Hansen,
2018; Yang et al., 2018; Viglino et al., 2019), fea-
tures adaptation (Gong et al., 2021) or adversarial
training (Sun et al., 2018). However, these meth-
ods do not completely solve the problem of the
lack of data, as data would still be needed for test-
ing. Instead, generating artificial speech data seems
promising, as data augmentation has been proven
to be efficient for improving the recognition of ac-
cented speech (Fukuda et al., 2018), and the use
of artificial data has been around for some time
(Goronzy et al., 2004; Ueno et al., 2021).

This paper investigates the extent to which artifi-
cial speech data can be used to infer accent-related
phoneme confusions. We do this by using an oft-
the-shelf speech synthesis system, in this case Mi-
crosoft Azure TTS!, to synthesise artificially ac-
cented speech data and then using the Wav2Vec 2.0
ASR (Baevski et al., 2020), to produce a confusion
matrix for this data. This matrix is then been ex-
amined and compared to other confusion matrices,
in order to evaluate its relevance in representing a
particular accent. In this paper, we focus on non-
native accents, although the same study could have
been applied to native accents.

The remainder of the paper is structured as fol-
lows. Section 2 discusses related work. Section 3
describes the process of generating accent related
phoneme confusions for artificial accented speech.
In sections 4 and 5, we compare the confusions
obtained with alternative methods and discuss the
extent to which text-to-speech systems can capture
accent related phoneme confusions.
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2 Related Work

Recent approaches for automatic speech recog-
nition use end-to-end deep neural networks,(e.g.
CTC-based, transformer-based and attention-based
models) and have been really successful for this
task. Commercial options exhibit extremely high
performance; however, none of them achieve the
same performance on accented speech. Attempts to
improve end-to-end ASR performance on accented
speech have had mixed results, and rely mainly
on the training process. Indeed, the complexity of
these architectures makes the understanding of the
actual learning process difficult, if not impossible,
and leads to an increasing need for explainability.
This challenge has been the focus of a number of
studies. Scharenborg et al. (2019) highlight the
link between linguistic representations of speech
and deep learning representation clusters. English
et al. (2022) look to investigate in more detail the
utility of attention layers, which is used in recent
ASR systems. In the test community, Asyrofi et al.
(2021) have proposed a testing framework for ASR
systems. The work presented in this paper aligns
with the goals of these approaches.

Accents are defined as variation in phoneme real-
isation due to several factors such as geographical
location. In the case of non-native accents, which
is the focus of this paper, the differences in pronun-
ciation compared to the native language (L.1) come
mainly from the differences that exist between the
phonetic rules of the native language and those of
the target language (L2) (Flege, 1995). Thus, many
pronunciation difficulties are due to phonological
transfer - which involves applying L1 rules to L2
pronunciation - are linked to the non-existence of
certain L2 characteristics in the L1, and result from
discrepancies between the phonetic systems of the
two languages. These challenges may include dif-
ficulties in producing and perceiving specific seg-
mentals (Olsen, 2012) - like phonemes, consonant
clusters, vowels - or suprasegmentals (Trofimovich
and Baker, 2006) - like stress patterns, rhythm and
intonation patterns - that are present in the L2 but
absent or different in the L1.

Thus, non-native speakers commonly tend to ap-
proximate the pronunciation of phonemes which
do not exist in their native language, by known
ones they perceive as similar, as showed by Ste-
fanich and Cabrelli (2021). For instance, pronounc-
ing the English phoneme [8] - corresponding to
the grapheme sequence “th” as in “those” - as the
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French phonemes [z] or [d] is common amongst
French people when speaking English (Capliez,
2011), since [8] is not a phoneme of French (In-
ternational Phonetic Association, 1999). While
this is a very simplified version of the concept of
accent, which does not include phenomena such
as prosodic or phonotactic constraints, we focus
in this paper on that definition of an accent, i.e.
as the replacement of L2-but-not-L1 phonemes by
L1 phonemes. This paradigmatic definition is in-
tended to evolve into a more complete definition
to include the syntagmatic and suprasegmental as-
pects in future work.

In order to understand the way in which non-
native speakers switch from a phoneme of the tar-
get language (L2) to another phoneme of their
native language (L1), we need to characterise
phonemes and define what similarity between
phonemes means. Several phonetic-based feature
systems have been proposed to describe the spe-
cific phonemes of a language. Chomsky and Halle
(1968) proposed a system to analyse the phono-
logical structure of a language from a generative
perspective. They described phonemes through bi-
nary features, organised along major features (that
distinguish vowels from consonants), place of artic-
ulation, manner of articulation and source features
(like voicing). Since then, multiple phonological
feature sets have been proposed and have been used
to capture similarities between phoneme classes.

This description of phonemes with features al-
low us to calculate their similarity using distance
metrics such as Jaccard index (as defined in Equa-
tion 1, the Jaccard index between two sets U and
V), that can easily be used as a similarity measure
between phonemes, assuming that they are repre-
sented by their binary features. However, while it
is a simple similarity to implement as baseline for
the work presented in this paper, this measure is
not satisfactory in the sense that all features have
the same weight and, therefore, it does not take
into account the difference in distance between the
phonetic realisation of two features. Furthermore,
it is only an a priori knowledge-based similarity,
that does not necessarily follow the real-world real-
isations of phonemes.

UnvV|
= Uov 1
While Bailey and Hahn (2005) argued that
knowledge-based feature based measures are better
at predicting similarity, data driven techniques offer

Jaccard(U,V)




new opportunities to identify confusions and simi-
larities. As an example of a data-driven approach,
Kane and Carson-Berndsen (2016) built a confu-
sion matrix over the TIMIT (Garofolo et al., 1992)
dataset, which contains recordings of 8 major US-
English dialects. They created what they call an en-
hanced confusion matrix, by excluding an acoustic
model iteratively, in order to restrict the recogni-
tion process and identify what phonemes are recog-
nised in place of those that are missing from the
model. This process ends up with a lot more con-
fusions for each phoneme, thus retrieving more
similarities. They found that this confusion matrix
corresponds better to theoretical expectations. Fur-
thermore, phoneme embeddings have been used as
the basis of data-driven similarity, in the context
of sound analogies (Silfverberg et al., 2018), for
determining allophonic relationships (Kolachina
and Magyar, 2019) and for capturing distributional
properties (O’Neill and Carson-Berndsen, 2019).

3 Introduction of Non-Native Variations

The overall method presented in this paper for syn-
thesising accented speech consists, broadly, of 1)
transforming texts into phoneme sequences, 2) ap-
plying variations to the phoneme sequence accord-
ing the target accent, and 3) synthesising speech
from the phoneme sequence using a text-to-speech
(TTS) engine. This workflow is illustrated in Fig-
ure 1 and is referred in the remainder of the paper
as "variation method". The core of this accented
speech synthesis lies in the way we choose and
apply variations to the phoneme sequence. This is
done by 1) selecting the phonemes to vary using
a mapping between the phonemes of the different
languages - this mapping is called the phonetic
compatibility matrix, and 2) varying the selected
phonemes by replacing them with their nearest
neighbour phonemes in terms of similarity. This
mimics the way non-native speakers adjust to the
target language pronunciation. These replacements
could be regarded as mispronunciations.

The construction of the phonetic compatibility
matrix is very straightforward. It is built as a
boolean matrix, associating the different languages
with their phonemes, the values being 1 if the
phoneme exists in the target language, and O oth-
erwise. Table 1 shows a sample of a compatibility
matrix. For example, it shows that French and
Spanish speakers are likely to approximate the [8]
phoneme, while English speakers will probably ap-
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Phone English French Spanish
d 1 1 1
0 1 0 0
0 1 0 1
z 1 1 0
S 1 1 1
t 1 1 1
B 0 1 0

Table 1: Section of the compatibility matrix

proximate the [g] phoneme when speaking French.
This matrix is based on the IPA handbook (Inter-
national Phonetic Association, 1999) charts for the
different languages.

When applied, the variation method replaces the
incompatible phonemes (i.e. the English phonemes
identified in the phonetic compatibility matrix as
not existing in the target language) with their near-
est neighbour (that is with the higher similarity,
or smallest distance to the original phoneme) in
the similarity matrix, amongst the phonemes that
exist both in English and in the target language.
As we saw in the related work, the similarity be-
tween phonemes can be defined in several ways. In
this paper, we will briefly introduce three different
methods we used for building the similarity matrix,
with a focus on similarity identification using ar-
tificial accented speech data. Thus, the next two
subsections explore these methods for defining a
similarity matrix, which can be separated into two
paradigms: knowledge-based and data-driven.

3.1 Knowledge-Based Similarity

As outlined in Section 2, features have been used
for describing phonemes and for calculating simi-
larity between them. Thus, a similarity matrix can
be constructed based on the Jaccard distance be-
tween the phonemes. This method for building a
similarity matrix and using it for generating arti-
ficially accented speech is referred to as method
KBI1 in the remainder of the paper.

However, Jaccard-based similarity does not take
into account the difficulty of switching from one
articulatory position and manner to another. For in-
stance, switching from [p] to [q] is more counter in-
tuitive than switching from [p] to [m] while they are
equally similar along the Jaccard distance (equal to
0.5). Thus, for weighting the features along their
physical distance in the mouth, we have positioned
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Figure 1: Overview of the generation of speech with non-native variations.

the phonemes in a three dimensional space (Figure
2), representing the features positioned along three
axes corresponding to the place of articulation, the
manner of articulation and the voicing; this is used
as a measure of phonetic neighbourhood.

Voicing

Figure 2: 3D representation of some phonemes

The coordinates of the phonemes in this space
(depicted in Table 2) are used to calculate the Eu-
clidean distance between the phonemes, as a sim-
ilarity measure. For instance, in this space, the
coordinates of [0] are (3,5,1) and the coordinates
of [z] are (4,2,1), which results in a Euclidean dis-
tance of 3.16 in a space where greatest distance
is 13, resulting in a normalised distance of 0.24
(0.76 in similarity). This construction highlights
the positional similarity of phonemes. For instance,
in this space the distance between [p] and [q] (0.69)
is now bigger than that between [p] and [m] (0.11).
These distances are stored in the similarity matrix
corresponding to that method. This 3-dimensional
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representation, in addition to its use for building the
corresponding similarity and generating artificial
accented speech, will now be referred as KB2.
The two similarity matrices presented in this
subsection, KB1 and KB2, are entirely knowledge-
based and do not necessarily highlight other con-
straints such as phonotactics, pitch or tone. In this
sense, the data-driven paradigm presented in the
next subsection can be seen as more representative
of what may happen in natural accented speech.

3.2 Data-Driven Similarity

One method that has been used previously for syn-
thesizing artificial accented speech is to rely ex-
clusively on deep learning architectures of TTS
systems to generate accented speech. This method
consists of processing text inputs with a TTS en-
gine, configured with the pronunciation patterns
of the target accent. For instance, for generating
a French accent in English, we input English text,
to be read by the TTS engine as if it was French.
We implemented this using an off-the-shelf text-
to-speech system (Microsoft Azure TTS) for gen-
erating French-accented speech. This method is
referred as DD1 in the remainder of the paper and
is explained in more detail in the next section.
However, the above method implies the use of
a model that has been trained specifically to syn-
thesize the target language, which brings us back
to the problem of lack of data. Besides, the work
conducted by Kane and Carson-Berndsen (2016)
and presented in Section 2 suggests that phone con-
fusions can be derived directly from speech data.
This work motivated the development of our second
data-driven method for generating accented speech.
This method, denoted DD2, consists in running an
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Table 2: Illustration of the construction of the 3D representation of phonemes

ASR system on accented speech data for retrieving
the non-native confusions. These confusions can
then be used for generating speech with variations
as per the method described at the beginning of this
section. Given the lack of natural French-accented
English data, we decided to look at the recovery of
phonetic confusions from artificial data. Section 4
delves into this method in more detail.

4 Artificial Speech Confusions

As introduced in the previous section, DD2 method
has three stages: 1) generating artificial French-
accented speech by using an off-the-shelf TTS sys-
tem, 2) generating the recognition confusion matrix
using an ASR system, and 3) introducing variations
in speech, as per the variation method (see Figure
1), by using the previously obtained confusion ma-
trix as the so-called similarity matrix for choosing
the phonemes to vary.

The generation of artificial French accented
speech is done by providing text inputs (i.e. textual
sentences from TIMIT dataset) to the Microsoft
Azure TTS, with its two parameters language set
to English and voice set to one of the Azure French
voices: fr-FR-DeniseNeural or fr-FR-HenriNeural.
This configuration allows the TTS to synthesize
the English sentences with a French pronunciation,
that is reading the sentences as if they were written
in French. At the end of this process, we end up
with a set of artificially accented speech audios.

Then, the second step is the generation of the
French confusions. For obtaining that matrix, we
use Wav2Vec 2.0 ASR with a subsequent grapheme
to phoneme mapping and we align the phoneme
sequences with the original ones obtained from
TIMIT. The confusion matrix created from these
alignments is expected to capture the confusions
specifically due to the target French accent.

Lastly, the confusion matrix we just created can
be used as the similarity matrix described in Sec-

tion 3 for getting the replacement phonemes for
the phonemes that do not exist in French. As for
KB1 and KB2, the variation method first selects the
English phonemes that do not exist in French, then
selects their replacements in the similarity matrix
and finally a Phoneme-To-Text engine creates the
varied speech. This aims to mimic the way French
speakers approximate the pronunciation of English.

In the next sections, we evaluate the relevance of
the similarity matrix described in this section - i.e.
based on artificial non-native confusions - in the
context of accented speech generation. This eval-
uation is done by comparing the results obtained
by the ASR on speech generated using the varia-
tion method with the above matrix, referred to as
method DD2 in the remainder of the paper, against
the other ones described in the paper.

S Experiments

The experiments aim to evaluate the extent to which
it is possible to infer accent-related phonemes con-
fusions from artificially accented speech. For that
purpose, we compare the performance of the ASR
on the data generated as in Section 4, that is the
speech synthesised from artificial confusions, with
respect to the other methods described in Section
3, and with respect to speech without variations
(artificial and natural native US English speech) as
baseline. As a summary, we have the following
methods:

* NV1 is a baseline corresponding to natural
US-English speech data from TIMIT.

* NV2 is a baseline corresponding to artifi-
cial US-English speech obtained using Azure
TTS.

* KB1 corresponds to the representation of
phonemes as sets of features, and their simi-
larity as Jaccard distance.



* KB2 corresponds to the representation of
phonemes into a 3-dimensional space, and
their similarity as Euclidean distance.

DD1 corresponds to the use of Azure TTS as
a generator of accented speech, with the so-
called voice parameter set to a French voice.

DD2 corresponds to the confusion matrix ob-
tained after running an ASR on the audio files
obtained by applying method DD1. This is
the main focus of the paper, and has been de-
scribed in Section 4.

For comparing the different methods, we use
three criteria: word error rate (WER), phoneme er-
ror rate (PER) and visual inspection of hierarchical
similarity clustering in dendogram representations.
Global metrics, i.e. WER and PER, are used to
consider the impact that variations have on recogni-
tion. The hierarchical view of similarity values of
some selected phonemes provides an insight into
the impact of specific variations on the recognition.
That is, it is possible to see if the variation patterns
propagate to the output via the confusions.

For the purpose of this paper, we built four sim-
ilarity matrices, following the methodology de-
scribed in sections 3 and 4. That is, we built the ma-
trices corresponding to knowledge-based methods
KB1 and KB2, as well as the similarity matrices
for data driven methods DD1 and DD2. For creat-
ing these matrices, we selected 1000 sentences out
of the 2366 sentences of TIMIT corpus as a text
corpus. The ASR system used for conducting these
experiments is Wav2Vec 2.0. The target accent is
French, and the reference language is US English.

6 Results and Discussion

6.1 WER and PER

Figures 3 and 4 depict WER and PER values respec-
tively with ASR on the six different methods. As
expected, artificial speech with variations obtained
higher WER scores ~+0.57 than speech without
variation, thus confirming that Wav2Vec 2.0 per-
forms better on speech without variation. We thus
obtained a drop of more than 50% between ac-
cented and non-accented speech recognition accu-
racy, which corresponds to the drop reported in
the literature. Unsurprisingly, the PER follows the
same tendencies as the WER. This indicates to an
extent that the confusions we obtained are due to
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Figure 3: WER scores for DD2 vs other methods.
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Figure 4: PER scores for DD2 vs other methods.
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the difficulties for Wav2Vec2.0 in handling the mis-
pronunciations we introduced in our varied speech
at the phonemic level.

These results confirm the interest of our varia-
tion method for challenging ASR systems, and they
are also encouraging for the identification of non-
native speech learning patterns. Indeed, we can ex-
pect that the drop in accuracy between knowledge-
based variation methods and data-driven variation
methods is caused by the addition of new vari-
ations patterns. While the knowledge-based ap-
proaches only apply phoneme substitutions, many
more other phenomena are represented by the data-
driven approaches, such as phonotactics, coarticula-
tion or prosodic transfer. The low value of the drop,
however, could indicate that phoneme substitutions
are the main source of errors for ASR systems, but
this needs to be investigated further.

6.2 Phoneme Similarities

In order to look at the similarities which emerge
from the ASR, we used hierarchical clustering of
the output confusions matrices. Dendrograms visu-
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Figure 6: Hierarchical view of the confusions obtained with DD1 method.
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Figure 7: Hierarchical view of the confusions obtained with DD2 method.

alising this clustering can be found in Figures 5,6  ferences between the dendograms require further
and 7 for KB1, DD1 and DD2 methods respectively ~ detailed analysis examining the contexts in which
2. The dendograms highlight some overall interest-  the errors occur, it can be seen, for instance, that
ing patterns in the confusions. KB1 exhibits place-  the [6] has moved closer to the [s] and [z] in DD2
of-articulation clusters (e.g [t], [d], [r] alveolars  in Figure 7, and to [d] and [t] in DD1 in Figure
for instance), which was expected knowing that its 6. These two confusions correspond to typical L1-
similarity matrix was constructed around phonetic ~ French pronunciation of the t& English grapheme.
features. However, we are looking to investigate =~ Furthermore, r in French is pronounced differently
whether the variants propagate through the ASR  and it can also be seen in DD2 that [r] and [g]
and provide insights into how variants cluster and ~ now cluster together; this is an indication that these
emerge in a deep learning model. While the dif- sounds are both articulated further back.

Note that ARPABET rather than the IPA is used in these This analysis of phoneme confusions highlighted
figures that Wav2Vec2.0 was not able to correct the vari-
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ations we introduced in the input, and that these
variations propagated through the ASR to the tran-
scriptions. Indeed, confusions for KB1 and KB2
relate precisely to the variations we applied. This
opens up perspectives for further analysis of the
notion of similarity for ASR systems, including for
artificial speech.

7 Conclusions

In this paper, we used artificially accented speech
for retrieving non-native similarity patterns. We
generated accented speech TTS with French voices
and were able to use that output for calculating the
corresponding confusion matrix. By using this ma-
trix as a representation of similarity for introducing
variations in speech, we found that these corre-
spond to actual non-native variations. In the near
future, we plan to enhance our knowledge-based
methods with other types of variation, in particular
phonotactic constraints. In the longer term, there
are two motivations for the approach presented in
this paper. The first is to investigate and model
non-native speech variants as they are captured in
deep learning models and the second is to provide
a methodology for challenging ASR systems to de-
termine how far a variant can be from the expected
phoneme and still be recognised correctly.

Limitations

The speech recognition used was the Wav2Vec 2.0
model. Some of the errors may have been influ-
enced by the fine tuning of the final layers; this
could lead to errors being corrected by the language
model. Furthermore, Wav2Vec 2.0 produces char-
acter output which we transformed to phonemes
using a grapheme-to-phoneme tool; this will lead
to some loss in the variation. These limitations can
be overcome to some extent by using a Wav2Vec
2.0 phoneme model which we plan for our next
experiments. We have only worked on French to
date, even though we believe that the method is
applicable to other languages. Finally, the exper-
iments were done only on TIMIT. While this is a
balanced dataset, use of other datasets will likely
lead to better insights.

Ethics Statement

We have used existing speech datasets and off-the-
shelf tools for speech recognition and synthesis.
The use of the existing voices of the native speaker
of one language, in this case French, to synthesise
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artificial non-native English speech is taken as rep-
resentative of an L2 learner speaking English for
the first time. There is much to be learned about
speech variation from such artificially generated
speech but is should not be regarded as mocking
non-native speaker endeavours to learn a language.
Indeed the variants learned from such data can pro-
vide useful insights for speaker accommodation.
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