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Abstract
This paper describes LISN’s submission to the
second track (open track) of the shared task on
Interlinear Glossing for SIGMORPHON 2023.
Our systems are based on Lost, a variation of
linear Conditional Random Fields initially de-
veloped as a probabilistic translation model and
then adapted to the glossing task. This model
allows us to handle one of the main challenges
posed by glossing, i.e. the fact that the list of
potential labels for lexical morphemes is not
fixed in advance and needs to be extended dy-
namically when labelling units are not seen in
training. In such situations, we show how to
make use of candidate lexical glosses found in
the translation and discuss how such extension
affects the training and inference procedures.
The resulting automatic glossing systems prove
to yield very competitive results, especially in
low-resource settings.

1 Introduction

LISN participated in the ‘open track’ of the shared
task on interlinear glossing of SIGMORPHON
2023 (Ginn et al., 2023) with two submissions. Fig-
ure 1 presents the format of the sentences for this
shared task. In this track, the source sentence T
is overtly segmented into morphemes (M), which
yields an explicit one-to-one correspondence be-
tween each source morpheme and the correspond-
ing gloss (G), thanks to the Leipzig Glossing Rules
convention (Bickel et al., 2008). A translation L
in a more-resourced language (English or Spanish)
is also provided, except for Nyangbo. An obvious
formalisation of the task that we mostly adopt, is
thus to view glossing as a sequence labelling task
performed at the morpheme level.

As can be seen in Figure 1, there are roughly
two categories of glosses: grammatical glosses in-
dicating the grammatical function of the morpheme
(e.g., GEN1) and lexical glosses expressing a mean-
ing (e.g., son).1 While the grammatical glosses

1We consider ‘compound’ glosses such as ‘he.OBL’ as

T Nesis łQono uži zown.
M nesi–s łQono uži zow–n
G he.OBL–GEN1 three son be.NPRS–PST.UNW

L He had three sons.

Figure 1: A sample entry in Tsez: source sentence (T),
and its morpheme-segmented version (M), glossed line
(G), and target translation (L)

of a language constitute a finite set of labels, the
variety of lexical glosses is unknown, which is one
of the main challenges of the task, especially in
small training data conditions.

To accommodate such cases, we assume that
lexical glosses can be directly inferred from the
translation tier. Recent works on automatic gloss
generation, such as (McMillan-Major, 2020; Zhao
et al., 2020), also rely on a similar assumption
and leverage the available translations. In our
model, we will thus consider that the set of possi-
ble labels for the morphemes in any given sentence
consists of the union of (a) all the grammatical
glosses, (b) lemmas occurring in the target transla-
tion, (c) frequently-associated labels from the train-
ing data. By using a variant of Conditional Ran-
dom Fields (CRFs) (Lafferty et al., 2001), which
enables such local restriction of the set of possi-
ble labels, our glossing model can be viewed as
an extension of previous sequence labelling sys-
tems based on CRFs such as (Moeller and Hulden,
2018; McMillan-Major, 2020; Barriga Martínez
et al., 2021). In our approach, using translations as
labels during training raises the issue of aligning
the translation and the source sentence, which we
handle with the neural word alignment model of
Jalili Sabet et al. (2020). As alignments are com-
puted at the morpheme level, this technique does
not apply for the ‘closed track’, where the source
segmentation is not part of the training annotations.

Our participation is motivated by two factors:

lexical glosses in our submission.

202



to evaluate the model performance across varying
training data sizes (from a few dozen to thousands
of sentences) and to challenge its ability to handle
a variety of high-resource languages in the target
translation. Section 2 describes our system, while
Section 3 presents our experimental settings. Sec-
tion 4 reports the complete set of results obtained
with our models.

G {LAT GEN1 ... III PST.UNW}

M nesi s łQono uži zow n

T he had three sons

D (or R) ... he.OBL be.NPRS ...

Figure 2: Illustration of our approach to label the exam-
ple source sentence M of Figure 1. G represents the set
of all grammatical glosses in the training data, T the
set of words occuring in the translation L, D the set of
lexical labels from the training dictionary, and R the
reference lexical labels seen in training. During training,
automatic alignments between M and T are used.

2 System description

Our glossing system uses two main technological
components: we (a) rely on an automatic alignment
model between the lexical glosses and the target
translation during training, which also allows us
to exploit additional information regarding target
words, such as their Part-of-Speech (PoS) tag or
their position; (b) use an extended version of CRFs
which allows us to locally restrict the set of possi-
ble labels to carry out the glossing task. Figure 2
summarises the main ideas behind our approach.

2.1 Aligning lexical glosses with target words

To align the lexical glosses with the target trans-
lation, we use the multilingual aligner SimAlign
(Jalili Sabet et al., 2020), which relies on the cosine
similarity of the source and target unit embeddings.
Three heuristics are available to extract the align-
ments from a similarity matrix; we use the Match
method in our submission, since it gave the best
results in preliminary experiments. This method
considers the alignment task as a maximal match-
ing problem in the bipartite weighted graph con-
taining all possible alignment links between lexical
glosses and target words. This heuristic notably

ensures that all lexical glosses are aligned with a
target word.2

one home two khan place become be

in one home there is no place for two kings

Figure 3: Example of SimAlign alignment between lex-
ical glosses and an English translation (Tsez sentence).

Figure 3 displays an example of alignment com-
puted with the Match method. We can note that
most alignments are trivial because both units are
either identical (e.g. ‘one’) or have the same lemma
(e.g. son/sons). The remaining links are also of
great interest in our case. For the alignment pair
(khan/’kings’), although the gloss itself is not in
the translation, they are synonyms and share valu-
able properties such as their PoS tag. Besides, the
alignment of be with ‘for’ is obviously wrong and
only exists because of the constraint of aligning
every lexical gloss. Nevertheless, frequent lem-
mas such as be occur in multiple sentences, and
their possible labels are observed in the training
reference annotations.

2.2 Label and label features

Our approach views glossing as a sequence la-
belling task, meaning that the basic output label
for each morpheme is the gloss itself. Our im-
plementation of the CRF model (see below) also
enables us to simultaneously predict label features,
which are arbitrary linguistic properties that can
be derived from the label. In our experiments, we
chose to incorporate such additional information,
which will yield more general, hence more robust,
feature functions. In all systems, we thus predict
three properties of the label: (a) the actual gloss g,
(b) a binary category b about its nature (GRAM for
grammatical glosses, or LEX for lexical glosses),
and (c) its projected PoS tag p that we collect from
the aligned target word.3

2.3 Probabilistic sequence labelling model

Our system reuses Lost (Lavergne et al., 2011), a
probabilistic model initially devised for statistical
machine translation. With Lost, it is possible to
label arbitrary segments of a source sentence with

2Unless there are more lexical glosses than words in the
translation.

3As grammatical morphemes have no aligned target words,
we use the generic label GRAM for all grammatical glosses.
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‘phrases’ from a large bilingual dictionary and to
effectively search for the best possible labelling
given a set of trained feature weights. Compared
to the original translation task, using Lost for au-
tomatic glossing brings several simplifications. In
particular, there is no need to consider multiple
segmentations of the source as the segmentation in
morphemes is observed, nor to consider multiple
source reorderings, as the translation is also always
observed. We thus only focus below on the features
of Lost that are relevant for the glossing task.

Lost uses a discriminative model based on the
theory of Conditional Random Fields (Lafferty
et al., 2001). In a standard CRF, for a sequence x of
T observations, the probability of the correspond-
ing label sequence y ∈ YT is computed as:

pθ(y|x) =
1

Zθ(x)
exp

{
K∑

k=1

θkGk(x,y)

}
, (1)

where Gk are the feature functions with associated
weights θk and Zθ(x) is the partition function sum-
ming over all possible label sequences. In practice,
the features usually test local properties (unigram
or bigram). Training is performed by maximising
the penalised conditional log-likelihood on a set of
fully labelled instances.

Implementing this model for machine transla-
tion or for our glossing task is challenging. This is
because the set of all possible labels is significantly
larger than for most sequence labelling tasks, which
means that the computational cost of computing
Zθ(x) can get prohibitive, even for sequences of
moderate sizes. The implementation we use, Lost
(Lavergne et al., 2011), enables us to specify a lo-
cal (i.e. for a sentence-specific) set of labels, which
defines a restricted search space both in training
and inference: this means that the normaliser in (1)
will only consider a restricted number of possible
labellings. Using this implementation, the forward-
backward computations performed during training
remain tractable, even when the number of possible
labels gets extremely large. This feature of Lost is
also useful here, as we can restrict the set of pos-
sible lexical glosses by defining a specific search
space for each sentence, as we explain below.

2.4 Defining the search space

During training, we define the search space associ-
ated with the source x made of T morphemes as
comprising all sequences of T labels from either:

the set of known grammatical glosses (G), the lem-
mas of the words in the translation (T ), the most
frequent lexical glosses associated with the source
morphemes in the training set (this can be viewed
as a dictionary D), and the gold glosses (R) for
reference reachability (Liang et al., 2006). This
‘simple’ label set comprises two parts: one (G) is
common to all sentences, while the remaining la-
bels are defined on a per-sentence basis. In formal
terms, the search space is thus (G ∪ T ∪ D ∪R)T .
As explained in Section 2.2, we also consider label
features, where the basic labels are augmented with
various additional information.

Training the CRF model also requires supervi-
sion information, provided here by the reference
glosses, from which we readily derive the reference
sequence of labels in the search space (an exam-
ple of reference output labels can be seen on the
right-hand part of Figure 4).

During inference, since we have no access to the
reference labels, the test search space only com-
prises the union of the grammatical glosses, the
lemmas from the translation, and the labels from
the dictionary (G ∪ T ∪ D).4 Table 1 displays an
example output label from each label set for the S1
setting.

set g b p

G GEN1 GRAM GRAM

T king LEX NOUN

D khan LEX NOUN

R khan LEX NOUN

Table 1: Example of output labels extracted from each
label set (S1 setting), using the example of Figure 3.
The reference label set R is only used during training.

2.5 Feature set

Our two submissions, S1 and S2, use the same
model and share most features computed on the
source morpheme input. However, the latter ex-
tends the former system with additional features.

The input to Lost is the source morpheme s,
from which we also deduce the following features:
its position p within the word coded as a numeri-
cal value (from 0 to n) for complex words, or as
‘F’ for free morphemes, its length l in characters,

4When a lemma is both in the translation and dictionary or
repeated in the translation, we still create distinct paths in the
search space, as these can be associated with different features
(e.g. their PoS and position). The search algorithm will then
pick the most likely option.
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input S1 features S2 features outputs S2 features
i source

morph. m
position

(in word) t
length

l
first 3

letters d
last 3

letters e
copy
src cs

position
src ps

reference
gloss g

GRAM or
LEX b

PoS
tag p

copy
trg ct

position
trg pt

0 nesi 0 4 nes esi 0 1/4 he.OBL LEX PRON 0 1/4
1 s 1 1 s s 0 1/4 GEN1 GRAM GRAM -1 -2
2 łQono F 5 łQo ono 0 2/4 three LEX NUM 0 3/4
3 uži F 3 uži uži 0 2/4 son LEX NOUN 0 4/4
4 zow 0 3 zow zow 0 3/4 be.NPRS LEX VERB 0 2/4
5 n 1 1 n n 0 4/4 PST.UNW GRAM GRAM -1 -2

Figure 4: Example of input, outputs, and associated features to Lost for the Tsez reference sentence of Figure 1.

and its first and last three letters (d and e respec-
tively). Figure 4 displays an example of input and
the associated features.

With all these inputs, we compute unigram and
bigram feature functions, detailed in Table 2. On
top of the basic unigram and bigram features involv-
ing the gloss (top of the table), we also consider
the binary category b and PoS tag p to compute
more general feature functions (middle of the ta-
ble). The idea is to capture associations between
specific grammatical labels occurring after a given
PoS tag (e.g. (VERB, PST.UNW) with the bi-pos-
gloss feature).

In the S2 system, we add two more features:
first, a binary variable (uni-copy-trg-src), which is
True only for lexical glosses that occur letter-for-
letter in the source sentence, to account notably
for copied words (e.g. proper nouns). Second, we
add a categorical feature (uni-pos-src-trg) encoding
information about the relative position of the cur-
rent morpheme with each target word in the trans-
lation, to lower the probability of high-distortion
source-target associations. This categorical encod-
ing is computed by chunking each sequence into
four parts and reporting the chunk numbers: for
instance, the value ‘(1/4, 3/4)’ is used when match-
ing a morpheme in the first quarter of the source
sentence with a target word in the third quarter of
the target sentence. For any unaligned target word,
we use −1 as the corresponding position; for gram-
matical glosses, we assign the value −2 for the
corresponding target word.

3 Experimental conditions

3.1 Languages

Our (partial) official submission for S1 considers
the following five (out of seven) languages: Tsez
(ddo), Gitksan (git), Lezgi (lez), Natugu (ntu; sur-
prise language), and Uspanteko (usp; target transla-
tion in Spanish). For our second submission (S2),

we could only consider three languages (Tsez, Gitk-
san, and Lezgi). Since our system relies on the
translation to get the lexical glosses, we could not
run our models on Nyangbo (nyb), although the
corpus has a similar size to other languages we
studied. For all submissions, we rely solely on
the provided training datasets; no external resource
was used.

We have run S2 on Tsez and Uspanteko subse-
quently and will also report these results below.

3.2 Pre-processing

The PoS tags and lemmas are obtained with spaCy,5

using the en_core_web_sm and es_core_news_sm
pipelines for English and Spanish translations re-
spectively.

All lemmas from the translation are lowercased
except when the associated PoS tag is a proper
noun (‘PROPN’).

3.3 SimAlign settings

Since the glosses and the translation are in the
same language, we use the embeddings from the
English BERT (bert-base-uncased) (Devlin et al.,
2019) when the target language is English and
mBERT (‘bert-base-multilingual-uncased’) when
it is in Spanish (for Uspanteko). We can note here
that our model is compatible with multiple target
languages, SimAlign being an off-the-shelf multi-
lingual (neural) aligner.

Our preliminary experiments showed that the em-
beddings from the 0-th layer yielded the best align-
ments, especially compared to the 8-th layer, which
seems to work best in most alignment tasks. A plau-
sible explanation is that contextualised embeddings
are unnecessary here because lexical glosses do not
constitute a standard English sentence (for instance,
they do not contain stop words, and their word or-
der reflects the source language word order).

5https://spacy.io/.
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Feature Test Example (cf. Figure 4 i = 5)

uni-gloss 1(gi = g) PST.UNW

bi-gloss 1(gi = g) ∧ 1(gi−1 = g′) (be.NPRS, PST.UNW)
uni-gloss-morph 1(gi = g) ∧ 1(mi = m) (PST.UNW, n)
uni-gloss-position 1(gi = g) ∧ 1(ti = t) (PST.UNW, 1)
uni-gloss-length 1(gi = g) ∧ 1(li = l) (PST.UNW, 1)
bi-gloss-morph 1(gi = g) ∧ 1(gi−1 = g′) ∧ 1(mi = m) (be.NPRS, PST.UNW, n)
uni-gloss-start 1(gi = g) ∧ 1(di = d) (PST.UNW, n)
uni-gloss-end 1(gi = g) ∧ 1(ei = e) (PST.UNW, n)

uni/bi-bin 1(bi = b) (∧1(bi−1 = b′)) GRAM ((LEX, GRAM))
uni/bi-pos 1(pi = p) (∧1(pi−1 = p′)) GRAM ((VERB, GRAM))
uni-bin-morph/position/length 1(bi = b) ∧ 1(mi = m)/1(ti = t)/1(li = l) (GRAM, n) / (GRAM, 1) / (GRAM, 1)
uni-bin-start/end 1(bi = b) ∧ 1(di = d)/1(ei = e) (GRAM, n) / (GRAM, n)
bi-position-bin 1(ti = t) ∧ 1(ti−1 = t′) ∧ 1(bi = b) (0, 1, GRAM)
bi-bin-gloss 1(gi = g) ∧ 1(bi−1 = b′) (LEX, PST.UNW)
bi-gloss-bin 1(bi = b) ∧ 1(gi−1 = g′) (be.NPRS, GRAM)
uni-pos-morph 1(pi = p) ∧ 1(mi = m) (GRAM, n)
bi-pos-gloss 1(gi = g) ∧ 1(pi−1 = p′) (VERB, PST.UNW)
bi-gloss-pos 1(pi = p) ∧ 1(gi−1 = g′) (be.NPRS, GRAM)
uni-pos-start/end 1(pi = p) ∧ 1(di = d)/1(ei = e) (GRAM, n) / (GRAM, n)

uni-copy-trg 1(cti = ct) -1
uni-copy-trg-src 1(cti = ct) ∧ 1(csi = cs) (-1, 0)
uni-posi-ts 1(pti = pt) ∧ 1(psi = ps) (-2, 4/4)
uni-gloss-morph-pts 1(gi = g) ∧ 1(pti = pt) (PST.UNW, -2, n, 4/4)

∧1(mi = m) ∧ 1(psi = ps)

Table 2: Unigram and bigram features for our submissions: S1 features about the main gloss label on top, S1 features
involving the two other general outputs, and S2 additional features at the bottom.

3.4 Parameter settings

We always use Lost with the default setting, using
only the l1 regularisation penalty ρ1 = 0.5 and
keeping the l2 penalty term to ρ2 = 0. This setting
gave the best results on average in our preliminary
experiments.

3.5 Metrics

We use the same evaluation metrics as in the Shared
Task: morpheme accuracy, word accuracy, BLEU,
and differentiated precision, recall, and F1-score
for grammatical (gram) and lexical (stem) glosses.

4 Results

Table 3 reports the results for the organiser’s base-
line6 and our systems on the development dataset,
while Table 4 gives the corresponding test numbers.
We only present the word- and morpheme-level
(overall) accuracy, which are the two official met-
rics of the Shared Task results.7 We also report the

6https://github.com/sigmorphon/2023glossingST/
tree/main/baseline.

7https://github.com/sigmorphon/2023glossingST/
blob/main/results.md.

results of S2 for Tsez and Uspanteko, which were
not available at the time of submission.

model ddo git lez ntu usp

baseline 74.2 25.0 32.6 - 75.9
S1 83.6 40.2 84.4 88.2 76.5
S2 84.5* 43.8 85.1 88.5 77.3

baseline 85.0 30.0 50.1 - 81.3
S1 91.0 55.5 87.3 92.1 82.7
S2 91.5* 58.8 88.2 92.4 83.4*

Table 3: Accuracy (overall) at the word (top) and mor-
pheme (bottom) levels for the baseline and our two
systems on the development dataset. Star-marked values
correspond to runs that were not available at the time of
submission.

Our systems are consistently better than the base-
line, with larger gaps when few training sentences
are available (cf. Gitksan or Lezgi). Our second
system slightly improves the accuracy on the devel-
opment set; a similar trend can also be observed on
the test set.

Compared to other submitted systems, we
reached the best word accuracy for Gitksan and
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model ddo git lez ntu usp

baseline 75.7 16.4 34.5 41.1 76.6
S1 84.9 28.4 83.4 88.8 76.3
S2 85.5* 31.5 83.0 89.3 76.7*

baseline 85.3 25.3 51.8 49.0 82.5
S1 91.4 50.8 87.2 92.6 82.4
S2 91.8* 51.1 87.0 92.8 82.7*

Table 4: Accuracy (overall) at the word (top) and mor-
pheme (bottom) levels for the baseline and our two sys-
tems on the test dataset. Star-marked values correspond
to runs that were not available at the time of submission.

Natugu and the best morpheme accuracy for
Natugu.

5 Discussion

5.1 Impact of training data size

Table 5 displays the evolution of the F1-scores at
the morpheme levelCheck this ? broken down by
gloss type (lexical and grammatical) for three sizes
of the training dataset in Natugu (200, 500, and
all 791 sentences). For both settings, the model
reaches better scores for grammatical glosses, and,
unsurprisingly, lexical glosses benefit more from
the increase in training data. While the additional
features in S2 were mostly introduced to improve
the lexical gloss prediction in the small resource
condition, it is noteworthy that they also help im-
prove the prediction of grammatical labels. Simi-
lar observations were made for the other test lan-
guages.

S1 S2

gram lex gram lex

200 93.3 80.5 93.6 81.3
500 95.3 88.5 95.2 88.3
full 95.7 89.5 95.9 89.6

Table 5: F1-scores for grammatical and lexical glosses
with an increasing number of training data in Natugu.

5.2 Number of selected features

Table 6 presents the number of active features (in
thousands) selected among all features (in millions)
by S1 and S2. We note here that thanks to the
l1-regularisation, most feature weights are set to
0 since less than 1% of the features are actually

active. For illustrative purposes, Appendix A lists
the features with the largest weight for the Lezgi
system.

ddo git lez ntu usp

S1 167k (170M) 3k (0.8M) 43k (24M) 60k (39M) 132k (34M)

S2 174k (172M) 3k (0.8M) 46k (24M) 64k (40M) 137k (35M)

Table 6: Number of active features (out of the total num-
ber of computed features) for each setting and language.

6 Conclusion

Assuming the lexical glosses can be aligned with
words in the target translation, we repurposed a
statistical machine translation system based on a
globally-normalised model, akin to CRFs, that al-
lows us to dynamically define a local set of labels
for the automatic gloss generation task. Using two
sets of features, our systems are compatible in low-
and very low-resource settings and outperformed
the baseline models according to several evaluation
metrics.

We plan on further exploring feature functions
on both source and target sides. Besides, since
our systems rely on automatic alignments, which
may contain and project some noise, we will try
to remove this dependency modelling alignment as
an unobserved variable in a latent variable model.
Furthermore, as our submission focused on low-
resource data conditions, we did not consider neu-
ral methods, which are notably data-intensive; fu-
ture work would be to integrate word embeddings
for better-resourced languages such as Arapaho.

Our code is available at: https://github.com/
shuokabe/gloss_lost.
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A Feature weights

Type Feature Weight

uni-gloss-start say ∧ lug 3.22
bi-gloss-morph say ∧ AOR ∧ lag~a 3.22
bi-gloss-morph talking ∧ AOC ∧ gafarun 2.80

uni-gloss-morph-pts . ∧ -1 ∧ . ∧ 4/4 2.75
bi-gloss-morph fortress ∧ OBL ∧ k�ele 2.65
uni-gloss-end now ∧ ila 2.65
uni-gloss-start dog ∧ kic 2.65
bi-gloss-morph newspaper ∧ OBL ∧ gazet 2.49
uni-gloss-start girl ∧ rux 2.49
bi-gloss-morph SBST ∧ PST ∧ di 2.49

Table 7: Top 10 (positive) features of S2 for Lezgi.

Table 7 displays the features with the largest
weight in the S2 system trained on the Lezgi cor-
pus. We can notice here that some (initial or final)
character trigram features (uni-gloss-start and uni-
gloss-end) are relevant, corresponding to lexemes
that either typically occur with an inflexion mark:
‘lug~u’ and ‘lug~un’ for ‘say’, occurring approx-
imately 200 times together or that combine with
a prefix, as ‘gila’ and ‘igila’ for ‘now’ (around
20 co-occurrences).
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