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Abstract

Speech recognition systems are a key interme-
diary in voice-driven human-computer inter-
action. Although speech recognition works
well for pristine monologic audio, real-life use
cases in open-ended interactive settings still
present many challenges. We argue that timing
is mission-critical for dialogue systems, and
evaluate 5 major commercial ASR systems for
their conversational and multilingual support.
We find that word error rates for natural conver-
sational data in 6 languages remain abysmal,
and that overlap remains a key challenge (study
1). This impacts especially the recognition of
conversational words (study 2), and in turn has
dire consequences for downstream intent recog-
nition (study 3). Our findings help to evaluate
the current state of conversational ASR, con-
tribute towards multidimensional error analysis
and evaluation, and identify phenomena that
need most attention on the way to build robust
interactive speech technologies.

1 Introduction

Speech recognition (ASR) is a key technology
in voice-driven human-computer interaction. Al-
though by some measures speech-to-text systems
approach human transcription performance for pris-
tine audio (Stolcke and Droppo, 2017), real-life
use cases of ASR in open-ended interactive set-
tings still present many challenges and opportuni-
ties (Addlesee et al., 2020). The most widely used
metric for comparison is word error rate, whose
main attraction —simplicity— is also its most im-
portant pitfall. Here we build on prior work calling
for error analysis beyond WER (Mansfield et al.,
2021; Zayats et al., 2019) and extend it by look-
ing at multiple languages and considering aspects
of timing, confidence, conversational words, and
dialog acts.

As voice-based interactive technologies increas-
ingly become part of everyday life, weaknesses in
speech-to-text systems are rapidly becoming a key

bottleneck (Clark et al., 2019). While speech sci-
entists have long pointed out challenges in diariza-
tion and recognition (Shriberg, 2001; Scharenborg,
2007), the current ubiquity of speech technology
means new markets of users expecting to be able to
rely on speech-to-text systems for conversational
AI, and a new crop of commercial offerings claim-
ing to offer exactly this. Here we put some of these
systems to the test in a bid to contribute to richer
forms of performance evaluation.

Related Work

The struggles of achieving truly conversational
speech technologies are well documented. Spon-
taneous, free-flowing conversations are effortless
and efficient for humans but remain challenging for
machines (Shriberg, 2005; Baumann et al., 2017).
Speech-to-text systems face an interconnected set
of challenges including at least voice activity detec-
tion, speaker diarization, word recognition, spelling
and punctuation, code-switching, intent recogni-
tion, and more (Suzuki et al., 2016; Sell et al., 2018;
Addlesee et al., 2020; Park et al., 2022). Each of
these represents a choice point with downstream
consequences that may be hard to predict. Per-
haps this is why word error rate, despite its noted
defects (Aksënova et al., 2021; Szymański et al.,
2020), has gained the upper hand in ASR evalua-
tion: it makes no assumptions and simply delivers
a single number to be optimized.

Speech scientists have long worked to supple-
ment word error rate with more informative mea-
sures, including error analyses of overlap (Çetin
and Shriberg, 2006), disfluencies (Goldwater et al.,
2010), and conversational words (Zayats et al.,
2019; Mansfield et al., 2021). This work has shown
the importance of in-depth error analysis, and also
brings home the multi-faceted challenges of truly
interactive speech-to-text systems. As speech-to-
text systems gain larger user bases, multilingual
performance and evaluation becomes more impor-
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Figure 1: A Excerpts of 20 seconds of conversations in six languages, showing the short gaps and overlaps typical
of human interaction. B Distribution of floor transfer offset times for the human-annotated test data across the same
six languages, showing that the distributions are broadly normal and tend to peak around 0, with about as many
turns occurring in slight overlap (negative values) as coming in after a slight gap (positive values).

tant (Levow et al., 2021; Blasi et al., 2022; Chan
et al., 2022; Tadimeti et al., 2022).

The past decades of work on speech-to-text have
led to remarkable improvements in many areas,
and shared tasks have played an important role in
catalyzing research efforts in diarization and recog-
nition (Ryant et al., 2021; Barker et al., 2018). Still,
we see opportunities for new contributions. Most
work involves either non-interactive data or widely
used meeting corpora, both of them quite distinct
from the fluid conversational style people increas-
ingly expect from interactive speech technology.
When more conversational data is tested, it tends to
be limited to English (Mansfield et al., 2021), rais-
ing the question how large the performance gap is
in a more diverse array of languages (Besacier et al.,
2014). While most benchmarks still rely on word
error rates, true progress requires more in-depth
forms of error analysis (Szymański et al., 2020)
and especially a focus on the role of timing and
overlap in speech recognition and intent ascription.
Finally, the wide range of speech-to-text systems
on offer in a time of need for robust conversational
interfaces makes it important to know what current
systems can and cannot do.

2 Aims and scope

A central question relevant at every moment of
human interaction is why that now? (Schegloff
and Sacks, 1973), referring to the importance of
position and composition in how people ascribe
intent to communicative actions. For speech-to-text
systems, in order to even approach this question, a

key prerequisite is to detect who says what when.
This means that diarization, content recognition
and precise timing are all highly consequential and
best considered in tandem.

Here we address this challenge by presenting a
multipronged approach that lays some of the empir-
ical groundwork for improving evaluation methods
and measures. Using principles of black-box test-
ing (Beizer, 1995), we evaluate major commercial
ASR engines for their claimed conversational and
multilingual capabilities. We do so by presenting
case studies at three levels of analysis. Study 1
considers word error rates and treatment of over-
laps. Study 2 looks into what goes missing and
why. Study 3 looks into the repercussions for intent
ascription and dialog state tracking. We show that
across these areas, timing is both a mission-critical
challenge and an ingredient for ways forward.

Data and methods
Data preparation. We evaluate using a set of
human-transcribed conversational data in multi-
ple languages (Figure 1 and Appendix A1). We
take several steps to ensure the dataset makes for a
useful evaluation standard: (1) we pick languages
that all or most of the tested systems claim to sup-
port (English, Spanish, Dutch, French, Korean, and
Mandarin); (2) we source conversational speech
data from existing corpora with high quality human-
transcribed annotations that were published as peer-
reviewed resources; (3) we ensure audio files have
comparable audio encoding and channel separa-
tion, (4) we curate human transcriptions and timing
information of each dataset for completeness and
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Figure 2: A Word error rates (WER) for five speech-to-text systems in six languages. B One minute of English
conversation as annotated by human transcribers (top) and by five speech-to-text systems, showing that while most
do some diarization, all underestimate the number of transitions and none represent overlapping turns (Whisper
offers no diarization). C Speaker transitions and distribution of floor transfer offset times (all languages), showing
that even ASR systems that support diarization do not represent overlapping annotations in their output.

accuracy, making sure that turn beginnings and
ends are marked with at least decisecond precision
(0.1ms); (5) we random-select one hour of dyadic
conversations per language. More information on
data sources and curation is available in this open
data repository: https://osf.io/hruva.

ASR system selection. Following principles
of black-box testing (Beizer, 1995), we test five
widely used ASR systems, keeping data and test-
ing methods constant to compare them to human
transcription baselines. Functional testing does
not require access to model code or training data,
instead treating models as black boxes tested to
specification (Ribeiro et al., 2020). Enabling in-
dependent verification and evaluation, it is a key
method in the toolbox of NLP evaluation methods.

We selected systems that claim to represent
and handle conversational speech, and that of-
fer multilingual support: (1) Amazon Transcribe
0.6.1, whose use cases include “transcription of
voice-based customer service calls" and “gener-
ation of subtitles on audio/video content"; (2)
Google Cloud Speech-to-Text API, using the
latest_long model meant for “any kind of
long form content such as media or spontaneous
speech and conversations" (for French, Mandarin,
and Spanish the long model is not available and
we use the default model instead); (3) NVIDIA
NeMo Quartznet15x15 for English and Conformer-
CTC for French and Spanish, branded as a “Con-
versational AI Toolkit” that allows humans to
“interact naturally"; (4) Rev AI Asynchronous
Speech-to-Text API 2.17.1, which claims “accu-
rate speaker separation" and support for “different

speakers and conversations"; and (5) Whisper, a
multilingual open-source neural net approaching
“human-level robustness and accuracy on English
speech recognition". We collected the finest-grain
data available for each of these systems, using
whisper-timestamped (Louradour, 2023) to
extract word-level timing from Whisper, and
pyannote.metrics (Bredin, 2017) for speaker
diarization with NeMo.

Study 1: WER and overlap in 6 languages

Word error rates vary. We find that word error
rates for truly conversational speech vary widely
but nowhere approach the oft-cited human base-
line of 5% transcription error (Figure 2A, dotted
line), a cross-linguistic replication of prior work on
English (Mansfield et al., 2021). Most speech-to-
text systems have the lowest error rate for English,
and even though all systems claimed multilingual
support, all fare noticeably worse for typologically
more different languages.

Overlap is lost. Human conversation typically
features a rapid back-and-forth between partici-
pants, with a normal distribution of turn transition
times centered around 0-200ms, and around half
of all turns occurring in slight overlap (Figure 1;
Figure 2B-C, top). Tested ASR systems record
substantially fewer speaker transitions and no over-
lapping annotations. Distributions of speaker transi-
tion times show the consequences: current speech-
to-text systems miss out on about half of the turns
that occur in overlap. Descriptive statistics further
corroborate this: by systematically not representing
overlap, speech-to-text systems miss out on up to

https://osf.io/hruva
https://aws.amazon.com/transcribe/faqs/
https://cloud.google.com/speech-to-text
https://nvidia.github.io/NeMo/
https://nvidia.github.io/NeMo/
https://www.rev.ai/async
https://www.rev.ai/async
https://github.com/openai/whisper
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D Standalone Interjections Function Words Discourse Markers
Dutch uhm, hum, hu, uh ja, mm ’n, ie, d’r, da, ’s en uh, dat uh
English mhm, uhhuh, hm, oh, wow did, she’s, that’s, going to, he yeah I, because
French hm hm, hein, ouais ouais, putain c’était, qu’on, l’, d’, m’ euh tu, et euh
Korean ahyu, eung, ye, eo, jeogi hae, gajigo, jeo, geuge, jal geureonigga, geuraegajigo
Mandarin ng ng, ai, a, dui dui, er la, wo wo, re, jiang, ya shi er, gai, shi shuo
Spanish eh, ah, he, claro, vale o, eso, ahi, sea o sea, sabes, verdad es

Figure 3: A Sample minute of Korean conversation comparing human-transcribed and ASR annotations, the latter
coloured by mean confidence rating. Shorter utterances and regions with more overlap are associated with lower
confidence. B Mean confidence for ASR-transcribed utterances (n=17.563) by duration, showing that across all
languages, low confidence scores are associated with shorter utterances. C Most characteristic elements in human-
transcribed (yellow) and ASR transcribed (blue) conversational speech across all languages plotted by Scaled F-score,
with the top most distinctive items for human transcripts on the right. D Top elements that are underrepresented or
missing in ASR versus human-produced transcripts fall into three categories: short conversational interjections,
high frequency function words (including contractions), and discourse makers.

15% of all speech (or around 1 in 8 words), which
results in an inaccurate picture of conversational
content, structure, and flow (Table 2 in Appendix).

Study 2: What goes missing and why

Crosslinguistic replication. Prior work on English
has shown that it is especially short utterances and
conversational words that go missing (Goldwater
et al., 2010; Zayats et al., 2019; Mansfield et al.,
2021). Here we replicate this for all six languages
in our sample (Figure 3A).

Confidence metrics supplied by three of the
speech-to-text systems provide a novel view of this:
regions with more overlap and shorter utterances
often coincide, and both are associated with dips
in word-level and utterance-averaged confidence
scores (Figure 3A-B). Across panels A, B and C,
lighter coloured regions are associated with higher
risk of being missed or misrecognized.

Overlap-vulnerability and reduction. In Figure
3C, we compare human transcripts to ASR out-
put using Scaled F-score (Kessler, 2017), showing

which items are underrepresented (top left) versus
overrepresented (bottom right) in ASR output. We
then take the top 15 most underrepresented items
and inductively classify them as standalone inter-
jections, function words, and discourse markers
(Figure 3D), following prior work (Zayats et al.,
2019; Lopez et al., 2022). We find that these cat-
egories provide good empirical coverage of what
goes missing across all six languages in our sample.

Standalone interjections often occur in overlap-
vulnerable contexts and are rare in ASR training
data, often more formal and monologic (Liesenfeld
and Dingemanse, 2022). The category of function
words mostly contains highly frequent bits of mor-
phosyntax that may occur in overlap-vulnerable
positions (as the Mandarin final particles la and
ya) or that are likely to be phonetically reduced (as
in Dutch and French contractions of pronominal
forms). Finally, discourse markers are utterance-
initial fragments that help direct the flow of a con-
versation. These too occur in overlap-vulnerable
regions and are rare in ASR training data.
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Figure 4: How different speech recognition engines warp dialog act classification in the same dataset of conver-
sational English. For 8 frequent dialog acts, coloured lines show dialog acts based on ASR output deviate from
those based on human transcripts of the same data (baseline). Dot size scales to number of times a tag is assigned.
Only the most frequently assigned dialog acts (with at least 25 tokens in at least one dataset) are shown here. Mean
absolute percentage deviations by ASR system: nemo 27.8%, amazon 31.4%, whisper 33.8%, rev 47.4%.

Study 3: Consequences for dialog flow

So far we have seen that the tested systems struggle
with timing and overlap (study 1) and especially
underrepresent conversational elements of speech
(study 2). But how serious are the consequences for
actual dialogue systems? One way of gauging this
is to consider intent classification, a downstream
task that is key to dialog state tracking and to virtu-
ally any practical application of voice UI (Ye et al.,
2022; Gella et al., 2022; Jacqmin et al., 2022).

As a minimal example, we use the Switchboard
dialog act tagset (Stolcke et al., 2000) as imple-
mented in the dialogtag Python library (Malik,
2021) and apply it to (i) human transcripts and (ii)
ASR transcripts of the same English subset of our
data. By keeping the dialog tagger and the underly-
ing data constant and manipulating only the tran-
scription method (human versus various ASRs) we
make visible how reductions and variations intro-
duced by speech recognition systems impact dialog
act classification. We intentionally use the simplest
possible dialog act tagger as a proof of concept.
While several more sophisticated methods exist,
every method is constrained by the data it can work
with, and our goal here is to merely to make visible

how ASR systems can impact intent ascription and
dialog state tracking.

We find that all ASRs warp dialog act classifica-
tion outcomes in conversational English data (Fig-
ure 4). On average across the top 8 most frequently
detected dialog act types, dialog act tags based on
ASR output deviated between 27.8% (nemo) to
47.4% (rev) from tags based on human transcripts
of the same data (this is absolute percentage devi-
ation, i.e. including both overrepresentation and
underrepresentation of dialog act tags).

Interactionally consequential dialog acts. Sev-
eral highly interactionally relevant dialog act types
are affected by speech-to-text systems. For instance
(as expected based on Study 2), Backchannels and
Agree/Accept tags are underrepresented across the
board. This can be problematic for applications
where it is important to keep track of user under-
standing and agreement during complex operations.
Also, both the Wh-Question and Yes-No-Question
dialog act tags tend to be overrepresented relative
to the baseline. Since questions differ from other
actions in the next moves they invite and expect,
getting this wrong is directly consequential for any
application in which user input is classified to de-
termine relevant next actions.
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Figure 5: Excerpt of 8 seconds of English conversation showing how differences in how speech-to-text systems
carry out segmentation, diarization, and transcription have direct consequences for dialog act classification.

What dialog act deformation looks like. Fig-
ure 5 shows an excerpt of English conversation in
its human-annotated version (top) and four ASRs,
with dialog act annotations. We selected this ex-
cerpt because it illustrates many of the larger scale
patterns of underrepresentation and overrepresenta-
tion evident in Figure 4. Recall that dialog act tags
are not supplied by the systems themselves, but ap-
plied to their output by dialogtag. Note that we
speak of intent ‘ascription’ rather than ‘recognition’
to stress the fact that intents are often ambiguous
and always provisional (Enfield and Sidnell, 2017).

Starting with relatively short conversational ele-
ments, we find that yeah is sometimes identified as
a ‘Backchannel’ (rev, whisper), sometimes merged
with adjacent turns by the other speaker (nemo),
and sometimes elided entirely (amazon) — the lat-
ter two cases exemplifying the reasons ASR output
generally underrepresents this category. Similarly,
pardon? is variously identified as a ‘Repair’ signal
(whisper), sometimes missed as a separate action
because it is merged into adjacent turns by the other
speaker (amazon, rev), and sometimes tagged as
‘Other’ (nemo), possibly because of punctuation.

Moving on to more complex elements, we see
that a lumping approach to segmentation can re-
sult in interactionally important dialog acts going
undetected: Amazon merges two disparate turns,
producing Okay and um tell me whatever was (...),
which is tagged as Other. Meanwhile, a splitting
approach, as Whisper appears to use, can lead to a
fragment like in your house being tagged as Yes-
No-Question in whisper output, showing one likely

cause of over-representation of such question tags.
Disfluently produced questions can also pose

problems: the utterance and um wha- tell me what-
ever was (...), which features a self-repaired frag-
ment, is sanitized and identified as a Statement in
its rev and whisper versions. In the nemo output,
the same turn (though merged, as we saw above,
with a preceding "yeah" by the other speaker) is
correctly tagged as a Wh-Question.

Even in this simple proof-of-concept, we see that
ASR output can affect the ascription and classifica-
tion of intents in various ways. This means that any
real-world implementation relying on the systems
tested here is hampered in its abilities to classify
interactionally consequential social actions, mak-
ing fluid interaction that much harder to achieve.
Given the magnitude by which all tested ASRs de-
viate from human annotations in terms of timing,
segmentation, diarization, overlap, and content, we
expect similar kinds of distortion to appear in any
systems for intent ascription and classification.

3 Discussion

The ubiquity of voice interfaces coupled with re-
ports of human parity in speech recognition might
make robust voice-driven interaction seem within
easy reach. Indeed, all major vendors now advertise
speech-to-text pipelines that claim both multilin-
gual ability and conversational utility. Here we put
five such systems to the test and find that the results
are bleak: word error rates are nowhere near the
oft-claimed human parity; performance drops dra-
matically for languages other than English; precise
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timing and diarization is hard to come by; over-
lap is systematically ignored; conversational words
go missing; and as a result, intent ascription and
dialog state tracking are severely hampered.

Commercial speech-to-text systems are fre-
quently exposed to conversational settings, whether
it is in home use, business meetings, or customer
service interactions. Our results imply that these
systems are likely to fall short of several of their
intended applications. Word error rate does not suf-
ficiently reflect the performance of speech-to-text
systems in most real-life contexts. The erasure of
conversational elements and inability to deal with
overlap renders these systems effectively oblivious
to important aspects of user feedback. Differences
in diarization and turn allocation across systems
also have strong effects on dialog act classification,
with the implication that switching vendors might
have untold consequences for dialog state tracking
and intent ascription.

Our results show that current speech recognition
systems privilege what is said over when it is said;
and that even systems claiming conversational util-
ity appear to treat the problem as fundamentally
one of turning a rich tapestry of turns into running
text. These text-first design choices become visible
when exposed to the rapid turn-taking patterns of
natural conversation — not only to analysts in case
studies like this, but inevitably also to users, where
they cause friction, interactional turbulence, and
user dissatisfaction. The results are in line with
recent arguments that the current language technol-
ogy landscape is fundamentally built around mono-
logic text instead of dialogical talk (Dingemanse
and Liesenfeld, 2022). The rise of conversational
interfaces motivates a course correction if not a
refurbishing of the foundations. Here we hope to
have shown that data from human interaction can
inform such work.

3.1 Objections

One might object that our test data is unreasonably
tough, featuring open-domain informal conversa-
tion with rapid turn-taking and lots of overlap. We
agree, but would counter that it is at the same time
reasonably realistic: this is what typical human
interactive behaviour look like. The brute facts
of human interaction are something speech-to-text
systems will need to reckon with if there is to be
a chance of the “natural interaction" and “human-
level robustness" promised by current solutions.

One might object that missing 1 in 8 words and
having word error rates hovering around 50% may
not be fatal, depending on what goes missing. We
agree, and point out that what goes missing here
is crucial for interactive speech technology. Short
recurring utterances like mmhm, oh and huh? are
the swiss army knife of conversational competence.
These items enable robust communication and fluid
coordination; to erase them is to rob users of their
agency and to stunt the interactive capabilities of
conversational technology.

One might object that dialog acts are an imper-
fect and language-specific way of looking at intent
ascription, and that automated tagging based on
form alone does not do justice to the situatedness
of action (Rollet and Clavel, 2020; Levinson, 1981).
We agree, and have picked dialog acts merely as
a proof-of-concept to illustrate the more general
problem of garbage in, garbage out: defective di-
arization, missing words, and neglect of timing will
hamper any form-based methods for intent ascrip-
tion and dialog state tracking.

3.2 Limitations

We are aware of the following limitations.
First, the human reference data is internally quite

diverse, differing in recording setting and audio
quality. This makes comparisons across datasets
harder, so we have refrained from drawing strong
comparative conclusions about possible differences
across corpora and languages, instead focusing on
recurring patterns of what goes missing and why.

Second, we have not collected baseline measures
for non-conversational data, making it hard to es-
timate how large the performance offset really is
relative to more typical word error rate studies. Do-
ing this would require a parallel data collection
and curation exercise for each of the languages in-
cluded in our study, which is outside our scope here
but represents a good target for future work.

Third, given our choice to evaluate commercial
vendor pipelines, we are unable to examine or re-
port details about ASR system architectures, model
parameters, and confidence score calculations. This
is a necessary consequence of black-box testing.
While direct access and manipulability offer impor-
tant advantages from an engineering perspective,
we nonetheless think it is also important to docu-
ment and evaluate the performance of widely used
commercial solutions.

Fourth, we have only considered the timing infor-
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mation provided in ASR results, not the latency at
which the results themselves are delivered. The la-
tency of ASR systems at runtime imposes another
formidable bottleneck on voice-driven conversa-
tional interfaces, especially as long as they use end-
pointing methods, where response planning only
starts when an utterance end is detected with some
probability. User-perceived latency is the single
biggest determinant of people’s satisfaction with
voice assistants (Shangguan et al., 2021; Bijwadia
et al., 2023). Collecting realistic latency data would
require implementing the tested systems in a voice
UX environments with human users, which is be-
yond the scope of this paper (but see Aylett et al.
(2023)). Empirical work on dyadic and multi-party
interaction can show how people realize low laten-
cies in real time. This is a high bar to meet, and it
likely requires a radical overhaul of ASR systems
towards incremental processing (Skantze, 2021).

3.3 Recommendations

The interconnectedness of all relevant processes
in speech-to-text systems means that any quick fix
likely has adverse consequences elsewhere. For
instance, it is possible to improve diarization er-
ror rates by detecting and removing all overlap
(Boakye et al., 2008) — but this means throwing
out at least 15% of the data (as we show), putting
human parity out of reach. Likewise, one may
seek to reduce word error rates and interactional
turbulence by excluding interjections (Papadopou-
los Korfiatis et al., 2022), but this comes at the
cost of losing all opportunity of rapid real-time
user feedback. Our recommendations therefore fo-
cus on broadening the empirical basis, overcoming
siloization, doing more in-depth evaluation, and
incrementalizing architectures.

Improve ecological grounding. The most widely
used datasets for training ASR systems still consist
mostly of monologic read speech in well-resourced
languages. For ASR systems to gain headway in
truly interactive settings, they need to be exposed
to more data that is closer to everyday language
use in terms of linguistic diversity, conversational
style, and participation (Aylett and Romeo, 2023).
Fortunately, such data is available for an ever-wider
range of languages (Liesenfeld and Dingemanse,
2022).

Overcome siloization. In a field as large and var-
ied as automatic speech recognition, some degree
of specialization is inevitable, but true progress

requires working together across disciplines. As
we have shown here, engineering choices in voice
activity detection directly affect dialog flow, and
conversation designers benefit from knowing the
limitations of word error rates and the importance
of overlap. Reducing the siloing of knowledge will
be crucial for resolving theoretical and practical
challenges of speech recognition in the era of con-
versational interfaces.

Value qualitative error analysis. Simple metrics
make for attractive optimisation goals, but are al-
ways vulnerable to mindless metrics gaming: when
a measure becomes a target, it ceases to be a good
measure (Strathern, 1996). Qualitative error anal-
ysis and thorough human evaluation will remain
important to truly get a handle on what goes wrong
and how things can be improved (Szymański et al.,
2020). This means incentives must be shifted to
reward meaningful forms of evaluation over SOTA-
chasing (Rogers, 2021; Church and Kordoni, 2022).
It also means there is room for more exploratory
methods, such as the dialog act classification mea-
sure we have begun to explore here.

Develop multidimensional evaluation. The
downsides of word error rates have led to a flower-
ing of alternative measures (Errattahi et al., 2018;
Bredin, 2017). In time, the field will benefit from
a degree of consolidation, and holistic evaluation
of speech-to-text systems will require taking into
account a wider range of measures, including but
not limited to diarization, timing, duration, overlap,
coverage, phonology, spelling, and word error rate.
Empirical and modelling work is needed to arrive
at composite evaluation measures that are precise,
reproducible and meaningful.

Strengthen incremental approaches. Even if di-
arization quality, overlap detection and word error
rates would come closer to human performance,
the runtime latency of speech recognition stands
in the way of fluid interactivity. To approach the
rapid turn-taking and functional overlap that makes
human interaction so flexible, voice-driven user
interfaces will likely have to be designed as in-
cremental architectures (Schlangen and Skantze,
2011). Promising work in this domain exists (Bau-
mann et al., 2017; Addlesee et al., 2020; Addlesee
and Damonte, 2023), and this represents an impor-
tant growth area.

Use timing when available. Current systems at
least provide timing for non-overlapping stretches
of talk, but even that is rarely used for intent as-
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cription. This despite the fact that we know tim-
ing alone can change the interpretation of a turn
like “Sure.", with longer delays flipping its polar-
ity from positive to negative (Roberts and Francis,
2013). Building on insights like this, timing might
be used to improve at least some elements of intent
ascription. Likewise, known facts about relative
durations of turns and silences could be used to
make empirically informed decisions about when
to lump versus split speech material in ASR output.

4 Conclusion

When you’re a voice-driven conversational agent,
life comes at you fast, and talk comes at you faster.
We have presented evidence and arguments to sup-
port our contention that timing is more than a nice-
to-have for any truly conversational system: it is
mission critical and despite decades of attention
from speech scientists remains largely unsolved
today. But rather than despair we take our findings
as an opportunity to identify areas where novel
work can make big differences. While diarization
remains hard in real-life settings, representing over-
lap instead of erasing it is likely to offer meaningful
improvements. While overlap-vulnerable elements
will always remain acoustically at risk, exposing
ASRs to more ecologically valid training data and
abandoning text-based sanitizing techniques will
likely improve the recognition of short conversa-
tional elements. And while intent ascription will
always be hampered by missing data, taking timing
into account will enable new gains.

Dealing with conversational words computation-
ally is hard: not only are their forms short and
prone to overlap, their meanings are cognitively
demanding and interactionally subtle. A focus on
information and sentence structure over interaction
and sequential organization has long enabled us to
look away from these elements. As conversational
words are backgrounded as ‘backchannels’ and the
artful interweaving of turns is classified as mere
‘overlap’ if not ‘noise’, it becomes easy to lose sight
of the intricacies of human interaction. One way
to see this paper is as contributing to a reframing
that is underway in the language sciences at large:
a reframing that foregrounds talk over text, that at-
tends to interaction alongside information, and that
recognizes the key role of timing. Timing is the
secret sauce that can turn text into talk, chat into
conversation, and perhaps, one day, clunky bots
into fluid interactive tools.
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A Appendix

A.1 Datasheets
Table 1 shows the different corpora used in the study, detailing how many conversations were included and
their total lengths in minutes. Every language contains approximately one hour worth of conversations,
and when feasible, different interactional settings were incorporated (resulting to two corpora for Dutch).
Each processing step is reflected in the processing pipeline avaliable in the repository, which also includes
a datasheet (Gebru et al., 2021) and instructions on how to replicate the study given access to the data.
For Dutch and Spanish, the evaluation datasets are freely available for academic research purposes. For
English, French, Korean and Mandarin, the study repository provides information how to obtain the
datasets used: https://osf.io/hruva.

Language Corpus Conversations (n) Length (mins)
The Corpus of Spoken Dutch (CGN) (Taalunie, 2014) 3 30.11

Dutch
IFADV Corpus (van Son et al., 2008) 2 29.97

English CALLHOME American English (Canavan et al., 1997) 6 60.25
French Nijmegen Corpus of Casual French (Torreira et al., 2010) 6 60.39
Korean CALLFRIEND Korean (Canavan and Zipperlen, 1996a) 4 59.99
Mandarin CALLHOME Mandarin Chinese (Canavan and Zipperlen, 1996b) 6 60.20
Spanish Glissando Corpus (Garrido et al., 2013) 6 60.34

Table 1: Corpora used in the study, with each language represented by approximately one hour of informal
conversations.

A.2 Study 1 methods
For both the human and ASR-transcribed data we calculate turn transition times in ms, number of speaker
transitions, and the presence and duration of overlaps. For error analysis at the content level, we removed
punctuation and excluded tags for non-speech behavior such as [laugh] and [breath] to bring all transcripts
to a more comparable format. We used cleantext for pre-processing and whitespace for tokenizing.
We then calculated word error rate (WER) using jiwer, and for a more in-depth investigation on the
differences between human and speech-to-text annotations, we adopt Scaled F-score (Kessler, 2017) as a
metric of n-gram salience scoring.

A.3 Study 1 detailed results
Table 2 provides a more detailed look at key differences between human transcriptions and ASR output
across the six languages in our sample. For every language, it lists the mean amount of speech covered by
the transcriptions (coverage); the mean total number of words in the transcripts (words); the mean turn
duration in milliseconds; and the mean percentage of overlapping annotations.

https://osf.io/hruva
https://pypi.org/project/cleantext/
https://github.com/jitsi/jiwer
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Human vs ASR Coverage (min) Words (n) Turn duration (ms) Overlap (speech %)
Dutch 63 12023 2840 13.4

47 9396 5897 0
English 65 13895 2811 12.6

55 10994 6647 0
French 64 13564 4357 14.4

49 8359 7042 0
Korean 74 9632 3280 20.8

43 5923 4186 0
Mandarin 66 15349 2538 15.8

53 8188 7301 0
Spanish 63 11868 4620 10.5

57 10177 7534 0

Table 2: Comparison of human (top) and ASR transcripts (bottom) in each language in terms of coverage (amount
of speech transcribed (in minutes), number of words, mean duration of each conversational turn (ms), and percentage
of overlapped annotations relative to the length of the whole conversation. Human annotations add up to 395
minutes of transcribed speech; ASR-produced annotations for the same data on average add up to only 304, or 77%
of the observed speech.


